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Abstract

Partially observable Markov decision processes (POMDPs) are inter-
esting because they provide a general framework for learning in the pres-
ence of multiple forms of uncertainty. We survey methods for learning
within the POMDP framework. Because exact methods are intractable
we concentrate on approximate methods. We explore two versions of the
POMDP training problem: learning when a model of the POMDP is
known, and the much harder problem of learning when a model is not
available. The methods used to solve POMDPs are sometimes referred to
as reinforcement learning algorithms because the only feedback provided
to the agent is a scalar reward signal at each time step.

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a framework
for agents that learn how to act in their environment, or world. The POMDP
model seamlessly incorporates uncertainty about an agent’s perceptions, actions,
and feedback. The only performance feedback given to agents is a scalar reward
generated by the world at each time step. The learning problem is complicated
by rewards which may be delayed from the actions that caused them, creating
a temporal credit assignment problem.

In the unrestricted POMDP setting a number of complexity results have
shown that computing optimal policies is intractable, thus most of the literature
is devoted to computing approximate policies. We discuss the complexity of
exact POMDP methods and present the main approaches to approximating
POMDPs solutions using only a small amount of mathematics.

The following sections introduce the concepts of POMDPs, memory states,
long-term values, and methods for solving fully observable MDPs. Section 6
discusses exact and approximate methods for solving POMDPs when the under-
lying POMDP parameters are known. Section 7 assumes that these parameters
are not known, making the task extremely difficult. Section 8 describes miscel-
laneous methods useful in the modelled and model free domains. They include
variance reduction methods, multi-agent settings and hierarchical POMDPs.
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Figure 1: Diagram of the world perspective of POMDP showing the underlying
MDP, and the stochastic process ν(yt|it) mapping the current state it to an
observation yt, thus hiding the true state information.

2 Modelling the World as a POMDP

Our setting is that of an agent taking actions in a world according to its policy.
The agent receives feedback about its performance through a scalar reward rt

received at each time step.

Definition 1. Formally, a POMDP consists of:

• |S| states S = {1, . . . , |S|} of the world;

• |A| actions (or controls) U = {1, . . . , |A|} available to the policy;

• |Y| observations Y = {1, . . . , |Y|};

• a (possibly stochastic) reward r(i) ∈ R for each state i ∈ S.

For ease of exposition we assume S,Y , and U are finite. Generalisations to
uncountably infinite cases are possible for many algorithms, however, the math-
ematics is considerably more complex and unlikely to deepen understanding of
the underlying algorithms.

Each action u ∈ U determines a stochastic matrix [q(j|i, u)]i=1...|S|,j=1...|S|,
where q(j|i, u) denotes the probability of making a transition from state i ∈ S
to state j ∈ S given action u ∈ U . For each state i, an observation y ∈ Y
is generated independently with probability ν(y|i). The distributions q(j|i, u)
and ν(y|i), along with a description of the rewards, constitutes the model of the
POMDP shown in Figure 1.

Conceptually, the world issues rewards after each state transition. Rewards
may depend on the action and the previous state rt+1 = r(it, ut); but without
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loss of generality we will assume rewards are a function of only the updated
state rt+1 = r(j) = r(it+1) so that r1 is the first reward, received after the first
action.1

If the state is not hidden, that is, there is an observation y for each world
state and ν(y|i) = 1 if y = i, then we are in the MDP setting. This setting is
significantly easier than the POMDP setting with algorithms running in time
that is O(|S|2) per iteration, or O(|S|3) for a closed form solution [Bellman,
1957]. MDP research was the precursor to the study of POMDPs so in Section 5
we briefly mention some of the most influential MDP algorithms.

POMDPs may be episodic, where the task ends upon the agent entering a
state i∗ which is in the set of terminal states S∗ ⊂ S. More generally, they may
be infinite-horizon POMDPs that conceptually run forever.

3 Agents with Internal State

Agents generally require internal state, or memory, to act well. To make this
concept concrete, consider the Load/Unload scenario [Peshkin et al., 1999]
shown in Figure 2(a). The observations alone do not allow the agent to de-
termine if it should move left or right while it occupies the intermediate N

observation states. However, if the agent remembers whether it last visited the
load or unload location (1 bit of memory) then it can act optimally.

