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What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours (liberties) are
; occupied by opponent stones
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What is Go?

e Two players alternate in placing
stones on the intersections of a
grid

e Neighbouring stones of the
same colour form a contiguous
block

e A block can be captured if all its
empty neighbours are occupied
by opponent stones

u]
o)
I

"
it
)
»
i)



BackGROUND OUR METHOD EXPERIMENTS

000000e 000000000 0000
00000

‘WoRrk PROGRESS

What is Go?

e The game terminates once
players agree on the life status
of blocks

e The blocks and their

surrounding area count towards
territory

e Territory is used to determine
the winner of the game
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Why is Go challenging for computers?

¢ Huge branching factor

e ~ 200 0on 19 x 19 board, ~ 40 in Chess
e =~ 10'72 legal board positions, ~ 10%° in Chess
e Standard alpha-beta min-max is too inefficient

e Position evaluation is difficult

¢ Hard to judge strength of blocks statically
e Stones have both local and long-range interactions



BACKGROUND

[e] lelele}

Heuristic-based programs

¢ Rely on hand-tuned patterns and results from local searches
o Advantages: Strong locally, especially if pattern is known

¢ Disadvantages:
o Weak at global play
e Weak at judging unseen situations
o Board evaluation is slow
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Learning-based programs

Learn an evaluation function using self-play or expert games

Advantages: Loads of expert games available

Disadvantages: Relatively weak playing strength

Gut feeling:
o State-space is too large
e Hard to define features
o Evaluation function is highly non-smooth
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Sampling-based programs

e Bandit-based tree search (UCT)

e Each tree node (board position) is a multi-arm bandit

e Sample child positions, maximize total reward

o Store all node statistics in a tree data structure

¢ If a node is not in the tree then use an evaluation function

e Evaluation function
¢ Playout position randomly until no moves remain. Final
position is trivial to score
e Enhanced through the use of patterns and other heuristics
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Sampling-based programs

e Advantages:

Evaluation function is fast and accurate for many samples

¢ Increase in samples gives increase in playing strength

e Assymetric tree growth - more time spent on difficult positions
e Best performance. Reached 3-dan (professional) level on 9 x 9

¢ Disadvantages:

o Weak performance early in the game
o Still weak on larger boards

e Conclusion:

e Framework has good potential
e But need to improve both search and evaluation
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Learning in Go

e Go is played on a grid graph G, so it is natural to model it with
a graphical model such as CRF

e Major problem is inference:

e Approximate: Loopy Belief Propagation
e Exact: Junction-Tree, Graph Cuts
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Junction Tree Algorithm

e Exact method for computing partition function, marginals and
MAP (maximum a posteriori) state

e Graph is a tree: complexity polynomial in graph size

e Graph is not a tree:
e Convert the graph into a tree of cliques
o Complexity exponential in the treewidth = size of the maximal
clique
e For N x N grid the treewidth is N
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Graph Cuts

Exact method for computing MAP state of a binary-labeled
problem

Treat MAP computation as finding the min-cut of a particular
graph (with positive edge weights)

Theorem: finding the graph’s min-cut is equivalent to finding
its max-flow

Can use Ford-Fulkerson. Complexity is polynomial in graph
size
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Other methods?

e Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?
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Other methods?

e Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?

e Answer: Yes!
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Ising problem

e Graph G = (V, E), binary variables (spins): y; € {+, -}

e Spins only interact in pairs. One energy for agreement:
Y__ = Y44, another for disagreement: y_, =y, =0

e Model distribution:

P(y) = ﬁ eXp(il;E[y/' = yjl¢ij) , where

Z(y) = Z exp(Z[y,- = y;]¥ij) is the partition function
y ijeE
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Dimer problem

e Perfect Matching: A set of
non-overlaping edges (dimers)
that cover all vertices

% Lo
- Sesed:

e How many perfect matchings
does a graph have?
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Counting Matchings

e Every planar graph has a Pfaffian orientation: each face
(except possibly outer) has an odd number of edges oriented

>

o Define a skew-symmetric matrix K such that:

1 ifi—j
Kij=1< -1 ifie—]j

0 otherwise
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Kasteleyn Theorem

01,01 0]|]0]-
170110 1] 0
01,01, 0| O
K= 0j0|{1]0|-1]0
O(-1,0 1] 0]
110 0|0] 1|0

Kasteleyn Theorem:
Number of perfect matchings is Pf(K) = V|K]
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The connection

