BACKGROUND OUR METHOD

EXPERIMENTS ‘WoRrk PROGRESS
0000000 000000000 0000
00000 000
0000 00000
00000 e]e]

Efficient exact inference in Ising graphical models
applied to Go

Dmitry Kamenetsky
Supervisor: Nicol N. Schraudolph

NICTA, Australian National University, Australia

Midterm, May 2008

(]
e
Fage MU

N I CTA THE AUSTRALIAN NATIONAL UNIVERSITY

Background
Game of Go
Computer Go
Graphical model for Go
Ising graphical model

Our method
Algorithm

Experiments
Graph abstraction
Features and parameters
Prediction Accuracy
Prediction speed

Work Progress

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

®000000 000000000 0000

00000 000

0000 00000
e]e]

What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours (liberties) are
; occupied by opponent stones

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

0O@00000 000000000 0000

00000 000

0000 00000
e]e]

What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours are occupied
; by opponent stones

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

00@0000 000000000 0000

00000 000

0000 00000
e]e]

What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours are occupied
; by opponent stones

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

000@e000 000000000 0000

00000 000

0000 00000
e]e]

What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours are occupied
; by opponent stones

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

0000e00 000000000 0000

00000 000

0000 00000
e]e]

What is Go?

e Two players alternate in placing
; stones on the intersections of a
; grid

¢ Neighbouring stones of the
same colour form a contiguous
3 block

e A block can be captured if all its
empty neighbours are occupied
; by opponent stones

BACKGROUND OUR METHOD EXPERIMENTS ‘WORK PROGRESS
0000080 000000000 0000

00000 000

0000 00000

00000 00

What is Go?

e Two players alternate in placing
stones on the intersections of a
grid

e Neighbouring stones of the
same colour form a contiguous
block

e A block can be captured if all its
empty neighbours are occupied
by opponent stones

u]
o)
I

"
it
)
»
i)

BackGROUND OUR METHOD EXPERIMENTS

000000e 000000000 0000
00000

‘WoRrk PROGRESS

What is Go?

e The game terminates once
players agree on the life status
of blocks

e The blocks and their

surrounding area count towards
territory

e Territory is used to determine
the winner of the game

u]
o)
I

"
it
N
»
?

BACKGROUND

®0000

Why is Go challenging for computers?

¢ Huge branching factor

e ~ 200 0on 19 x 19 board, ~ 40 in Chess
e =~ 10'72 legal board positions, ~ 10%° in Chess
e Standard alpha-beta min-max is too inefficient

e Position evaluation is difficult

¢ Hard to judge strength of blocks statically
e Stones have both local and long-range interactions

BACKGROUND

[e] lelele}

Heuristic-based programs

¢ Rely on hand-tuned patterns and results from local searches
o Advantages: Strong locally, especially if pattern is known

¢ Disadvantages:
o Weak at global play
e Weak at judging unseen situations
o Board evaluation is slow

BACKGROUND

[e]e] lele}

Learning-based programs

Learn an evaluation function using self-play or expert games

Advantages: Loads of expert games available

Disadvantages: Relatively weak playing strength

Gut feeling:
o State-space is too large
e Hard to define features
o Evaluation function is highly non-smooth

BACKGROUND

[e]e]e] o}

Sampling-based programs

e Bandit-based tree search (UCT)

e Each tree node (board position) is a multi-arm bandit

e Sample child positions, maximize total reward

o Store all node statistics in a tree data structure

¢ If a node is not in the tree then use an evaluation function

e Evaluation function
¢ Playout position randomly until no moves remain. Final
position is trivial to score
e Enhanced through the use of patterns and other heuristics

BACKGROUND

[e]e]ee] }

Sampling-based programs

e Advantages:

Evaluation function is fast and accurate for many samples

¢ Increase in samples gives increase in playing strength

e Assymetric tree growth - more time spent on difficult positions
e Best performance. Reached 3-dan (professional) level on 9 x 9

¢ Disadvantages:

o Weak performance early in the game
o Still weak on larger boards

e Conclusion:

e Framework has good potential
e But need to improve both search and evaluation

BACKGROUND

@000

Learning in Go

e Go is played on a grid graph G, so it is natural to model it with
a graphical model such as CRF

e Major problem is inference:

e Approximate: Loopy Belief Propagation
e Exact: Junction-Tree, Graph Cuts

BACKGROUND

0e00

Junction Tree Algorithm

e Exact method for computing partition function, marginals and
MAP (maximum a posteriori) state

e Graph is a tree: complexity polynomial in graph size

e Graph is not a tree:
e Convert the graph into a tree of cliques
o Complexity exponential in the treewidth = size of the maximal
clique
e For N x N grid the treewidth is N

BACKGROUND

[e]e] Ie]

Graph Cuts

Exact method for computing MAP state of a binary-labeled
problem

Treat MAP computation as finding the min-cut of a particular
graph (with positive edge weights)

Theorem: finding the graph’s min-cut is equivalent to finding
its max-flow

Can use Ford-Fulkerson. Complexity is polynomial in graph
size

BACKGROUND

oooe

Other methods?

e Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?

