Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

Efficient exact inference in Ising graphical models applied to Go

Dmitry Kamenetsky Supervisor: Nicol N. Schraudolph

NICTA, Australian National University, Australia

Midterm, May 2008

Background	Our method	Experiments	WORK PROGRESS
000000 00000 0000 0000	00000000	0000 000 00000 00	

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Background

Game of Go Computer Go Graphical model for Go Ising graphical model

Our method

Algorithm

Experiments

Graph abstraction Features and parameters Prediction Accuracy Prediction speed

Work Progress

Background • 0 Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours (*liberties*) are occupied by opponent stones

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous block
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

What is Go?

- The game terminates once players agree on the life status of blocks
- The blocks and their surrounding area count towards *territory*
- Territory is used to determine the winner of the game

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why is Go challenging for computers?

- Huge branching factor
 - \simeq 200 on 19 \times 19 board, \simeq 40 in Chess
 - $\simeq 10^{172}$ legal board positions, $\simeq 10^{50}$ in Chess
 - Standard alpha-beta min-max is too inefficient
- Position evaluation is difficult
 - Hard to judge strength of blocks statically
 - · Stones have both local and long-range interactions

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Heuristic-based programs

- Rely on hand-tuned patterns and results from local searches
- Advantages: Strong locally, especially if pattern is known

Disadvantages:

- Weak at global play
- Weak at judging unseen situations
- Board evaluation is slow

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Learning-based programs

- Learn an evaluation function using self-play or expert games
- Advantages: Loads of expert games available
- Disadvantages: Relatively weak playing strength
- Gut feeling:
 - State-space is too large
 - Hard to define features
 - Evaluation function is highly non-smooth

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Sampling-based programs

- Bandit-based tree search (UCT)
 - · Each tree node (board position) is a multi-arm bandit
 - Sample child positions, maximize total reward
 - Store all node statistics in a tree data structure
 - If a node is not in the tree then use an evaluation function
- Evaluation function
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and other heuristics

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Sampling-based programs

Advantages:

- Evaluation function is fast and accurate for many samples
- · Increase in samples gives increase in playing strength
- Assymetric tree growth more time spent on difficult positions
- Best performance. Reached 3-dan (professional) level on 9 × 9

• Disadvantages:

- · Weak performance early in the game
- Still weak on larger boards

• Conclusion:

- Framework has good potential
- But need to improve both search and evaluation

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Learning in Go

- Go is played on a grid graph *G*, so it is natural to model it with a graphical model such as CRF
- Major problem is inference:
 - Approximate: Loopy Belief Propagation
 - Exact: Junction-Tree, Graph Cuts

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Junction Tree Algorithm

- Exact method for computing partition function, marginals and MAP (*maximum a posteriori*) state
- Graph is a tree: complexity polynomial in graph size
- Graph is not a tree:
 - Convert the graph into a tree of cliques
 - Complexity exponential in the treewidth = size of the maximal clique
 - For $N \times N$ grid the treewidth is N

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Graph Cuts

- Exact method for computing MAP state of a binary-labeled problem
- Treat MAP computation as finding the min-cut of a particular graph (with positive edge weights)
- **Theorem:** finding the graph's min-cut is equivalent to finding its max-flow
- Can use Ford-Fulkerson. Complexity is polynomial in graph size

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Other methods?

- **Question:** Is there a method that can compute partition function and marginals like Junction Tree, but in polynomial time like Graph Cuts?
- Answer: Yes!

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Other methods?

- **Question:** Is there a method that can compute partition function and marginals like Junction Tree, but in polynomial time like Graph Cuts?
- Answer: Yes!

BACKGROUND	Our method	Experiments	Work Progress
000000 0000 0000 •0000	00000000	0000 000 00000 00	

Ising problem

- Graph G = (V, E), binary variables (spins): $y_i \in \{+, -\}$
- Spins only interact in pairs. One energy for agreement:
 ψ_{-−} = ψ₊₊, another for disagreement: ψ₋₊ = ψ_{+−} = 0
- Model distribution:

$$\mathbb{P}(y) = rac{1}{Z(\psi)} \exp(\sum_{ij \in E} [y_i = y_j] \psi_{ij})$$
 , where

$$Z(\psi) = \sum_{y} \exp(\sum_{ij \in E} [y_i = y_j] \psi_{ij})$$
 is the partition function

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

000000 00000 0000 0000 Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

Dimer problem

• How many perfect matchings does a graph have?

