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Abstract

All-pairs shortest paths (APSP) can eliminate the need to
search in a graph, providing optimal moves very fast. A major
challenge is storing pre-computed APSP data efficiently. Re-
cently, compression has successfully been employed to scale
the use of APSP data to roadmaps and gridmaps of realis-
tic sizes. We develop new techniques that improve the com-
pression power of state-of-the-art methods by up to a factor
of 5. We demonstrate our ideas on game gridmpaps and the
roadmap of Australia. Part of our ideas have been integrated
in the Copa CPD system, one of the two best optimal partici-
pants in the grid-based path planning competition GPPC.

Introduction
Many planning problems can be modelled as shortest path
computation in a graph. All-pairs shortest paths (APSP) data
can lead to fast path planning in road networks (Wu et al.
2012) and video game grid maps (Botea 2011). They can
speed up moving target search (Botea et al. 2013), and can
be used to solve temporal problems in scheduling and plan-
ning with HTNs (Planken, de Weerdt, and van der Krogt
2011). Nearest neighbor problems have been addressed by
extracting shortest paths from spatial databases (Papadias,
Zhang, and Mamoulis 2003; Sankaranarayanan, Samet, and
Alborzi 2009). Other, potential application domains include
robot planning, multi-modal journey planning in a city, and
multi-agent path planning.

Computing APSP data is challenging in terms of speed
and efficient storage of the results. In this work we focus
on storing APSP data efficiently. Without powerful APSP
compression techniques, the usefulness of APSP data and,
therefore, the usefulness of algorithms for APSP computa-
tion are limited to small graphs. Straightforward encodings,
with one entry for every start–target pair, are impractical for
all but small graphs, requiring an amount of memory within
O(n2), or even O(n2 log n), for a graph with n nodes.

The SILC framework (Sankaranarayanan, Alborzi,
and Samet 2005) and Compressed Path Databases
(CPDs) (Botea 2011) are two recent APSP compres-
sion techniques whose impressive storage capabilities
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scale far beyond naive storage methods. Both methods
operate on spatial networks (graphs where each node is
labelled with x and y coordinates) and both exploit a
simple but powerful feature of such domains, coined as
path coherence (Sankaranarayanan, Alborzi, and Samet
2005). In a spatial network, it is often the case that the first
move along an optimal path, from a start location s to any
target t in a contiguous remote area, is the same. SILC
and CPDs both cache the first move to take for every (s, t)
pair. Compression involves, for each s, partitioning the
map into a set of contiguous areas (blocks) A, such that all
targets t in a block A have the same first-move label. Then,
instead of storing many identical records for each (s, t)
pair with t ∈ A, store a single first-move record (s,A). To
obtain a shortest path a lookup is performed at s to find the
first-move record for the block containing t. This repeats
recursively until the target is reached.

We investigate techniques that can improve the compres-
sion power significantly. We use CPDs as a baseline, moti-
vated by an earlier favourable comparison versus SILC, re-
ported by Botea (2011). List trimming, one of our contri-
butions, eliminates, in an information lossless fashion, part
of the blocks resulted from the partitioning of a map. It re-
duces storage costs by a factor of about 1.8 with no asso-
ciated running time penalty when answering shortest-path
queries. Additional enhancements, based on the well known
run length encoding and sliding window compression, re-
duce storage costs by a further factor of 2.9, at the price of
a two-fold increase in shortest path query time, as detailed
later. Benchmark data includes grid maps from the Baldur’s
Gate game, and a commercially used roadmap of Australia,
with 1.7 million nodes. In the case of this latter graph our en-
hancements, combined together, reduce the size of the com-
pressed path database from 16.48 GB down to 3.1 GB, mak-
ing it fit into the RAM of many current computers. Part of
the contributions, such as list trimming, are implemented in
Copa CPD, one of the two best optimal competitors in the
grid-based path planning competition GPPC.1

Background
Let G = (V,E) be an input graph for which to compute
and compress APSPs. The x and y coordinates of nodes are

1http://movingai.com/GPPC/
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Figure 1: A first-move table on a toy grid map.

assumed to be available. The column (row) of a node n is the
index of its x (y) coordinate in the ordered set of the unique
x (y) values of all nodes in V .