Let G, be G plane triangulated: each face becomes a triangle

Let G* be the dual of graph G,: each face in G, is a vertex in
G*

Let G be the expanded version of G*: each vertex is
replaced with 3 vertices in triangle

Connection: There is a 1:1 correspondence between perfect
matchings in G; and agreement edge sets in G
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Our method: overview

No need to compute the dual G* and expanded dual G

Show how to compute the marginals and hence perform
parameter estimation

Show how to compute the MAP state

All computations are polynomial in graph size
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Our method: overview

e Model distribution:

P(y) = ﬁ exp(i%;[yf = yilwi)

1
P(ylx; 0) = Z0x:0) exp(Z[y,- =y < ¢ji(x),0>)
ijeE
¢ Restrictions:
e Graph is planar: can be drawn without crossing edges
e Binary labels
¢ No node potentials (no external field)
e Edge potentials: one for agreement, one for disagreement
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Comparison to Graph Cuts

\ Graph Cuts \ Ising Model
Need planarity? No \ For polynomial runtime
2-label problem Exact and polynomial runtime
N-label problem approx. with a—expansion Not yet
Node potentials? Yes Only outerplanar grapt
Submodularity: Eo=E =0
Energy restriction E(),o + E1,1 < E0,1 + E1,0 E0!1 = E1,0 (: 0)
non-submodular: partial sol. Epo = E14
Combined restriction Eoo = E11 <0, Ey = Ey = 0t trivial solution
Partition function? No Yes
Marginals? No Yes
Parameter Estimation Max-Margin Max-Likelihood
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Algorithm

e Original graph G = (V, E)
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Algorithm: Step 1

e Obtain a planar embedding

e Using Boyer-Myrvold algorithm
the complexity is O(n), where
n=|E|
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Algorithm: Step 2

e Add edges to plane triangulate
the graph

e Using simple ear-clipping the
complexity is O(n)
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Algorithm: Step 3

e Orient the edges such that each
vertex has odd in-degree

e Equivalent to having a Pfaffian
orientation in the dual graph

o Complexity is O(n)
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Algorithm: Step 4 (intuition)

e Add nodes to each face e Construct a skew-symmetric
2|E| x 2|E] matrix K (for dual

e Orient edges towards those edges):

nodes e Kj = xe”i if jj crosses
original
o Equivalent to expansion in the * Kj = +1if jj crosses added

dual graph e Complexity is O(n)
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Algorithm: Step 4 (implementation)

e Number each edge

e Number the sides of each edge Pseudo Code
g F h vert :
e LHS = 2k or each vertiex v: o
e RHS = 2k — 1 e For each edge k incident on v

(clockwise):
e if k points away from v:
* Kokprev =1(2—8)
e else
® Kok—1prev = 1 (7 - 1)
o Kok_12c = €% (7 — 8)

Return K — KT
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Algorithm: Parameter estimation

e Compute partition function: Z(y) = 2 V|K|
e Compute gradients:

onzw) 2 oK y
= =..=-|K Klok—
76, Z(0) v [K™" © K]ak-1,2«

 Computing inverse and determinant takes at most O(n®) time
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Algorithm: MAP state

e Maximum a posteriori state (MAP):
y* = argmax P(y|x; 6°) , where
y

m

0 2
0" = argmin £(0) , ” ” Z InP(ylx; 6)
0

* Max-weight perfect matching on G; gives the max-weight
agreement edge set. Use blossom-shrinking (Edmonds 1965)

e This takes O(n?log(n)) time
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Algorithm: Numerical problems

e Computation of |K| and K~ are prone to numerical problems

e Method 1: for skew-symmetric matrices K and constant q:

gk|
K =2

q

e Method 2: use LU decomposition of K:

n
K'=U"L™, niKl= > InUj

i=1
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e The blocks and their
surrounding area count towards
territory

e Territory prediction: Given a
board position predict the owner
of each intersection

e Challenging problem for ML!
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Graph abstraction: common fate graph

e Grid graph G does not capture the fact that stones in a block
always live or die as a unit

e Common fate graph Gcry (Graepel et al., 2001) merges all
stones in a block into a single node
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Graph abstraction: block graph

e Use Manhattan distance to classify empty regions into 3
types: black surround (m), neutral(¢) and white surround(C)

e Collapse empty regions to form the block graph Gy,
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Graph abstraction: block graph

e Surrounds encode the possibility for obtaining territory

* Gp is more concise than Gy, but preserves the kind of
information required for predicting territory
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Graph abstraction: group graph

e Group: set of blocks of the same colour that share at least
one surround

» Construct the group graph Gy by collapsing groups of Gp
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Feature engineering: nodes

e Given node v € Gy, compute feature vector F:

Fx = num. intersections in v with k neighbours in v

e Provides a powerful summary of the region’s shape

F:{27472’1}

DA



BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

0000000 000000000 0000
(o] lo}
00000
e]e]

Feature engineering: edges

e Given nodes v', v € Gp, compute their corresponding
features F' and F2:

F} = num. intersections in v' with k neighbours in v?