• Perfect Matching: A set of non-overlaping edges (dimers) that cover all vertices

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Counting Matchings

• Every planar graph has a **Pfaffian orientation**: each face (except possibly outer) has an odd number of edges oriented clockwise

• Define a skew-symmetric matrix K such that:

$$\mathcal{K}_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i \to j \\ -1 & \text{if } i \leftarrow j \\ 0 & \text{otherwise} \end{array} \right.$$

000000 00000 0000 00000 Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Kasteleyn Theorem

Kasteleyn Theorem: Number of perfect matchings is $Pf(K) = \sqrt{|K|}$

BACKGROUND	Our method	Experiments	WORK PROGRESS
000000	00000000	0000	
0000		00000	
00000		00	

The connection

- Let G_{Δ} be G plane triangulated: each face becomes a triangle
- Let G^* be the dual of graph G_{\triangle} : each face in G_{\triangle} is a vertex in G^*
- Let G_e^* be the expanded version of G^* : each vertex is replaced with 3 vertices in triangle
- **Connection**: There is a 1:1 correspondence between perfect matchings in *G*^{*}_e and agreement edge sets in *G*

ション 小田 マイビット ビー シックション

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Our method: overview

- No need to compute the dual G^{*} and expanded dual G^{*}_e
- Show how to compute the marginals and hence perform parameter estimation
- Show how to compute the MAP state
- All computations are **polynomial** in graph size

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our method: overview

• Model distribution:

$$\mathbb{P}(y) = \frac{1}{Z(\psi)} \exp(\sum_{ij \in E} [y_i = y_j] \psi_{ij})$$

$$\mathbb{P}(y|x;\theta) = \frac{1}{Z(x;\theta)} \exp(\sum_{ij \in E} [y_i = y_j] < \phi_{ij}(x), \theta >)$$

- Restrictions:
 - Graph is planar: can be drawn without crossing edges
 - Binary labels
 - No node potentials (no external field)
 - Edge potentials: one for agreement, one for disagreement

Our method

Experiments 0000 000 00000 00000 Work Progress

Comparison to Graph Cuts

	Graph Cuts	Ising Model
Need planarity?	No	For polynomial runtime
2-label problem	Exact and polyno	omial runtime
N-label problem	approx. with α -expansion	Not yet
Node potentials?	Yes	Only outerplanar graph
	Submodularity:	$E_0 = E_1 = 0$
Energy restriction	$E_{0,0} + E_{1,1} \le E_{0,1} + E_{1,0}$	$E_{0,1} = E_{1,0} \ (= 0)$
	non-submodular: partial sol.	$E_{0,0} = E_{1,1}$
Combined restriction	$E_{0,0} = E_{1,1} \le 0, E_0 = E_1$	= 0: trivial solution
Partition function?	No	Yes
Marginals?	No	Yes
Parameter Estimation	Max-Margin	Max-Likelihood

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣�?

BACKGROUND OUR METHOD	Experiments	WORK PROGRESS
0000000 00000 00000 00000	0000 000 00000 00	

• Original graph G = (V, E)

Our method 00000000 Experiments 0000 000 00000 00000 WORK PROGRESS

Algorithm: Step 1

- Obtain a planar embedding
- Using Boyer-Myrvold algorithm the complexity is O(n), where n = |E|

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

Algorithm: Step 2

- Add edges to plane triangulate the graph
- Using simple ear-clipping the complexity is *O*(*n*)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

Algorithm: Step 3

- Orient the edges such that each vertex has odd in-degree
- Equivalent to having a Pfaffian orientation in the dual graph
- Complexity is O(n)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

Algorithm: Step 4 (intuition)

- Add nodes to each face
- Orient edges towards those
 nodes
- Equivalent to expansion in the dual graph

- Construct a skew-symmetric 2|E| × 2|E| matrix K (for dual edges):
 - $K_{ij} = \pm e^{\psi_{ij}}$ if *ij* crosses original
 - $K_{ij} = \pm 1$ if *ij* crosses added
- Complexity is O(n)

・ロト・四ト・日下・日下 ひゃぐ

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

Algorithm: Step 4 (implementation)

- Number each edge
- **Number** the sides of each edge *k*
 - LHS = 2k
 - RHS = 2*k* − 1

Pseudo Code

For each vertex v:

- For each edge k incident on v (clockwise):
 - if k points away from v:

else

•
$$K_{2k-1,\text{prev}} = 1 (7 \rightarrow 1)$$

•
$$K_{2k-1,2k} = e^{\psi_k} \ (7 \to 8)$$

Return $K - K^{\top}$

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Algorithm: Parameter estimation

- Compute partition function: $Z(\psi) = 2\sqrt{|K|}$
- Compute gradients:

$$\frac{\partial \ln Z(\psi)}{\partial \theta_k} = \frac{2}{Z(\psi)} \frac{\partial \sqrt{|K|}}{\partial \psi_k} = \dots = -[K^{-1} \odot K]_{2k-1,2k}$$

• Computing inverse and determinant takes at most $O(n^3)$ time

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Algorithm: MAP state

• Maximum *a posteriori* state (MAP):

$$y^* = \operatorname*{argmax}_{y} \mathbb{P}(y|x; heta^*)$$
 , where

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}(\theta) , \ \mathcal{L}(\theta) = \frac{||\theta||^2}{2\sigma^2} - \sum_{k=1}^m \ln \mathbb{P}(y|x;\theta)$$

- Max-weight perfect matching on G^{*}_e gives the max-weight agreement edge set. Use blossom-shrinking (Edmonds 1965)
- This takes $O(n^2 \log(n))$ time

BACI	KGROUND
000	00000
000	000
000	00
000	000

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Algorithm: Numerical problems

- Computation of |K| and K^{-1} are prone to numerical problems
- Method 1: for skew-symmetric matrices K and constant q:

$$|K| = \frac{|qK|}{q^n}$$

• Method 2: use LU decomposition of K:

$$K^{-1} = U^{-1}L^{-1}$$
, $\ln|K| = \sum_{i=1}^{n} \ln U_{i,i}$

Our method 000000000 Experiments

WORK PROGRESS

Territory prediction in Go

- The blocks and their surrounding area count towards *territory*
- Territory prediction: Given a board position predict the owner of each intersection

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-

Challenging problem for ML!

Our method

WORK PROGRESS

Graph abstraction: common fate graph

- Grid graph G does not capture the fact that stones in a block always live or die as a unit
- *Common fate graph G_{cfg}* (Graepel et al., 2001) merges all stones in a block into a single node

JAC.

EXPERIMENTS 0000

WORK PROGRESS

Graph abstraction: block graph

- Use Manhattan distance to classify empty regions into 3 types: black surround (\blacksquare), neutral(\diamond) and white surround(\Box)
- Collapse empty regions to form the block graph G_b

イロト イ押ト イヨト イヨト э

Our method

Experiments 0000 000 0000 0000 0000 WORK PROGRESS

Graph abstraction: block graph

- Surrounds encode the possibility for obtaining territory
- G_b is more concise than G_{cfg}, but preserves the kind of information required for predicting territory

▲□▶▲□▶▲□▶▲□▶ = の�?

Our method

Experiments 0000 000 0000 00000 WORK PROGRESS

Graph abstraction: group graph

- Group: set of blocks of the same colour that share at least
 one surround
- Construct the group graph G_g by collapsing groups of G_b

Our method

Experiments

WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Feature engineering: nodes

• Given node $v \in G_b$, compute feature vector *F*:

 F_k = num. intersections in v with k neighbours in v

Provides a powerful summary of the region's shape

 $F = \{2, 4, 2, 1\}$

Our method 000000000 Experiments

WORK PROGRESS

Feature engineering: edges

Given nodes v¹, v² ∈ G_b, compute their corresponding features F¹ and F²:

 F_k^1 = num. intersections in v^1 with k neighbours in v^2 F_k^2 = num. intersections in v^2 with k neighbours in v^1

Provide information of node's liberties and boundary shape

 $F^1 = \{3, 3, 1\}, F^2 = \{6, 3, 0\}$ うして 山田 マイボマ エット 日 うんの

Datasets

- 9 × 9 games: Van der Werf et al. collection, 1000 training and 906 testing
- 19 \times 19 games: scored by our cooperative scorer, 1000 for training and testing
- Oversize games: 22 games manually scored. Sizes range from 21 × 21 to 38 × 38. Only for testing

イロト (母) (ヨ) (ヨ) (ヨ) () ()

Background	Our method	Experiments	Work Progress
000000 00000 0000 0000 00000	00000000	0000 000 •0000 00	