Algorithm 1 Independent iterations in building a CPD.
for each n ∈ V do
T (n)← Dijkstra(n)
L(n)← Compress(T (n))

A CPD (Botea 2011) is an array of lists of rectangles
L(n), with one list for each node n ∈ V . Building a CPD re-
quires a series of independent iterations, one for each node
n, as illustrated in Algorithm 1. A slight modification of
the Dijkstra algorithm produces a so-called first-move table
T (n), using n as an origin point. In a first-move table, all
nodes t 6= n are assigned a first-move label (i.e., the first
move from n towards t).2

Figure 1 shows an example of a move table on a toy,
8-connected grid map for a given origin point labelled n.
Blocked cells are black. All traversable cells except for
n have a move label represented in the picture with ar-
rows with various orientations. For example, labelling the
bottom-right cell of the grid with→ states that the first move
from n towards that cell should be to the East. Notice in the
picture how path coherence allows first-move data to cluster,
offering an opportunity to compress the data.

The second step in an iteration in Algorithm 1 is decom-
posing a first-move table into a list of homogeneous rectan-
gles L(n). A rectangle ρ is homogeneous if all nodes con-
tained in ρ have the same move label. The decomposition
technique can be found in the original paper (Botea 2011).

A very simple path retrieval procedure that retrieves
moves one by one in order. A method retrieveMove(n, t)
involves parsing the list L(n), in order, until the rectangle ρ
containing t is found. The move label of ρ is precisely the
move (i.e., edge) to take from node n. In the worst-case,
the entire list L(n) has to be parsed to retrieve the move.
The average case is much better, given that the rectangles in
a list L(n) are ordered decreasingly according to the num-
ber of contained reachable targets. Botea (2011) has pointed
out that, given a uniformly randomly selected target, the av-
erage number of rectangles to check in a list L(n) of size
|L(n)| = l, until the target is found, is N0 =

∑l
i=1 iwi. The

first position in the list is indexed with 1. A value wi is the

2For brevity, assume that all nodes are reachable from n.

number of contained locations of the i-th rectangle in L(n),
normalized such that

∑
i wi = 1.

Improving the compression power
In preparation for the size-reduction operations discussed in
this section, each list of rectangles L(n) is split into four
smaller lists, called sector lists. For example, the NW sector
list contains all rectangles placed in the North-East area of
the map relative to n. The SW, SE and NW sector lists are
defined similarly.3 Sector lists allow improving the speed,
as lists of rectangles to traverse at runtime become shorter.

List trimming with default moves
We present list trimming, a technique to eliminate rectan-
gles from a sector list without any information loss. Assume
there is a function ξ that provides a default move ξ(n, t) for
every current node n and target t. While ξ will be used only
when there is a guarantee that it provides optimal and cor-
rect moves, it is not necessary that ξ returns correct answers
for all pairs (n, t). It is desired, however, that a default move
ξ(n, t) is computed quickly (e.g., in constant time) and that
it uses no or very little cached data.

A given rectangle ρ can be removed from a (sector) list
L(n) when ml(ρ), the move label of ρ, coincides with the
default moves obtained with ξ: ∀t′ ∈ ρ, ξ(n, t′) = ml(ρ).
Consider a list L(n) after removing part of its rectangles.
Retrieving the move to take at node n involves parsing the
list L(n). If the parsing completes without finding the tar-
get rectangle (i.e., the rectangle containing the target t), it
must be the case that the target rectangle has been removed
from L(n). Therefore the move label of the target rectangle
is exactly ξ(n, t), since this was a necessary condition to re-
move a rectangle. In such cases, ξ is guaranteed to provide
a correct and optimal move.

