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Abstract

Any-angle pathfinding is a common problem from
robotics and computer games: it requires finding a Eu-
clidean shortest path between a pair of points in a grid
map. Prior research has focused on approximate online
solutions. A number of exact methods exist but they all
require supra-linear space and preprocessing time. In
this paper we describe Anya: a new optimal any-angle
pathfinding algorithm which searches over sets of states
represented as intervals. Each interval is identified on-
line. From each we select a representative point to derive
a correspondingf -value for the set. Anya always re-
turns an optimal path. Moreover it does so entirely on-
line, without any preprocessing or memory overheads.
This result answers an open question from the areas of
Artificial Intelligence and Game Development: is there
an any-angle pathfinding algorithm which is online and
optimal? The answer is yes.

Introduction
Any-angle pathfinding is a navigation problem which
appears in robotics and computer video games. It in-
volves finding a shortest path between an arbitrary pair
of points on a two-dimensional grid map but asks that
movement along the path is not artificially constrained
to the points of the grid. Within the game development
community a simple and popular solution exists known
asstring pulling(Pinter 2001; Botea, Müller, and Scha-
effer 2004). The idea is to compute a grid-optimal path
in the first instance and smooth the result as part of a
post-processing step that improves both its length and
aesthetic appeal. String pulling has two disadvantages:
(i) it requires more computation than just finding a path
(ii) it only yields approximately shortest paths.

A number of algorithms improve on string-pulling
by integrating post-processing into node-expansion dur-
ing search. Field D* (Ferguson and Stentz 2005) uses
linear interpolation to smooth paths one grid cell at a
time. Theta* (Nash et al. 2007) introduces a short-
cut each time a successful line-of-sight check is made
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from the parent of the current node to any of its suc-
cessors. Meanwhile, Block A* (Yap et al. 2011) em-
ploys during search a pre-computed database of opti-
mal Euclidean distances between pairs of points in a
localised area. Each of these approaches improves on
string pulling in terms of solution quality and, in many
cases, running time. Unfortunately none are optimal.
Accelerated A* (̌Sišlák, Volf, and Pěchouček 2009) is
an any-angle algorithm that is conjectured to be op-
timal but for which no strong theoretical argument is
made. Similar to Theta*, it differs primarily in that line-
of-sight checks are performed from a set of expanded
nodes rather than a single ancestor. The size of the set
is only loosely bounded and, for challenging problems,
can include a large proportion of nodes on the Closed
List.

Tangent Graphs (Liu and Arimoto 1992) and Visi-
bility Graphs (Lozano-Pérez and Wesley 1979) are op-
timal techniques that can solve a generalised form of
the any-angle pathfinding problem. Their primary dis-
advantage is that each such graph requires quadratic
space in the worst case and must be computed offline.
Other exact approaches are based on the Continuous
Dijkstra (Mitchell, Mount, and Papadimitriou 1987)
paradigm. The most efficient of these algorithms (Her-
shberger and Suri 1999) pre-computes a planar subdivi-
sion of the map that can be used to extract a path in just
logarithmic time. Unfortunately the precomputation as-
sumes the starting location does not change.

In this work we introduce a new approach to any-
angle pathfinding which addresses many of the short-
comings associated with existing research. Our method,
Anya, bears some similarity with Continuous Dijkstra:
instead of searching over the individual nodes of the
grid we search over contiguous sets of states that form
intervals. Each interval has a representative point used
to derive anf -value and each is projected from one row
of the grid onto another until the goal is reached. Anya
does not rely on any precomputation, does not introduce
any memory overheads (beyond what is required by e.g.
A*) and always finds an optimal any-angle path.
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Figure 1: When pathfinding fromn1 to n2 online algo-
rithms such as Theta* only consider the discrete points
of the grid and never any pointsyi.

Preliminaries
A grid is a planar subdivision consisting ofW × H
square cells. Each cell is an open set ofinterior points
which are alltraversableor all non-traversable. The
vertices associated with each cell are called thediscrete
points of the grid. Edges in the grid can be interpreted
as open intervals ofintermediatepoints; each one rep-
resenting a transition between two discrete points. Each
type of pointp = (x, y) has a unique coordinate where
x ∈ [0,W ] and y = [0, H ]. In the case of discrete
points bothx andy are limited to the subset of integer
values from the respective range.

A discrete or intermediate point is traversable if it
is adjacent to at least one traversable cell. Otherwise
it is non-traversable. A discrete point which is com-
mon to exactly four adjacent cells is called aninter-
section. Any intersection where three of the adjacent
cells are traversable and one is not is called acorner.
Two points arevisiblefrom one another if there exists a
straight-line path connecting them that does not: (i) pass
through any non-traversable point or (ii) pass between
two diagonally-adjacent non-traversable cells.