We now introduce a generic internal-state agent model that covers all existing
algorithms. The agent has access to a set of internal states g ∈ G = {1, . . . , |G|}
(I-states for short). Finite memory algorithms have finite G. Alternatively,
exact infinite-horizon algorithms usually assume infinite G.2 For example, one
uncountable form of G is the set of all belief states : distributions over world state
occupancy in the |S| dimension simplex. The cross product of the world-state
space S and the internal-state space G form the global -state space.

The agent implements a parameterised policy µ that maps observations y ∈
Y , and I-states h ∈ G, into probability distributions over the controls U . We
denote the probability under µ of control u, given I-state h, observation y, and
parameters θ ∈ R

nθ , by µ(u|θ, h, y). Deterministic policies emit distributions
that assign probability 1 to action ut and 0 to all other actions. Policies are
learnt by searching the space of parameters θ ∈ R

nθ .
The I-state evolves as a function of the current observation y ∈ Y , and I-

state g ∈ G. Specifically, we assume the existence of a parameterised function
ω such that the probability of making a transition to I-state h ∈ G, given
current I-state g ∈ G, observation y ∈ Y , and parameters φ ∈ R

nφ , is denoted
by ω(h|φ, g, y). The I-state transition function may be learnt by searching the
space of parameters φ ∈ R

nφ .
An important feature of our model is that both the policy and the I-state

transitions can be stochastic.
Some algorithms do not learn the I-state transition function, fixing φ in

advance. Examples include the exact methods of Section 6.1, where we can write

1The more general case can be obtained by augmenting the state with information about
the last action (and optionally the last state), implicitly making the reward a function of the
last action.

2It is an abuse of notation to write g ∈ G = {1, . . . , |G|} when G could be uncountably
infinite, however, we ignore this since it is immaterial to the discussion. Most of the discussed
algorithms assume G is finite.
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Figure 2: 2(a) The Load/Unload scenario with 6 locations. The agent receives
a reward of 1 each time it passes through the unload location U, or the load
locationL, after having first passed through the opposite end of the road. In
each state the agent has a choice of two actions: either left or right. The
three observations are Y = {U, N, L}, which are issued in the unloading state,
the intermediate states and the loading states respectively. 2(b) The policy
graph learned for the Load/Unload scenario. Each node represents an internal
state. The “Left” state is interpreted as: I have a load so move left, and the
“Right” state as: I dropped my load so move right. The dashed transitions are
used during learning but not by the final policy.
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Figure 3: POMDP from the agent’s point of view. The dashed lines represent
the extra information available for model-based algorithms.

down the equations that determine the next belief state from the previous belief
state and current observation. Throughout this section we compare algorithms
in terms of how the ω(h|φ, g, y) and µ(u|θ, h, y) functions work and how they
are parameterised. Tables 1 and 2 summarise these differences at the end of the
paper.

The agent’s view of the POMDP is represented by Figure 3. The POMDP
evolves as follows:

1. let i0 ∈ S and g0 ∈ G denote the initial state of the world and the initial
I-state of the agent respectively;

2. at time step t, generate an observation yt ∈ Y with probability ν(yt|it);

3. generate a new I-state gt+1 with probability ω(gt+1|φ, gt, yt);

4. generate action ut with probability µ(ut|θ, gt+1, yt);

5. generate a new world state it+1 with probability q(it+1|it, ut);

6. t = t + 1, goto 2.

4 Long-Term Rewards

POMDP algorithms attempt to globally or locally optimise θ ∈ R
nθ and φ ∈

R
nφ , maximising the long-term average reward:

η(φ, θ, i, g) := lim
T→∞

1

T
Eφ,θ

[
T∑

t=0

r(it)|i0 = i, g0 = g

]
, (1)
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where Eφ,θ denotes the expectation over all global trajectories {(i0, g0), . . . , (iT , gT )}
when the agent is parameterised by φ and θ. An alternative measure of perfor-
mance is the discounted sum of rewards, introducing a discount factor β ∈ [0, 1)

Jβ(φ, θ, i, g) := Eφ,θ

[
∞∑

t=0

βtr(it)|i0 = i, g0 = g

]
. (2)

The exponential decay of the impact of past rewards is equivalent to the as-
sumption that actions have exponentially decaying impact on the current per-
formance of the agent as time goes on. Alternatively, this can be viewed as the
assumption that rewards are exponentially more likely to be generated by the
most recent actions.