A simple definition for ξ turned out to be quite effective.
For each sector list, the default move is the move label as-
sociated with the largest number of rectangles in that list.
Some, but not necessarily all default-move rectangles can
be removed from the sector list, as discussed below.

Definition 1 A trimming τ of a sector list L is a set of pos-
itive integers {i1, i2, . . . ik}. These numbers represent the
original positions in L corresponding to the removed rect-
angles. All removed rectangles have the same move label.

The impact of list trimming on the speed of retrieving a
move can be either positive or negative, depending on fac-
tors such as the number, the size, and the position in the
list of the removed rectangles. The N0 formula, mentioned
in the background section, quantifies the average number of
rectangles to check in a list L(n) in order to find the rectan-
gle containing the target. N0 is restricted to cases where the
target does belong to one of the rectangles in L(n), which
is not necessarily true for trimmed lists. Hence we derive a
new formula, N(τ), which covers the case of trimmed lists
as well, to be able to compare trimmings in terms of speed,

3An artifact of the decomposition procedure (Botea 2011) is
that no rectangle goes across two or more sectors.
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in addition to their size reduction. As the default move func-
tion in use is very fast, consisting of a table look-up, its time
cost is left out in the rest of this analysis.

Let τ = {i1, i2, . . . ik} be an arbitrary trimming. When
the target belongs to a preserved rectangle ρ, the number
of rectangles to check decreases by a non-negative amount
a, where a ≥ 0 is the number of rectangles removed from
the part of the list ahead of ρ. When the target belongs to
a removed rectangle, the entire list, which now has l − k
elements, is parsed. Overall, the average number of rectan-
gles to check is N(τ) =

∑k
j=0

∑ij+1−1
i=ij+1(i − j)wi + (l −

k)
∑k
j=1 wij . The first term corresponds to preserved rect-

angles, whereas the second term accounts for the removed
ones. In this formula, i0 = 0 and ik+1 = l + 1.

In the rest of this section we formally present a strategy
for identifying a trimming of a given list. We introduce a
non-dominance relation between trimmings and show that
our resulting trimmings are non-dominated.

Definition 2 Let τ1 and τ2 be trimmings of a list L(n). We
say that τ1 is non-dominated by τ2 if N(τ1) ≤ N(τ2) and
τ1 removes at least as many rectangles as τ2.

Lemma 1 Let τ1 = {i1, . . . ip, . . . ik} and τ2 =
{i1, . . . jp, . . . ik} be two trimmings that differ only on the
position of p-th removed rectangle. Assume that ip−1 <
ip < jp < ip+1. Then τ2 is non-dominated by τ1.

Proof: For simplicity, let us rename ip as a and jp as b. The
only differences between N(τ1) and N(τ2) will occur for
the terms containing wa, wa+1, . . . , wb. The contribution of
these terms to N(τ1) will be F1 = (l − k)wa + (a + 1 −
p)wa+1+ . . .+(b−p)wb. For τ2, we obtain: F2 = (a−p+
1)wa+. . .+(b−p)wb−1+(l−k)wb. The difference F1−F2

is (l−k−a+p−1)wa−wa+1−. . .−wb−1−(l−k−b+p)wb.
Notice that, ∀c > a, the factor in the front of wc is negative.
Furthermore, ∀c > a, we have wa ≥ wc, according to the
ordering inside a list of rectangles. Based on these two facts,
by replacing all w terms with wa in the previous formula of
F1 −F2, we obtain that F1 −F2 ≥ wa(l− k− a+ p− 1−
b+1+ a− l+ k+ b− p) = 0. It follows that F1 ≥ F2 and
hence N(τ1) ≥ N(τ2).

Definition 3 A gap in a trimming τ = {i1, . . . ik} is a posi-
tion v > i1, not included in the trimming, with the property
that the rectangle on position v has the same move label as
the rectangles in the trimming.

