
B O  E W P

Efficient exact inference in Ising graphical models
applied to Go

Dmitry Kamenetsky
Supervisor: Nicol N. Schraudolph

NICTA, Australian National University, Australia

Midterm, May 2008

B O  E W P

Background
Game of Go
Computer Go
Graphical model for Go
Ising graphical model

Our method
Algorithm

Experiments
Graph abstraction
Features and parameters
Prediction Accuracy
Prediction speed

Work Progress

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours (liberties) are
occupied by opponent stones

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours are occupied
by opponent stones

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours are occupied
by opponent stones

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours are occupied
by opponent stones

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours are occupied
by opponent stones

B O  E W P

What is Go?

• Two players alternate in placing
stones on the intersections of a
grid

• Neighbouring stones of the
same colour form a contiguous
block

• A block can be captured if all its
empty neighbours are occupied
by opponent stones

B O  E W P

What is Go?

• The game terminates once
players agree on the life status
of blocks

• The blocks and their
surrounding area count towards
territory

• Territory is used to determine
the winner of the game

B O  E W P

Why is Go challenging for computers?

• Huge branching factor
• ' 200 on 19 × 19 board, ' 40 in Chess
• ' 10172 legal board positions, ' 1050 in Chess
• Standard alpha-beta min-max is too inefficient

• Position evaluation is difficult
• Hard to judge strength of blocks statically
• Stones have both local and long-range interactions

B O  E W P

Heuristic-based programs

• Rely on hand-tuned patterns and results from local searches

• Advantages: Strong locally, especially if pattern is known

• Disadvantages:
• Weak at global play
• Weak at judging unseen situations
• Board evaluation is slow

B O  E W P

Learning-based programs

• Learn an evaluation function using self-play or expert games

• Advantages: Loads of expert games available

• Disadvantages: Relatively weak playing strength

• Gut feeling:
• State-space is too large
• Hard to define features
• Evaluation function is highly non-smooth

B O  E W P

Sampling-based programs

• Bandit-based tree search (UCT)
• Each tree node (board position) is a multi-arm bandit
• Sample child positions, maximize total reward
• Store all node statistics in a tree data structure
• If a node is not in the tree then use an evaluation function

• Evaluation function
• Playout position randomly until no moves remain. Final

position is trivial to score
• Enhanced through the use of patterns and other heuristics

B O  E W P

Sampling-based programs

• Advantages:
• Evaluation function is fast and accurate for many samples
• Increase in samples gives increase in playing strength
• Assymetric tree growth - more time spent on difficult positions
• Best performance. Reached 3-dan (professional) level on 9 × 9

• Disadvantages:
• Weak performance early in the game
• Still weak on larger boards

• Conclusion:
• Framework has good potential
• But need to improve both search and evaluation

B O  E W P

Learning in Go

• Go is played on a grid graph G, so it is natural to model it with
a graphical model such as CRF

• Major problem is inference:
• Approximate: Loopy Belief Propagation
• Exact: Junction-Tree, Graph Cuts

B O  E W P

Junction Tree Algorithm

• Exact method for computing partition function, marginals and
MAP (maximum a posteriori) state

• Graph is a tree: complexity polynomial in graph size

• Graph is not a tree:
• Convert the graph into a tree of cliques
• Complexity exponential in the treewidth = size of the maximal

clique
• For N × N grid the treewidth is N

B O  E W P

Graph Cuts

• Exact method for computing MAP state of a binary-labeled
problem

• Treat MAP computation as finding the min-cut of a particular
graph (with positive edge weights)

• Theorem: finding the graph’s min-cut is equivalent to finding
its max-flow

• Can use Ford-Fulkerson. Complexity is polynomial in graph
size

B O  E W P

Other methods?

• Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?

• Answer: Yes!

B O  E W P

Other methods?

• Question: Is there a method that can compute partition
function and marginals like Junction Tree, but in polynomial
time like Graph Cuts?