We prefer the long-term average because it gives equal value to all rewards
received throughout the evolution of the POMDP. However, the discounted ver-
sion is useful because it allows the solution of the temporal credit assignment
problem in infinite-horizon POMDPs by enforcing an effective horizon [Sutton
and Barto, 1998]. Fortunately, when the agent is suitably mixing, maximis-
ing one is equivalent to maximising the other. Suitably mixing means that
η(φ, θ, i, g) is independent of the starting state (i, g) and so may be written
η(φ, θ). In other words, the POMDP is ergodic. In this case, there is also a
unique stationary distribution over world/internal state pairs. We denote the
expectation over this stationary distribution with Ei,g . For ergodic POMDPs
the long-term average reward and the discounted reward are related by [Baxter
and Bartlett, 2001]

Ei,gJβ(θ, φ, i, g) =
1

1− β
Ei,gη(φ, θ, i, g).

5 Methods for Solving MDPs

In this section we describe dynamic programming methods that apply when the
state is fully observable, that is, the MDP setting. We will restrict ourselves to
the discounted reward setting though the methods can often also be applied to
average rewards.

If we have a method of determining the long-term value of each state then
the agent can act by choosing the action that leads to the state with the highest
value. The value is the expected discounted reward for entering state i under
the optimal policy. Bellman [1957] describes a procedure known as dynamic
programming (DP) which allows us to determine the value J∗

β(i) for each state
i ∈ S. We drop the dependency of J∗

β(i) on φ and θ for this section because
DP computes the optimal value directly rather than the value gained by a
particular agent. The MDP assumption means that memory is not necessary.
This is equivalent to having a single internal state, making the memory process
ω(h|φ, g, y) trivial. Such agents are said to implement reactive policies. DP
is described by the Bellman equation, where β ∈ [0, 1) is a discount factor
that weights the importance of the instantaneous reward against the long-term
reward

J∗
β(i) = max

u


r(i) + β

∑

j∈S

q(j|i, u)J∗
β(j)


 . (3)
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Assuming we can store a value estimate for each state, DP proceeds by replacing
J∗

β(i) with an estimate Jβ(i) and iterating

Jβ(i)← max
u


r(i) + β

∑

j∈S

q(j|i, u)Jβ(j)


 . (4)

In the limit as the number of iterations goes to infinity, Jβ(i) converges to J∗
β(i)

[Bertsekas and Tsitsiklis, 1996]. Once J∗
β(i) is known the optimal policy is given

by

u∗
i = arg max

u


r(i) + β

∑

j∈S

q(j|i, u)J∗
β(j)


 .

To reflect full observability, and the absence of internal state, we write the policy
as µ(u|θ, i) instead of µ(u|θ, h, y). For MDPs the optimal µ is deterministic and
equal to

µ(u|θ, i) = χu(u∗
i ), (5)

where χm(k) is the indicator function

χm(k) :=

{
1 if k = m,

0 otherwise.
(6)

Recall that the vector θ parameterises the policy. In the MDP case θ could
represent the value of each state i ∈ S or it could represent the mapping of
states to actions derived from those values. In the later case θ would be a
vector of length |S|, representing a table mapping states directly to the optimal
action for that state. When the state and action spaces are large we resort to
some form of function approximator to represent the table. For example, the
parameters θ could be the weights of an artificial neural network (ANN) that
maps states to actions. Function approximation for DP was in use by Bellman
et al. [1963] and possibly earlier.

Iterating Equation (4) until convergence, and forming a policy from Equa-
tion (5) is the basis of value iteration [Howard, 1960]. Alternatively, policy
iteration [Bellman, 1957] learns the value of states under a particular agent, de-
noted Jβ,µ(i). Once the value of the policy has been learnt the policy is updated
to maximise Jβ,µ(i), followed by a re-evaluation of Jβ,µ(i) under the new policy.
This is repeated until the policy does not change during maximisation. Policy
iteration resembles Expectation-Maximisation (EM) methods [Dempster et al.,
1977] because we estimate the expected value for state i, then alter the policy
to maximise the expected value for i.