BACKGROUND

oooe

Other methods?

e Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?

e Answer: Yes!

BACKGROUND

@0000

Ising problem

e Graph G = (V, E), binary variables (spins): y; € {+, -}

e Spins only interact in pairs. One energy for agreement:
Y__ = Y44, another for disagreement: y_, =y, =0

e Model distribution:

P(y) = ﬁ eXp(il;E[y/' = yjl¢ij) , where

Z(y) = Z exp(Z[y,- = y;]¥ij) is the partition function
y ijeE

BACKGROUND

[e] le]e]e}

Dimer problem

e Perfect Matching: A set of
non-overlaping edges (dimers)
that cover all vertices

% Lo
- Sesed:

e How many perfect matchings
does a graph have?

BACKGROUND

00e00

Counting Matchings

e Every planar graph has a Pfaffian orientation: each face
(except possibly outer) has an odd number of edges oriented

>

o Define a skew-symmetric matrix K such that:

1 ifi—j
Kij=1< -1 ifie—]j

0 otherwise

BACKGROUND

[e]e]e] o}

Kasteleyn Theorem

01,01 0]|]0]-
170110 1] 0
01,01, 0| O
K= 0j0|{1]0|-1]0
O(-1,0 1] 0]
110 0|0] 1|0

Kasteleyn Theorem:
Number of perfect matchings is Pf(K) = V|K]

BACKGROUND

[e]e]e]e] }

The connection

Let G, be G plane triangulated: each face becomes a triangle

Let G* be the dual of graph G,: each face in G, is a vertex in
G*

Let G be the expanded version of G*: each vertex is
replaced with 3 vertices in triangle

Connection: There is a 1:1 correspondence between perfect
matchings in G; and agreement edge sets in G

OUR METHOD

Our method: overview

No need to compute the dual G* and expanded dual G

Show how to compute the marginals and hence perform
parameter estimation

Show how to compute the MAP state

All computations are polynomial in graph size

OUR METHOD

Our method: overview

e Model distribution:

P(y) = ﬁ exp(i%;[yf = yilwi)

1
P(ylx; 0) = Z0x:0) exp(Z[y,- =y < ¢ji(x),0>)
ijeE
¢ Restrictions:
e Graph is planar: can be drawn without crossing edges
e Binary labels
¢ No node potentials (no external field)
e Edge potentials: one for agreement, one for disagreement

OUR METHOD

Comparison to Graph Cuts

\ Graph Cuts \ Ising Model
Need planarity? No \ For polynomial runtime
2-label problem Exact and polynomial runtime
N-label problem approx. with a—expansion Not yet
Node potentials? Yes Only outerplanar grapt
Submodularity: Eo=E =0
Energy restriction E(),o + E1,1 < E0,1 + E1,0 E0!1 = E1,0 (: 0)
non-submodular: partial sol. Epo = E14
Combined restriction Eoo = E11 <0, Ey = Ey = 0t trivial solution
Partition function? No Yes
Marginals? No Yes
Parameter Estimation Max-Margin Max-Likelihood

OUR METHOD
900000000

Algorithm

e Original graph G = (V, E)

OUR METHOD
0O@0000000

Algorithm: Step 1

e Obtain a planar embedding

e Using Boyer-Myrvold algorithm
the complexity is O(n), where
n=|E|

OUR METHOD
0O0@000000

Algorithm: Step 2

e Add edges to plane triangulate
the graph

e Using simple ear-clipping the
complexity is O(n)

OUR METHOD
000e00000

Algorithm: Step 3

e Orient the edges such that each
vertex has odd in-degree

e Equivalent to having a Pfaffian
orientation in the dual graph

o Complexity is O(n)