• Answer: Yes!

B O  E W P

Ising problem

• Graph G = (V ,E), binary variables (spins): yi ∈ {+,−}

• Spins only interact in pairs. One energy for agreement:
ψ−− = ψ++, another for disagreement: ψ−+ = ψ+− = 0

• Model distribution:

P(y) =
1

Z(ψ)
exp(
∑
ij∈E

[yi = yj]ψij) , where

Z(ψ) =
∑

y

exp(
∑
ij∈E

[yi = yj]ψij) is the partition function

B O  E W P

Dimer problem

• How many perfect matchings
does a graph have?

• Perfect Matching: A set of
non-overlaping edges (dimers)
that cover all vertices

B O  E W P

Counting Matchings

• Every planar graph has a Pfaffian orientation: each face
(except possibly outer) has an odd number of edges oriented
clockwise

• Define a skew-symmetric matrix K such that:

Kij =


1 if i → j
−1 if i ← j
0 otherwise

B O  E W P

Kasteleyn Theorem

K =

0 1 0 0 0 -1
-1 0 1 0 1 0
0 -1 0 -1 0 0
0 0 1 0 -1 0
0 -1 0 1 0 -1
1 0 0 0 1 0

Kasteleyn Theorem:
Number of perfect matchings is Pf(K) =

√
|K |

B O  E W P

The connection

• Let G4 be G plane triangulated: each face becomes a triangle

• Let G∗ be the dual of graph G4: each face in G4 is a vertex in
G∗

• Let G∗e be the expanded version of G∗: each vertex is
replaced with 3 vertices in triangle

• Connection: There is a 1:1 correspondence between perfect
matchings in G∗e and agreement edge sets in G

B O  E W P

Our method: overview

• No need to compute the dual G∗ and expanded dual G∗e

• Show how to compute the marginals and hence perform
parameter estimation

• Show how to compute the MAP state

• All computations are polynomial in graph size

B O  E W P

Our method: overview

• Model distribution:

P(y) =
1

Z(ψ)
exp(
∑
ij∈E

[yi = yj]ψij)

P(y |x; θ) =
1

Z(x; θ)
exp(
∑
ij∈E

[yi = yj] < φij(x), θ >)

• Restrictions:
• Graph is planar: can be drawn without crossing edges
• Binary labels
• No node potentials (no external field)
• Edge potentials: one for agreement, one for disagreement

B O  E W P

Comparison to Graph Cuts

Graph Cuts Ising Model
Need planarity? No For polynomial runtime
2-label problem Exact and polynomial runtime
N-label problem approx. with α−expansion Not yet
Node potentials? Yes Only outerplanar graphs

Energy restriction
Submodularity: E0 = E1 = 0

E0,0 + E1,1 ≤ E0,1 + E1,0 E0,1 = E1,0 (= 0)
non-submodular: partial sol. E0,0 = E1,1

Combined restriction E0,0 = E1,1 ≤ 0, E0 = E1 = 0: trivial solution
Partition function? No Yes

Marginals? No Yes
Parameter Estimation Max-Margin Max-Likelihood

B O  E W P

Algorithm

• Original graph G = (V ,E)

B O  E W P

Algorithm: Step 1

• Obtain a planar embedding

• Using Boyer-Myrvold algorithm
the complexity is O(n), where
n = |E |

B O  E W P

Algorithm: Step 2

• Add edges to plane triangulate
the graph

• Using simple ear-clipping the
complexity is O(n)

B O  E W P

Algorithm: Step 3

• Orient the edges such that each
vertex has odd in-degree

• Equivalent to having a Pfaffian
orientation in the dual graph

• Complexity is O(n)

B O  E W P

Algorithm: Step 4 (intuition)