Evaluating (4) has complexity O(|A||S|2) per step which, while polyno-
mial, is infeasible for very large state spaces. Also, the transition probabili-
ties q(j|i, u), which are part of the model, may not always be available. These
two observations motivate Monte-Carlo methods for computing J∗

β(i). These
methods learn by interacting with the world and gathering experience about
the long-term rewards from each state. Q-learning is one algorithm for learning
value function Q(i, u) : S × U 7→ R, which represents the value of taking action
u in state i and then acting optimally. It is summarised by the following update
rule [Sutton et al., 1999] that introduces a step size γt ∈ [0, 1)

Q(it, ut)← Q(it, ut) + γt[rt+1 + β max
u′

Q(it+1, u
′)−Q(it, ut)],
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which states that the value Q(it, ut) should be updated in the direction of the
error [rt+1 + β maxu′ Q(it+1, u

′)] − Q(it, ut). The values converge provided an
independent value is stored for each state/action pair, each state is visited in-
finitely often, and γ is decreased in such a way that

∑
t γt =∞ and

∑
t γ2

t <∞
[Mitchell, 1997]. Q-learning is an off-policy method, meaning the optimal policy
can be learnt by following a fixed alternative policy. This allows a reduction of
the number of expensive world interactions by repeatedly re-using experience
gathered under an old policy to improve the current policy.

The complexity of learning J∗
β(i) or Q(i, u) can be reduced by automati-

cally aggregating states into clusters of states, or meta-states, at the cost of
introducing partial observability [Singh et al., 1995, Engel and Mannor, 2001a].

Readers interested in MDPs are referred to books such as Puterman [1994],
which covers model-based algorithms and many variants on MDPs. Bertsekas
and Tsitsiklis [1996] provides an analysis of the convergence properties of MDP
algorithms and Kaelbling et al. [1996] describes the algorithms from the rein-
forcement learning point of view.

Formalisms that sit between POMDPs and MDPs can simplify policy gen-
eration and analysis. For example, hPOMDPs require that remembering the
history of observations/actions pairs hT = {(y0, u0), (y1, u1), . . . , (yT , uT )} will
allow the agent to determine the true state; which is useful when analysing MDP
algorithms under limited partial observability [Pendrith and McGarity, 1998].
Even-odd POMDPs assume the world is fully observable at every other time
step, limiting the implications of partial observability [Zubeck and Dietterich,
2000]. However, we shall focus on the more general class of POMDPs for the
rest of this paper.

6 Learning with a Model

This section describes existing methods for producing POMDP agents when
the model of the POMDP is known, which is equivalent to knowing ν(y|i),
q(j|i, u) and r(i). These include exact methods that are guaranteed to learn the
optimal policy given sufficient, possibly infinite, time and memory. We define
the optimal agent as the agent that obtains the maximum possible long-term
(average or discounted) reward given that the agent does not have access to the
true state of the system. The long-term reward of optimal MDP methods upper
bounds the reward that can be obtained after introducing partial observability
[Hauskrecht, 2000].

6.1 Exact Methods

The observation process may not reveal sufficient state to allow reactive poli-
cies to choose the optimal action. One solution is to model an agent that
remembers its entire observation/action history ȳ. This fits within our frame-
work by setting G to be the sequence of all past observations and actions
ȳ = {(y0, u0), . . . , (yt, ut)}. Using ȳ may allow the agent to determine the true
state and hence act optimally. Even if ȳ does not allow the agent to determine
the true state, it may help to reduce the entropy of the agent’s belief of which
state it occupies, consequently improving the probability that the agent will
act correctly. In this case G is the possibly infinite set of all observation/action
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trajectories and ω(h|φ, g, y) is a deterministic function that simply concatenates
the last observed (yt, ut) to ȳ.