BACKGROUND OUR METHOD EXPERIMENTS

WORK PROGRESS
Algorithm: Step 4 (intuition)

e Add nodes to each face e Construct a skew-symmetric
2|E| x 2|E] matrix K (for dual

e Orient edges towards those edges):

nodes e Kj = xe”i if jj crosses
original
o Equivalent to expansion in the * Kj = +1if jj crosses added

dual graph e Complexity is O(n)

OUR METHOD
0O0000e000

Algorithm: Step 4 (implementation)

e Number each edge

e Number the sides of each edge Pseudo Code
g F h vert :
e LHS = 2k or each vertiex v: o
e RHS = 2k — 1 e For each edge k incident on v

(clockwise):
e if k points away from v:
* Kokprev =1(2—8)
e else
® Kok—1prev = 1 (7 - 1)
o Kok_12c = €% (7 — 8)

Return K — KT

OUR METHOD EXPERIMENTS WORK PROGRESS
000000800)

Algorithm: Parameter estimation

e Compute partition function: Z(y) = 2 V|K|
e Compute gradients:

onzw) 2 oK y
= =..=-|K Klok—
76, Z(0) v [K™" © K]ak-1,2«

 Computing inverse and determinant takes at most O(n®) time

OUR METHOD
000000080

Algorithm: MAP state

e Maximum a posteriori state (MAP):
y* = argmax P(y|x; 6°) , where
y

m

0 2
0" = argmin £(0) , ” ” Z InP(ylx; 6)
0

* Max-weight perfect matching on G; gives the max-weight
agreement edge set. Use blossom-shrinking (Edmonds 1965)

e This takes O(n?log(n)) time

OUR METHOD
O0000000e

Algorithm: Numerical problems

e Computation of |K| and K~ are prone to numerical problems

e Method 1: for skew-symmetric matrices K and constant q:

gk|
K =2

q

e Method 2: use LU decomposition of K:

n
K'=U"L™, niKl= > InUj

i=1

BACKGROUND OUR METHOD EXPERIMENTS ‘WoRrk PROGRESS
0000000 000000000 0000

e The blocks and their
surrounding area count towards
territory

e Territory prediction: Given a
board position predict the owner
of each intersection

e Challenging problem for ML!

u]
o)
I
"
it
<
»
¢

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS
0000000 000000000 @000

00000 000

0000 00000

00000 e]e]

Graph abstraction: common fate graph

e Grid graph G does not capture the fact that stones in a block
always live or die as a unit

e Common fate graph Gcry (Graepel et al., 2001) merges all
stones in a block into a single node

O@00

Graph abstraction: block graph

e Use Manhattan distance to classify empty regions into 3
types: black surround (m), neutral(¢) and white surround(C)

e Collapse empty regions to form the block graph Gy,

[e]e]]o)

Graph abstraction: block graph

e Surrounds encode the possibility for obtaining territory

* Gp is more concise than Gy, but preserves the kind of
information required for predicting territory

EXPERIMENTS
oooe

Graph abstraction: group graph

e Group: set of blocks of the same colour that share at least
one surround

» Construct the group graph Gy by collapsing groups of Gp

BACKGROUND OUR METHOD
0000000

EXPERIMENTS ‘WORK PROGRESS
000000000 0000
000
0000 00000
00000 00

Feature engineering: nodes

e Given node v € Gy, compute feature vector F:

Fx = num. intersections in v with k neighbours in v

e Provides a powerful summary of the region’s shape

F:{27472’1}

DA

BACKGROUND OUR METHOD EXPERIMENTS WORK PROGRESS

0000000 000000000 0000
(o] lo}
00000
e]e]

Feature engineering: edges

e Given nodes v', v € Gp, compute their corresponding
features F' and F2:

F} = num. intersections in v' with k neighbours in v?

FZ = num. intersections in v with k neighbours in v
¢ Provide information of node’s liberties and boundary shape

F' =13,3,1},F* = {6,3,0)

EXPERIMENTS

ooe

Datasets

e 9 x 9 games: Van der Werf et al. collection, 1000 training and
906 testing

e 19 x 19 games: scored by our cooperative scorer, 1000 for
training and testing

e Oversize games: 22 games manually scored. Sizes range
from 21 x 21 to 38 x 38. Only for testing

EXPERIMENTS

@0000

Task

e Given an endgame position determine the label (BLAck or
wHiTE) of each intersection

e We train our CRF on the block graph G, using BFGS as the
optimizer

 Prediction determined using MAP state of the group graph Gg

EXPERIMENTS

0O®@000

Controls

Naive: assume all stones are alive

GnuGo 3.6: open source program. Uses Go-specific
knowledge and local searches

NN: neural net classifier (van der Werf et al. 2005). Uses 63
Go-specific features of various board abstractions