An any-angle pathπ is a sequence of points
〈p1, . . . , pk〉 where eachpi is visible from pi−1

and pi+1. The length of π is the cumula-
tive distance between every successive pair of
points d(p1, p2) + . . . + d(pk−1, pk), where
d((x, y), (x′, y′)) =

√

(x− x′)2 + (y − y′)2 is a
uniform Euclidean distance metric. We will say
pi ∈ π is a turning point if the segments(pi−1, pi)
and (pi, pi+1) form an angle not equal to180◦. It is
well-known that the turning points in optimal any-angle
paths are corner points; see e.g. (Mitchell, Mount, and
Papadimitriou 1987).

Principle of Anya
Consider the any-angle instance depicted in Figure 1.
The start point isn1 = (2, 0) and the target point is
n2 = (3, 4). A popular online algorithm1 for solv-
ing such problems is Theta* (Nash et al. 2007). This
method computes an any-angle path by only consider-
ing the set of discrete points from the grid. Each time
such a point is reached Theta* “pulls the string”. Thus
when noden2 is generated itsg-value is not the length
of the grid-constrained path fromn1 ton2 but rather the
length of the direct path〈n1, n2〉.

The problem with this approach is that the solution-
cost estimate (orf -value), from a parent node to each
of its successors, may not be monotonically increasing.
The monotone condition is necessary to guarantee that
an optimal solution, if one exists, is always found. For
instance: Theta* can generaten2 from the intermediate
pointp = (3, 3). Whenp is expanded we havef(p) =
d(n1, p) + h(p, n2) = 4.16. To satisfy the monotone
condition we require thatf(n2) ≥ 4.16. However
Theta* computesf(n2) = d(n1, n2) + h(n2, n2) =
4.12. Clearlyp should be expanded aftern2 but in this
case the opposite occurs. In order to avoid this mistake
we would need to consider, in addition to the set of dis-
crete points from the grid, all the pointsyi shown in
Figure 1. The problem is that the number of such points
can be very large: each edge of the grid, together with
its discrete endpoints, forms a[0, 1] interval that can be
intersected by the optimal path at any point0 ≤ w

h
≤ 1;

herew (resp. h) is an integer in{0, . . . ,W} (resp.
{0, . . . , H}). This is a set whose members are reducible
to a Farey Sequence. For any givenn (in our case
n = max(W,H)) the cardinality of the corresponding
set of elements is known to be quadratic inn (Graham,
Knuth, and Patashnik 1989)(Ch. 9). We are therefore
motivated to consider an alternative approach: instead
of evaluating eachyi node individually we will evaluate
together all the nodes from the corresponding interval
in which eachyi appears.

Algorithm
Definition 1 A grid interval I is a set of contiguous
pairwise visible points from any row of the grid. Each
interval is defined in terms of its endpointsa andb. With
the possible exception ofa andb, each interval contains
only intermediate and discrete non-corner points.

Identifying intervals is simple: any row of the grid can
be naturally divided into maximally contiguous sets of
traversable and non-traversable points. Each traversable
set forms a tentative interval which we split, repeatedly,
until the only corner points are found ata or b.
A significant advantage of Anya is that we construct
intervals on-the-fly. This allows us to start answer-
ing queries immediately and for any discrete start-target

1By online we mean that no preprocessing is required.
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Figure 2:(I, r) has four successors:(I ′1, r) and(I ′2, r)
which are observable and(I ′3, r

′) and(I ′4, r
′) which are

not. Notice that intervals of traversable points exist left
of I but the local path throughI to each such point is
not taut.

pair. Similar algorithms (e.g. Continuous Dijkstra) re-
quire a preprocessing step before any queries can be an-
swered and then only from a single fixed start point.

Definition 2 A search node(I, r) is a tuple whereI is
an interval andr 6∈ I is a root point chosen s.t. each
p ∈ I is visible fromr. The identity ofr is always the
most recent turning point on a path from the start point
s to anyp ∈ I. To represent the start node, setI = [s]
and assumer is a point located off the plane and visible
only froms. The cost fromr to s in this case is zero.

The successors of a search noden are identified by com-
puting intervals over sets of traversable points from the
same row of the grid asn and from rows immediately
adjacent. We want to guarantee that each point in such
a set can be reached from the root ofn via a local path
which is taut. Taut simply means that if we “pull” on
the endpoints of the path we cannot make it any shorter.

Definition 3 (I ′, r′) is asuccessorof (I, r) if eachp′ ∈
I ′ is reached by a taut path〈r, p, p′〉 that begins atr and
passes through somep ∈ I, andr′ is the last common
point of these paths. Additionally, the subpath〈p, p′〉
must not intersect any intervalJ 6= I ′.