Consider an agent in a symmetric building. If it only receives observations
about what is in its line of sight, then many places in the building will appear
identical. However, if it remembers the last time it saw a landmark, such as the
front doors of the building, then it can infer where it is in the building from its
memory of how it moved since seeing the landmark. This is the approach taken
by methods such as utile distinction trees [McCallum, 1996] and prediction suffix
trees [Ron et al., 1994]. These methods do not necessarily assume knowledge of
the POMDP model and will be discussed in Section 7.

6.1.1 Belief States

Explicitly storing ȳ results in inefficient memory use because we potentially
need to store an infinite amount of history in infinite-horizon settings. Åström
[1965] described an alternative to storing histories which is to track the belief
state: the probability distribution over world-states, S, given the observation
and action history ȳ. The belief state is a sufficient statistic in the sense that
the agent can perform as well as if it had access to ȳ [Smallwood and Sondik,
1973]. We use the notation bt(i|ȳt) to mean the probability that the world is
in state i at time t given the history up to time t. Given a belief state bt, an
action ut, and an observation yt, the successor belief state is computed using

bt+1(j|ȳt) =
ν(yt|j)

∑
i∈S bt(i|ȳt)q(j|i, ut)∑

y′∈Y ν(y′|j)
∑

i∈S bt(i|ȳt)q(j|i, ut)
. (7)

In this setting G is the possibly uncountable set of belief states the system can
reach. From this point on we will use B instead of G to refer to the set of
reachable belief states, allowing us to keep the belief state distinct from other
forms of internal state such as finite state controller I-states. Each element
b ∈ B is a vector in an |S| dimensional simplex. The function ω(bt+1|φ, bt, y) is
deterministic, giving probability 1 to vector bt+1 defined by Equation (7).

The set B defines the states of an equivalent MDP on which DP can be
performed by replacing the states in Equation (3) with belief states [Smallwood
and Sondik, 1973, Cassandra et al., 1994]

J̄β(b′)← max
u

[
r̄(b′) + β

∑

b∈B

q̄(b|b′, u)J̄β(b)

]
, (8)

which converges in finite time to within ε of the optimal policy value [Lovejoy,
1991]. The bar on J̄β(b) indicates that we are learning values of belief states b
instead of world states i. The simplicity of this equation is misleading because
J̄β , r̄, and q̄ are represented in terms of their MDP counterparts in Equation (3).
For example, r̄(b) =

∑
i∈S bir(i). When the set of reachable belief states can be

infinite, J̄β(b) is significantly more complex than Jβ(i), which is the subject of
the next section.

6.1.2 Value Function Representation

Maintaining and updating independent values for infinitely many belief states is
infeasible. Fortunately, it has been shown for finite horizons that the value over
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Figure 4: Convex piecewise linear representation of a value function for a con-
tinuous belief state with |S| = 2. The plot is a slice from a 3-dimensional
plot defined by valid points in the the 2-dimensional simplex, that is, where
b0 = 1 − b1. If the set L is parsimonious then each ln defines a line segment
which is maximum in some partition of belief space. Each such partition has a
unique optimal action u∗
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all belief states can be represented exactly by a convex piecewise linear function
[Smallwood and Sondik, 1973]. Such a representation is shown for a 2 state
system in Figure 4. The set L contains the hyperplanes needed to represent the
value function. Each l ∈ L is an |S| dimensional vector such that the value of
hyperplane l for belief state b is b · l. The value of J̄β(b) is the maximum over
all hyperplanes

J̄β(b) = max
l∈L
{b · l}.

To be useful, a hyperplane l must be the maximum for some b. If L contains
only useful hyperplanes then it is called a parsimonious set [Zhang, 1995].

Estimating the value function proceeds by using value iteration on belief
states chosen to be points in the belief simplex that have a unique maximuml l,
and that have not yet converged to their true value. These points, as found by
the Witness algorithm, are called witness points [Cassandra et al., 1994]. This
term is now often used to describe any belief state upon which it is useful to
perform a DP update. Such updates generate new vectors to be added to L. A
difficult task — and the way in which most exact POMDP algorithms differ —
is determining the witness points efficiently. This is often done by solving a set
of linear programs. Once a single round of value iteration has been performed
L is examined to remove useless vectors, creating a parsimonious set ready for
the next round.