Theorem 1 For any trimming τ with gaps, there is a trim-
ming without gaps that is non-dominated by τ .

Proof: Let τ = {i1, . . . ik} be a trimming with a gap v. Let
ip be the biggest position in the trimming such that ip < v.
Cf. Lemma 1, replacing ip with v in the trimming leads to
a new trimming that is non-dominated by τ . This change
“shifts” the gap towards the beginning of the list. We repeat
the process until all gaps “travelled” outside the range of in-
dexes included in the trimming, obtaining a trimming with-
out gaps. As the non-dominance relation is transitive, the
resulting trimming is non-dominated by the original one.

Theorem 1 provides a computationally-easy strategy for
building a non-dominated trimming. Starting from the end

of the list, rectangles with the selected move label are added
to the trimming (i.e., marked for deletion) one by one. At
each step, the new trimming τ ′ is compared to the previous
trimming τ . If τ ′ is non-dominated by τ , continue. Other-
wise, τ ′ is better in terms of memory and τ is better in terms
of the expected move retrieval time. Whether to continue
or not depends on the user preference. For example, one
can define R(τ) = N(τ)

N0
and set a maximal threshold C for

R(τ), thus growing the trimming τ as long as R(τ) ≤ C.

Compression across multiple first-move tables
Part of the ideas discussed in this section have the capability
of compressing data across first-move tables, not only in-
side individual tables. The data (i.e., trimmed lists of rectan-
gles) are partitioned into five subsets called strings. Strings
are further compressed independently from each other, us-
ing two generic, widely used compression methods, slightly
adaptated to suit our problem better.

The five strings separate the data according to the five
fields (two rows, two columns and one move label) that com-
pose a rectangle record: there is one string containing the
left column value for every rectangle, and so on. A string
contains, in order, the values of the field at hand for every
rectangle record in the database. These values are seen as
atomic symbols (also known as literals) in the string, rather
than considering finer atoms such as digits and blanks. For
each string, there is an indexing that provides constant-time
access to the head of each sector list.

The first compression idea applied here is a simple vari-
ation of the well-known run-length encoding (RLE). A se-
quence containing x > 1 repetitions of a literal S is replaced
with an encoding Sx. One bit per token is used to distin-
guish between actual symbols and counters. The second
idea, called sliding-window compression (SWC), is equally
simple and popular. When a substring occurs repeatedly,
subsequent occurrences are replaced with a “pointer” to an
earlier occurrence (Ziv and Lempel 1977). The “pointer”,
called a length-distance pair, is composed of two numbers,
containing the length of the substring, and (the distance to)
the starting position of an earlier occurrence of the substring.
We call such a starting position to point to a jump point. We
call a cut an occurrence of a substring that has been replaced
with a length-distance pair.

In our problem, fast decompression is critical, as it has
to be performed in real time during the retrieval of paths
from the database. Two adaptations ensure that the overhead
of decompression in fetching one symbol from a string is
bounded by a constant factor.

Firstly, cuts that contain the head of a sector list are
never considered. This guarantees that sector list heads are
reached in constant time, using the available indexing. Sec-
ondly, when fetching the next symbol (e.g., the left column
of the next rectangle) from a compressed string, there is at
most one jump to an earlier position in the string. Unless
such a precaution is taken, the number of back jumps to
fetch one symbol could be up to linear in the size of the
string. Consider two occurrences eo and lo of a substring
S1 . . . Sn, such that eo occurs earlier than lo. To allow re-
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Figure 2: Top: compression. Bottom: storage per node.

placing lo with a pointer to eo, we require that the symbol
at the jump point (i.e., the first position of eo) is preserved
in the compressed string, rather than being cut away. This
is sufficient to ensure that S1 will be retrieved with exactly
one jump. Other parts of eo can belong to cuts, giving more
freedom to SWC to potentially achieve a better compression.
Retrieving all symbols in lo could require a stack of jumps
but nevertheless there is at most one jump per symbol.