We begin with the set of traversable points that are vis-
ible from r throughI and divide this set into0 ≤ k
adjacent closed grid intervals. We will say that each
such interval isobservableand generate for each a cor-
responding successor node(I ′, r′) with rootr′ = r.
Not all successors are observable. For example, the taut
path fromr can intersectI at an endpointb which is also
a corner point. In this case we reach a set of traversable
points that are either adjacent toI or adjacent to the
set of observable successors. Each such point is visible
from p = b but not fromr. From this set of non-visible
points we build a single half-open intervalI ′ = [a′, b′)
s.t. I ′ is open at the endpoint closest tob. We will say
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Figure 3: An illustration of Lemmas 1 and 2. The points
t1 andt′4 correspond to the case where the line intersects
the interval;t2 andt3 where it does not;t4 where the
mirrored targett′4 must be used.

I ′ is non-observableand generate a corresponding suc-
cessor(I ′, r′) with root r′ = b. Figure 2 shows exam-
ples of both observable and non-observable successors.
To evaluate a search noden = (I, r) we select a point
p ∈ I which has a minimumf -value with respect to a
target pointp. We compute:

f(p) = g(r) + d(r, p) + h(p, t) (1)

whereg(r) is the length of the optimal path from the
start point to the root,d(r, p) is the straight line distance
from r to p andh(p, t) is an admissible heuristic func-
tion that lower-bounds the cost of reachingt from p.

Finding this pointp is not trivial in general. For cer-
tain heuristics however, it is easy. Assume for instance
that the heuristics is the straight-line distance betweenp
andt (ignoring obstacles):h(p, t) = d(p, t). The point
p can be identified thanks to the following two lemmas.

Lemma 1 Let t and r be two points and letI be an
interval s.t. the row ofI is between the rows oft andr.
Then the pointp of I with minimumf -value is point in
I closest to the intersection of(t, r) with the row ofI.

Proof: If (t, r) intersectsI in pi, then the minimum
value ofd(r, p) + h(p, t) is d(r, t) which is obtained by
choosingp = pi (by the triangle inequality). Otherwise
choosep as the end point ofI on the side where(r, t)
intersects the row ofI. �

If the precondition of Lemma 1 is not satisfied, it is
possible to replacet by its mirrored versiont′ through
I which does satisfy the precondition.

Lemma 2 The mirrored pointt′ of targett through in-
tervalI is such thatd(p, t) = d(p, t′) for all p ∈ I.

Lemma 2 is a trivial geometrical result. Both lemmas
are illustrated on Figure 3.

The algorithm terminates when we expand a node
(I, r) s.t. t ∈ I. By Lemma 1 and 2 thef -value of
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this interval is guaranteed to be minimum with respect
to t. To extract a path we simply follow parent pointers
until we reach the start node. The root points associ-
ated with the search nodes we encounter are the turning
points on the optimal any-angle path froms to t.

Correctness and Optimality
To prove correctness and optimality, we show (i) the
optimal path appears in the search space and (ii) when
the target is expanded we have found an optimal path.

Theorem 1 For any point p that appears on a row,
there exists a node in the search tree that corresponds
to the optimal path froms to p if such a path exists.

Proof: Sketch, by induction. Consider an optimal path
πk = 〈p1, . . . , pk〉 wheres = p1 andpk−1 is either
a point one row apart frompk (similar to ayi point
mentioned in Figure 1) or a corner point on the same
row. By induction, there is a node(I, r) in the search
tree that represents the optimal path topk−1 ∈ I. Now
following Definition 3, there is a node(I ′, r′) that is a
successor of(I, r) such thatpk ∈ I ′ while r′ = r if
pk is visible fromr andr′ = pk−1 otherwise, and the
node represents the optimal path. �

We now assume the search space is explored by A*
search employing Equation (1).

Theorem 2 The first expanded node that contains the
targett corresponds to the optimal path tot.

Proof: Sketch. First we notice that thef value of a
node is indeed the minimal value of all the nodes in
the interval, which means thatf is an under estimate
of the actual cost to the target. Second we notice that,
given a search node(I, r) and its successor(I ′, r′),
for each pointp′ ∈ I ′, thef value ofp′ is bigger than
the f value of some pointp ∈ I (p = r′ if r′ 6= r; p
is the intersection ofI and (r, p′) otherwise); thef
function is therefore monotonically increasing. Finally,
the f function of a search node(I, r) is the length of
the path ift ∈ I. Hence thef function of the nodes
representing a sub-optimal path tot will eventually
exceed the optimal path distance, while thef function
of the nodes representing the optimal path will always
remain under this value. �

Conclusion
We study any-angle pathfinding: a problem commonly
found in the areas of robotics and computer games. It
involves finding a shortest path between two points in a
grid but asks that the path is not artificially constrained
to the points of the grid. We give a new algorithm for
this problem: Anya. Our approach works by represent-
ing sets of points from the grid as intervals and con-
siders all points from an interval together at the same

time. From each interval we select a representative
point which has a minimumf -value. We show that this
approach is both complete and optimal. Moreover, it
requires no preprocessing and relies on no special data
structures during search. Any-angle pathfinding has re-
ceived significant attention from the AI and Game De-
velopment communities but until now it has been an
open question whether any optimal online algorithm ex-
ists. Anya answers this question in the affirmative.
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