10



The simplest exact method is Sondik/Monahan’s enumeration algorithm
[Monahan, 1982], which enumerates all hyperplanes in L and performs a DP
update on each one. This method results in a large number of new vectors. In
rough order of increasing sophistication other algorithms include the One-Pass
algorithm of Sondik [1971], the Linear Support algorithm of Cheng [1988], the
Witness algorithm of Cassandra et al. [1994], and the Incremental Pruning algo-
rithm of Zhang and Liu [1996]. Cassandra [1999] provides a non-mathematical
comparison of these algorithms.

6.1.3 Policy Representation

POMDP agents can be represented by a policy graph that is a directed and
possibly cyclic graph. Each node is labelled with a single action and transitions
out of each node are labelled with observations. All nodes map to a polyhedral
partition in the value function. Partitions are defined by the region where a
single hyperplane l ∈ L maximises J̄β(b) [Cassandra et al., 1994]. Transitions
between nodes in the policy graph are a deterministic function of the current
observation. Actions are a deterministic function of the current node. If the
optimal policy can be represented by a cyclic graph with a finite number of
nodes, then the POMDP is called finitely transient [Sondik, 1978].

A policy can be represented by µ(u|θ, h, y) in several ways. The parameters
θ could be used to store hyperplanes in L, in which case µ(u|θ, bt+1, yt) gives
probability 1 to the action associated with the hyperplane that maximises the
value at bt. If the policy is finitely transient it can be represented more com-
pactly by the policy graph. In this case the internal states G are equivalent to
the policy-graph nodes. The I-state (internal state) update ω(h|φ, g, y) uses y
to index the correct transition from node g to node h. The policy µ(u|θ, h) is
simply a lookup table that gives the optimal action for each node h. Thus, φ
represents policy-graph transitions, and θ maps policy-graph nodes to actions.

In many cases it is possible for large infinite-horizon POMDPs to be con-
trolled well by simple policy graphs. Consider the Load/Unload scenario [Peshkin
et al., 1999] shown in Figure 2(a). The optimal policy graph is shown in Fig-
ure 2(b). This policy graph suffices no matter how many intermediate locations
there are between the load and unload locations. As the number of intermediate
locations increases, the value function becomes more complex but the optimal
policy graph does not. This example partially motivates the idea (discussed in
Section 6.7) of searching in the space of policy graphs instead of learning value
functions.

6.1.4 Complexity of Exact Methods

There are two problems with exact methods that make them intractable for
problems with more than a few tens of states, observations, and actions. To
discuss the first we introduce the concept of state-variables. State variables
describe the state in terms of features that are true or false, which is an arguably
more intuitive description than enumerating states. Consider a system with v
boolean state variables. The number of POMDP states is |S| = 2v, thus |S|
grows exponentially with the number of state variables. For example, two state
variables might be “is it raining?” and “is the umbrella open?” requiring 4
states to encode.
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Since DP for POMDPs involves updating belief states, the complexity of
POMDP algorithms grows exponentially with the number of state variables.
This makes belief-state monitoring infeasible for large problems [Boyen and
Koller, 1998, Sallans, 2000].

The second problem is representing J̄t(b), the value function after t steps of
DP. Let Bt be the set of belief states reachable at time t. Recall that |Y| is the
number of possible observations. Assuming |B0| = 1, that is, a single known
initial belief state, then after t steps of a greedy policy we potentially have |Y|t

belief states in Bt. Thus, the problem of representing J̄β(b) grows exponentially
in the horizon length. Since the belief-state space is infinite for infinite horizons,
exact methods perform DP on the hyperplanes in L. This representation grows
exponentially in the observations since a single DP step in the worst case results
in |Lt+1| = |A||Lt|

|Y| [Cassandra, 1998]. Furthermore, evaluating if there exists
a belief state b for which an l ∈ Lt+1 is dominant requires solving expensive
linear programs.