- Given an endgame position determine the label (всаск or wнite) of each intersection
- We train our CRF on the block graph *G*_b, using BFGS as the optimizer
- Prediction determined using MAP state of the group graph G_g

Controls

- Naive: assume all stones are alive
- **GnuGo 3.6:** open source program. Uses Go-specific knowledge and local searches
- **NN:** neural net classifier (van der Werf et al. 2005). Uses 63 Go-specific features of various board abstractions
- **MRF:** a simple MRF on *G* with just 6 parameters (Stern et al. 2004). Inference via 50 iterations of LBP. Prediction via marginal expectations at each intersection

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our method

Experiments

WORK PROGRESS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

Prediction Accuracy

Sizo	Algorithm	Error (%)			
5126	Aigoritiini	Block	Stone	Game	Winner
	Naive	17.57	8.80	75.70	30.79
	MRF	8.19	5.97	38.41	13.80
9 × 9	CRF approx	2.73	2.46	9.93	2.65
	CRF exact	2.57	2.32	9.05	2.32
	GnuGo*	-	0.05	1.32	-
	NN*	≤ 1 .00	0.19	1.10	0.50
19 × 19	Naive	16.52	6.96	98.30	32.60
	MRF	4.91	3.80	63.90	20.50
	CRF approx	5.25	4.93	49.00	11.80
	CRF exact	3.93	3.81	43.40	9.30
	GnuGo	-	0.11	5.10	-
areater	Naive	19.64	10.25	100.00	31.81
than	MRF	7.80	6.83	100.00	22.73
19 × 19	CRF approx	7.51	6.84	81.82	9.09
19 × 19	CRF exact	4.52	5.02	81.82	9.09

* Was used to label data

Our method 000000000 Experiments

WORK PROGRESS

Errors made by different methods

- O misclassified by Naive, MRF and CRF
- □ by Naive and MRF
- \triangle by Naive only
- Gnugo made no errors
- MRF inconsistent due to use of marginals

(日)

Our method

Experiments

WORK PROGRESS

CRF's perfect prediction for an oversize game

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Our method

Experiments

WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Prediction speed: methods

- GnuGo 3.6: scoring in aftermath mode
- LBP: 50 iterations of LBP for marginal expectations (Stern et al. 2004)
- Brute force: variable elimination with arbitrary elimination ordering
- Variable elimination: using min-fill heuristic (Kjaerulff 1990)
- Our method: blossom-shrinking (Edmonds 1965)

BACKGROUND	Our method	Experiments	Work Progre
0000000 00000 0000 00000	00000000	0000 000 00000 0●	

Prediction Speed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

BACKGROUND	Our method	Experiments	WORK PROGRESS
000000	00000000	0000	
		000	
00000		00	

This work

- Not much luck with conference papers
- Going to publish this as a journal paper in JMLR
- Want to try territory prediction for middle-game positions and move prediction
- Want to apply this method to images and compare directly to Graph Cuts

Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bandit-based tree search

- Assume each node *n_i* has a reward distribution *X_i*
- UCT samples node

$$n_i^* = \operatorname*{argmax}_{n_i}(\mathbb{E}(X_i) + c * \operatorname{Var}(X_i))$$

• Instead assume $X_i = B(\alpha_i, \beta_i)$. Now sample node

$$n_i^* = \operatorname*{argmax}_{n_i}(x_i \sim X_i)$$

- Performance not as good as UCT's
- Now want to try Gittins indices

Our method 000000000 Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bandit-based tree search

- UCT falsely assumes that arms (siblings) are independant
- Instead sample from dependant arms (Pandey et al., 2007)
 - Cluster arms (eg. based on group graph)
 - Step 1: Select a cluster to sample
 - Step 2: Select an arm within that cluster to sample
 - Update statistics of all arms in that cluster
- Can expect huge speed-up

BACKGROUNE 0000000 00000 0000 0000 Our method

Experiments 0000 000 00000 00000 WORK PROGRESS

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Other Go work

- Cooperative Scorer
- Fast influence function
- Go playout on GPU
 - GPUs are designed for floating point and matrix operations
 - Nvidia Tesla has up to 128 parallel cores, 512 Gflops
 - Developed a random Go player that only uses matrix operations
 - Huge potential if works on the GPU!

BACKGROUNE Our method Experiments WORK PROGRESS

Questions?