MRF: a simple MRF on G with just 6 parameters (Stern et al.
2004). Inference via 50 iterations of LBP. Prediction via
marginal expectations at each intersection

EXPERIMENTS

[e]e] lo]e}

Prediction Accuracy

. . Error (%)
Size Algorithm Block | Stone | Game | Winner
Naive 17.57 8.80 75.70 30.79
MRF 8.19 5.97 38.41 13.80

9x9 CRF approx 2.73 2.46 9.93 2.65

CRF exact 2.57 2.32 9.05 2.32

GnuGo* T 005 132 -

* Was used to NN” <1.00 [0.19 1.10 0.50
Naive 1650 | 6.96 | 98.30 | 32.60

label data MRF 491 | 380 | 6390 | 2050

19 x 19 | CRF approx 5.25 493 | 49.00 11.80

CRF exact 3.93 3.81 43.40 9.30

GnuGo - 0.11 5.10 -
Naive 19.64 | 10.25 | 100.00 | 31.81

reater
gthan MRF 780 | 683 | 100.00 | 22.73
19% 19 CRF approx 7.51 6.84 | 81.82 9.09

CRF exact 4.52 5.02 | 81.82 9.09

EXPERIMENTS

[e]e]e] lo}

Errors made by different methods

AT T e e e sy e e s e
y y

O misclassified by
Naive, MRF and CRF

O by Naive and MRF

A by Naive only

Gnugo made no errors

MRF inconsistent due
to use of marginals

BACKGROUND OUR METHOD EXPERIMENTS

WORK PROGRESS
0000000 000000000 0000
00000 000
0000 0000e®
00000 00

CRF’s perfect prediction for an oversize game

]

-1

=
i

i
-
i

f_
. g

frrrrrrrf &
ff‘rfrfr% =,

EXPERIMENTS

e0

Prediction speed: methods

GnuGo 3.6: scoring in aftermath mode

LBP: 50 iterations of LBP for marginal expectations (Stern et
al. 2004)

Brute force: variable elimination with arbitrary elimination
ordering

Variable elimination: using min-fill heuristic (Kjaerulff 1990)

Our method: blossom-shrinking (Edmonds 1965)

BACKGROUND OUR METHOD EXPERIMENTS ‘WoRrk PROGRESS

0000000 000000000 0000
00000 000
0000 00000
00000 oe
Prediction Speed
150
Bruteforce 1e+02
s GnuGo [...
; e T
“ I.I. . __Hl_'_\.d\;__i-._-—\/-.-’v " e}
] [N . H le+00 H
& 100+ 1 K Var elim. “™ &
ko : =
4 el §
T
E 1e 02 E
E 204
B lens B
le0d
0 le05

10 0
graph size (number of nodes)

‘WoRrk PROGRESS

This work

Not much luck with conference papers
Going to publish this as a journal paper in JMLR

Want to try territory prediction for middle-game positions and
move prediction

Want to apply this method to images and compare directly to
Graph Cuts

Bandit-based tree search

Assume each node n; has a reward distribution X;
UCT samples node

n; = argmax(E(X;) + ¢ * Var(X;))

n;
Instead assume X; = B(«;, ;). Now sample node

n; = argmax(x; ~ Xj)
nj

Performance not as good as UCT’s

Now want to try Gittins indices

‘WoRrk PROGRESS

‘WoRrk PROGRESS

Bandit-based tree search

o UCT falsely assumes that arms (siblings) are independant

¢ Instead sample from dependant arms (Pandey et al., 2007)
o Cluster arms (eg. based on group graph)
e Step 1: Select a cluster to sample
e Step 2: Select an arm within that cluster to sample
¢ Update statistics of all arms in that cluster

e Can expect huge speed-up

‘WoRrk PROGRESS

Other Go work

e Cooperative Scorer

e Fast influence function

e Go playout on GPU

e GPUs are designed for floating point and matrix operations

¢ Nvidia Tesla has up to 128 parallel cores, 512 Gflops

e Developed a random Go player that only uses matrix
operations

¢ Huge potential if works on the GPU!

‘WoRrk PROGRESS

Questions?

	Background
	Game of Go
	Computer Go
	Graphical model for Go
	Ising graphical model

	Our method
	Algorithm

	Experiments
	Graph abstraction
	Features and parameters
	Prediction Accuracy
	Prediction speed

	Work Progress