Even for simplified finite-horizon POMDPs, the problem of finding the op-
timal policy is PSPACE-hard [Papadimitriou and Tsitsiklis, 1987]. Learning a
policy graph with a constrained number of nodes is NP-hard [Meuleau et al.,
1999a]. Infinite-horizon POMDPs can result in an infinite number of belief
states or hyperplanes l, resulting in the problem of determining convergence be-
ing undecidable [Madani et al., 1999]. Even worse, determining ε-convergence
is undecidable in polynomial time for finite-horizon POMDPs [Lusena et al.,
2001]. Despite this gloomy theoretical message, empirical results show that it
is possible to learn reasonable policies in reasonable time for POMDPs of ever
increasing complexity. We avoid the intractable computational complexity of
exact methods by abandoning the requirement that policies be optimal, while
retaining the requirement that agents should at least converge to a fixed policy.

6.2 Approximate Value Function Methods

This section introduces model-based methods that learn approximations to
J∗

β(i). For a more detailed survey of these methods see Hauskrecht [2000].

6.2.1 Heuristics for Exact Methods

A number of methods simplify the representation of J̄β(b) by assuming the
system is an MDP and learning the underlying Q-function Q(i, u). This must
be done via model-based methods or by computer simulation because the partial
observability of the real world does not allow i to be known during real-world
interaction.

One choice for the policy is [Nourbakhsh et al., 1995]

ū∗(b) = arg max
u

Q(arg max
j

b(j), u), µ(u|θ, b) = χu(ū∗(b)),

which assumes the agent is in the most likely state (MLS), known as the MLS
heuristic. This approach completely ignores the agent’s confusion about which
state it is in. The voting heuristic [Simmons and Koenig, 1995] weights the vote
for the best action in each state by the probability of being in that state

u∗(j) = arg max
a

Q(j, a), ū∗(b) = arg max
u

∑

j∈S

b(j)χu(u∗(j))Q(j, u∗(j)).
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The popular QMDP heuristic [Littman et al., 1995] takes into account the belief
state for one step and then assumes that the state is entirely known [Cassandra,
1998]

ū∗(b) = arg max
u

∑

j∈S

b(j)Q(j, u).

These heuristics will perform poorly if the belief state is close to uniform.
Due to the convexity of the value function, J̄β(b) generally grows as the entropy
of b decreases. The highest expected payoffs occur at the simplex corners. This
motivates choosing actions that decrease the entropy of the belief state in the
hope that the heuristics above will perform better with a peaked belief. For
example, consider a robot that must reach the other side of a featureless desert
[Roy and Thrun, 2001]. If it goes straight across it will quickly become lost
due to lack of landmarks and movement errors. The better policy is to skirt
the desert, taking longer but remaining certain of reaching the goal because the
robot is certain of its location. Cassandra [1998] shows how to use the entropy
of b to switch between information gathering policies and exploitive policies.
The entropy can also be used to weight two policies that trade off information
gathering and exploitation. These heuristics may be misleading if the minimum
of J̄β(b) does not occur at the point of greatest entropy, that is, the uniform
belief state.

An alternative family of heuristics are based on simplified versions of the full
DP update. For example, determining maximising vectors in L for each state,
rather than over all states, produces the fast informed bound of Hauskrecht
[1997]. The heuristics in this section are also useful as upper bounds on J∗

β ,
allowing them to direct tree search procedures used in classical planning ap-
proaches (see Section 6.4).

6.2.2 Grid Methods

Value functions over a continuous belief space can be approximated by values at
a finite set of points along with an interpolation rule. Once a set of grid points
has been chosen an equivalent MDP can be constructed where the states are
the grid points. This POMDP can be solved in polynomial time [Hauskrecht,
2000]. The idea is equivalent to constructing a policy graph where each node is
chosen heuristically to represent what might be an “interesting” region of belief
state space. The two significant issues are how to choose grid points and how
to perform interpolation.