• Add nodes to each face

• Orient edges towards those
nodes

• Equivalent to expansion in the
dual graph

• Construct a skew-symmetric
2|E | × 2|E | matrix K (for dual
edges):
• Kij = ±eψij if ij crosses

original
• Kij = ±1 if ij crosses added

• Complexity is O(n)

B O  E W P

Algorithm: Step 4 (implementation)

• Number each edge
• Number the sides of each edge

k
• LHS = 2k
• RHS = 2k − 1

2
1

8
7 5

6

10 9
3

4

12 11

1 2

34

5 6

Pseudo Code

For each vertex v:
• For each edge k incident on v

(clockwise):
• if k points away from v:

• K2k ,prev = 1 (2→ 8)

• else
• K2k−1,prev = 1 (7→ 1)
• K2k−1,2k = eψk (7→ 8)

Return K − K>

B O  E W P

Algorithm: Parameter estimation

• Compute partition function: Z(ψ) = 2
√
|K |

• Compute gradients:

∂ ln Z(ψ)

∂θk
=

2
Z(ψ)

∂
√
|K |

∂ψk
= ... = −[K−1 � K]2k−1,2k

• Computing inverse and determinant takes at most O(n3) time

B O  E W P

Algorithm: MAP state

• Maximum a posteriori state (MAP):

y∗ = argmax
y
P(y |x; θ∗) , where

θ∗ = argmin
θ
L(θ) , L(θ) =

||θ||2

2σ2 −

m∑
k=1

lnP(y |x; θ)

• Max-weight perfect matching on G∗e gives the max-weight
agreement edge set. Use blossom-shrinking (Edmonds 1965)

• This takes O(n2 log(n)) time

B O  E W P

Algorithm: Numerical problems

• Computation of |K | and K−1 are prone to numerical problems

• Method 1: for skew-symmetric matrices K and constant q:

|K | =
|qK |
qn

• Method 2: use LU decomposition of K :

K−1 = U−1L−1 , ln |K | =
n∑

i=1

ln Ui,i

B O  E W P

Territory prediction in Go

• The blocks and their
surrounding area count towards
territory

• Territory prediction: Given a
board position predict the owner
of each intersection

• Challenging problem for ML!

B O  E W P

Graph abstraction: common fate graph

• Grid graph G does not capture the fact that stones in a block
always live or die as a unit

• Common fate graph Gcfg (Graepel et al., 2001) merges all
stones in a block into a single node

13

26

8 9 12

11

13

17

B O  E W P

Graph abstraction: block graph

• Use Manhattan distance to classify empty regions into 3
types: black surround (�), neutral(�) and white surround(�)

• Collapse empty regions to form the block graph Gb

13

26

8 9 12

11

13

17

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

B O  E W P

Graph abstraction: block graph

• Surrounds encode the possibility for obtaining territory

• Gb is more concise than Gcfg, but preserves the kind of
information required for predicting territory

13

26

8 9 12

11

13

17

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

B O  E W P

Graph abstraction: group graph

• Group: set of blocks of the same colour that share at least
one surround

• Construct the group graph Gg by collapsing groups of Gb

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

B O  E W P

Feature engineering: nodes

• Given node v ∈ Gb , compute feature vector F :

Fk = num. intersections in v with k neighbours in v

• Provides a powerful summary of the region’s shape

F = {2, 4, 2, 1}

B O  E W P

Feature engineering: edges

• Given nodes v1, v2 ∈ Gb , compute their corresponding
features F1 and F2:

F1
k = num. intersections in v1 with k neighbours in v2

F2
k = num. intersections in v2 with k neighbours in v1

• Provide information of node’s liberties and boundary shape

F1 = {3, 3, 1},F2 = {6, 3, 0}

B O  E W P

Datasets

• 9 × 9 games: Van der Werf et al. collection, 1000 training and
906 testing

• 19 × 19 games: scored by our cooperative scorer, 1000 for
training and testing

• Oversize games: 22 games manually scored. Sizes range
from 21 × 21 to 38 × 38. Only for testing