FZ = num. intersections in v with k neighbours in v
¢ Provide information of node’s liberties and boundary shape

F' =13,3,1},F* = {6,3,0)
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Datasets

e 9 x 9 games: Van der Werf et al. collection, 1000 training and
906 testing

e 19 x 19 games: scored by our cooperative scorer, 1000 for
training and testing

e Oversize games: 22 games manually scored. Sizes range
from 21 x 21 to 38 x 38. Only for testing
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Task

e Given an endgame position determine the label (BLAck or
wHiTE) of each intersection

e We train our CRF on the block graph G, using BFGS as the
optimizer

 Prediction determined using MAP state of the group graph Gg
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Controls

Naive: assume all stones are alive

GnuGo 3.6: open source program. Uses Go-specific
knowledge and local searches

NN: neural net classifier (van der Werf et al. 2005). Uses 63
Go-specific features of various board abstractions

MRF: a simple MRF on G with just 6 parameters (Stern et al.
2004). Inference via 50 iterations of LBP. Prediction via
marginal expectations at each intersection
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Prediction Accuracy

. . Error (%)
Size Algorithm Block | Stone | Game | Winner
Naive 17.57 8.80 75.70 30.79
MRF 8.19 5.97 38.41 13.80

9x9 CRF approx 2.73 2.46 9.93 2.65

CRF exact 2.57 2.32 9.05 2.32

GnuGo* T 005 132 -

* Was used to NN” <1.00 [ 0.19 1.10 0.50
Naive 1650 | 6.96 | 98.30 | 32.60

label data MRF 491 | 380 | 6390 | 2050

19 x 19 | CRF approx 5.25 493 | 49.00 11.80

CRF exact 3.93 3.81 43.40 9.30

GnuGo - 0.11 5.10 -
Naive 19.64 | 10.25 | 100.00 | 31.81

reater
gthan MRF 780 | 683 | 100.00 | 22.73
19% 19 CRF approx 7.51 6.84 | 81.82 9.09

CRF exact 4.52 5.02 | 81.82 9.09
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Errors made by different methods

AT T e e e sy e e s e
y y

O misclassified by
Naive, MRF and CRF

O by Naive and MRF

A by Naive only

Gnugo made no errors

MRF inconsistent due
to use of marginals
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CRF’s perfect prediction for an oversize game
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Prediction speed: methods

GnuGo 3.6: scoring in aftermath mode

LBP: 50 iterations of LBP for marginal expectations (Stern et
al. 2004)

Brute force: variable elimination with arbitrary elimination
ordering

Variable elimination: using min-fill heuristic (Kjaerulff 1990)

Our method: blossom-shrinking (Edmonds 1965)
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This work

Not much luck with conference papers
Going to publish this as a journal paper in JMLR

Want to try territory prediction for middle-game positions and
move prediction

Want to apply this method to images and compare directly to
Graph Cuts



Bandit-based tree search

Assume each node n; has a reward distribution X;
UCT samples node

n; = argmax(E(X;) + ¢ * Var(X;))

n;
Instead assume X; = B(«;, ;). Now sample node

n; = argmax(x; ~ Xj)
nj

Performance not as good as UCT’s

Now want to try Gittins indices

‘WoRrk PROGRESS
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Bandit-based tree search

o UCT falsely assumes that arms (siblings) are independant

¢ Instead sample from dependant arms (Pandey et al., 2007)
o Cluster arms (eg. based on group graph)
e Step 1: Select a cluster to sample
e Step 2: Select an arm within that cluster to sample
¢ Update statistics of all arms in that cluster

e Can expect huge speed-up
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Other Go work

e Cooperative Scorer

e Fast influence function

e Go playout on GPU

e GPUs are designed for floating point and matrix operations

¢ Nvidia Tesla has up to 128 parallel cores, 512 Gflops

e Developed a random Go player that only uses matrix
operations

¢ Huge potential if works on the GPU!
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Questions?
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