In summary, parsing a (trimmed) sector list after applying
RLE and SWC translates into parsing the 5 strings starting
from the positions of the sector list head. Symbols are re-
trieved one by one from each substring, until the target rect-
angle is found or the list’s end is reached, in which case the
default move for that trimmed sector list is returned.

Experimental Results
We evaluate the impact of our new ideas on the memory and
speed performance of the system. A comparison to other
pathfinding is available on the competition website. Our data
include 120 8-connected gridmaps (Baldur’s Gate set), with
sizes up to 320x320 (51,000 nodes). We also use a complete
road map of Australia (AU), with 1.7 million nodes, and two
subsets. The New South Wales (NSW) subset has 443,000
nodes. ACT (Australian Capital Territory) has 31,000 nodes.
Our code is written in C++, and tested on a 2.6GHz Intel
Core2Duo machine with 8GB RAM and Mac OSX 10.6.5.

Figure 2 shows compression data, as a multiplicative fac-
tor compared to uncompressed first-move tables. CPD-rd
performs rectangle decomposition (Botea 2011). CPD-rd-
lt adds list trimming (i.e., default move filtering) on top of
CPD-rd. CPD-all includes RLE and SWC, on top of CPD-
rd-lt. All CPD variants include sector splitting, not present
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Figure 3: Time in microseconds to find shortest paths.

in previous work (Botea 2011). Figure 2 (a) shows the com-
pression factor on road maps. The higher the compression
factor, the better the compression. CPD-rd-lt is almost twice
as good as CPD-rd in all cases. CPD-all improves this fur-
ther on road maps. Savings grow with the map size. For the
full AU map, CPD-all is 5.3x better than CPD-rd, and 950
times better than uncompressed APSP data.

Figure 2 (b) focuses on grid maps. CPD-all is generally
better than CPD-rd, but weaker than CPD-rd-lt on most grid
maps in our tests. The explanation is that, on the tested
grid maps, CPD-rd-lt already has a good compression per-
formance. SWC and RLE have an overhead added by the
indexing that allows reaching list heads in constant time.
This overhead is relatively small, being linear in the num-
ber of graph nodes. However, when the database is relatively
small, the overhead becomes visible. This, plus the constant-
factor slow down pointed out below, explain why RLE and
SWE were not activated in the competition program.

Figures 2 (c) and (d) summarize the storage per node
(SpN). As maps grow in size, the SpN increases quite slowly
(note the x-axis logarithmic scale), an effect also observed
in SILC (Sankaranarayanan, Alborzi, and Samet 2005). Of
course, the total memory usage gets multiplied by the num-
ber of nodes, typically leading to a super-linear increase of
the CPD in the size of the map.

Figure 3 presents time performance data for shortest path
queries. List trimming has no negative impact on the speed,
as shown in Figure 3 (a) (two curves virtually identical) and
also confirmed in tests for roadmaps where CPD-rd fits in
memory. CPD-all is slower by a factor close to 2. This over-
head, introduced by performing jumps in SWC, is guaran-
teed to be bounded by a constant factor. For the whole map
of Australia, CPD-all (3.1 GB in size) is the only database
that fits in memory. The size of AU CPD-rd is 16.48 GB.

Conclusion
We discussed compression techniques applicable to graphs
where nodes are annotated with x and y coordinates. Using a
combination of rectangle list trimming with default moves,
run-length encoding and sliding-window compression, we
significantly improve the performance of CPD (Botea 2011),
a state-of-the-art APSP compression technique. Part of our
contributions, such as list trimming, are used in Copa CPD,
a top competitor in the path planning competition GPPC.
We have formally proved the optimality of our list trimming
policy. Future work includes combining CPDs with hier-
archical map decomposition for an additional compression
power. We plan to apply CPDs to multi-agent path planning.
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