B O  E W P

Task

• Given an endgame position determine the label ( or
) of each intersection

• We train our CRF on the block graph Gb , using BFGS as the
optimizer

• Prediction determined using MAP state of the group graph Gg

B O  E W P

Controls

• Naive: assume all stones are alive

• GnuGo 3.6: open source program. Uses Go-specific
knowledge and local searches

• NN: neural net classifier (van der Werf et al. 2005). Uses 63
Go-specific features of various board abstractions

• MRF: a simple MRF on G with just 6 parameters (Stern et al.
2004). Inference via 50 iterations of LBP. Prediction via
marginal expectations at each intersection

B O  E W P

Prediction Accuracy

* Was used to
label data

Size Algorithm
Error (%)

Block Stone Game Winner

9 × 9

Naive 17.57 8.80 75.70 30.79
MRF 8.19 5.97 38.41 13.80

CRF approx 2.73 2.46 9.93 2.65
CRF exact 2.57 2.32 9.05 2.32
GnuGo* - 0.05 1.32 -

NN* ≤ 1.00 0.19 1.10 0.50

19 × 19

Naive 16.52 6.96 98.30 32.60
MRF 4.91 3.80 63.90 20.50

CRF approx 5.25 4.93 49.00 11.80
CRF exact 3.93 3.81 43.40 9.30

GnuGo - 0.11 5.10 -

greater
than

19 × 19

Naive 19.64 10.25 100.00 31.81
MRF 7.80 6.83 100.00 22.73

CRF approx 7.51 6.84 81.82 9.09
CRF exact 4.52 5.02 81.82 9.09

B O  E W P

Errors made by different methods

• � misclassified by
Naive, MRF and CRF

• � by Naive and MRF

• 4 by Naive only

• Gnugo made no errors

• MRF inconsistent due
to use of marginals

B O  E W P

CRF’s perfect prediction for an oversize game

B O  E W P

Prediction speed: methods

• GnuGo 3.6: scoring in aftermath mode

• LBP: 50 iterations of LBP for marginal expectations (Stern et
al. 2004)

• Brute force: variable elimination with arbitrary elimination
ordering

• Variable elimination: using min-fill heuristic (Kjaerulff 1990)

• Our method: blossom-shrinking (Edmonds 1965)

B O  E W P

Prediction Speed

B O  E W P

This work

• Not much luck with conference papers

• Going to publish this as a journal paper in JMLR

• Want to try territory prediction for middle-game positions and
move prediction

• Want to apply this method to images and compare directly to
Graph Cuts

B O  E W P

Bandit-based tree search

• Assume each node ni has a reward distribution Xi

• UCT samples node

n∗i = argmax
ni

(E(Xi) + c ∗ Var(Xi))

• Instead assume Xi = B(αi , βi). Now sample node

n∗i = argmax
ni

(xi ∼ Xi)

• Performance not as good as UCT’s

• Now want to try Gittins indices

B O  E W P

Bandit-based tree search

• UCT falsely assumes that arms (siblings) are independant

• Instead sample from dependant arms (Pandey et al., 2007)
• Cluster arms (eg. based on group graph)
• Step 1: Select a cluster to sample
• Step 2: Select an arm within that cluster to sample
• Update statistics of all arms in that cluster

• Can expect huge speed-up

B O  E W P

Other Go work

• Cooperative Scorer

• Fast influence function

• Go playout on GPU
• GPUs are designed for floating point and matrix operations
• Nvidia Tesla has up to 128 parallel cores, 512 Gflops
• Developed a random Go player that only uses matrix

operations
• Huge potential if works on the GPU!

B O  E W P

Questions?

	Background
	Game of Go
	Computer Go
	Graphical model for Go
	Ising graphical model

	Our method
	Algorithm

	Experiments
	Graph abstraction
	Features and parameters
	Prediction Accuracy
	Prediction speed

	Work Progress