Regular grids are an obvious choice but they fail to scale for large state
spaces [Lovejoy, 1991]. Methods for choosing irregular grids include the use
of simulation to determine useful grid points [Hauskrecht, 1997] and adding
points where large variations in values are detected for two local points that
have observations in common [Brafman, 1997].3

Interpolation schemes should maintain the convex nature of the value func-
tion and hence are typically of the form

J̄β(b) = arg max
u

∑

g∈G

λg,bf(g, u), (9)

3The mutual observations requirement is an interesting heuristic that may identify whether
belief states between the two existing points can be reached.
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Figure 5: Two-slice temporal Bayes network showing dependencies between
state variables over successive time steps. X and Z depend only on themselves
but Y is influenced by itself and X . This conditional dependence structure can
be exploited to efficiently model the transition probabilities of a POMDP.

where
∑

g∈G λg,b = 1 and λg,b ≥ 0 ∀g, b. The function f(g, u) represents the
value grid point g under action u. Examples include nearest neighbour, linear
interpolation, and kernel regression [Hauskrecht, 2000]. The MLS heuristic can
be thought of as a grid method with points at the belief-simplex corners and
a simple 1-nearest-neighbour interpolation (assuming an L∞ distance measure)
[Brafman, 1997].

Recently, ε-convergence was shown for a grid method by using ε-covers under
a specifically chosen distance metric [Bonet, 2002]. Within our knowledge it is
the only provably optimal grid based algorithm. It is still intractable because
the number of grid points required grows exponentially with the size of the state
space.

Alternatively, grid point value estimation steps can be interleaved with exact
hyperplane DP updates in order to speed up DP convergence without sacrificing
policy optimality [Zhang and Zhang, 2001].

In the context of grid methods the ω(bt+1|φ, bt, yt) process still performs a
deterministic update on the belief state, but now µ(u|θ, bt+1, yt) represents the
choice of action based on the interpolated value from (9). The θ parameters
store the values of actions at the grid points.

6.3 Factored Belief States

Using the state variable description of a POMDP (discussed in Section 6.1.4) is
sometimes referred to as belief factorisation, especially when the factorisation
is not exact. The value of a state variable Xt may depend (approximately) on a
small subset of the state variables at the previous time steps. Transition proba-
bilities can be represented by a two-slice temporal Bayes net (BN) that models
the dependencies between state variables over successive time steps as a 2 layer
acyclic graph [Dean and Kanazawa, 1989] (see Figure 5). Each node contains
a conditional probability table showing how its parents affect the probability of
the state variable being true.

Alternatively, the state variable dependencies can be represented by a tree
structure such as an algebraic decision diagrams (ADD) [Bahar et al., 1993].
BNs and ADDs are applied to POMDPs by Boutilier and Poole [1996] to sim-
plify both the belief monitoring problem and the value function representation
problem. We now describe how recent work has used belief factorisation to solve
each of these problems.
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6.3.1 Efficiently Monitoring Belief States

Boyen and Koller [1998] observed that representing belief states as BNs can
lead to an accumulation of errors over many time steps that result in the belief
state approximation diverging. The authors show that projections of the BN
that produce strictly independent groups of state variables results in converging
belief-states, allowing recovery from errors. These projections can be searched to
automatically determine BNs that perform well under a specified reward crite-
rion. Heuristic methods to determine factorisations were introduced by Poupart
and Boutilier [2000]. These were improved in Poupart and Boutilier [2001] which
presents a vector-space analysis of belief-state approximation, providing a for-
mally motivated search procedure for determining belief-state projections with
bounded errors. This expensive off-line calculation speeds up on-line belief state
tracking.

An alternative method of searching for the optimal belief factorisation is
to learn a dynamic sigmoid belief network [Sallans, 2000]. Stochastic gradient
ascent is performed in the space of BNs with a fixed number of dependencies,
minimising the error between the belief state and the approximation. This
algorithm has been applied to the large New York driving problem of McCallum
[1996]. Unlike the algorithms considered so far, which apply a fixed I-state
update through ω(h|φ, g, y), this algorithm can be viewed as learning ω(h|φ, g, y)
by adjusting the belief network parameterised by φ.

6.3.2 Factored Value Functions

So far we have discussed piecewise linear value functions represented by sets of
hyperplanes L. Koller and Parr [2000] note that even if compact BN representa-
tions of the transition model are found, they may not induce a similar structure
on the value function. The same paper discusses factored value functions im-
plemented as weighted linear combinations of polynomial basis functions. The
weights are chosen to minimise the squared error from the true value. In our
model of agents the weights would be represented by θ.

This idea is combined with BNs for belief monitoring by Guestrin et al.
[2001]. With approximate belief monitoring and factored linear value functions,
DP methods become more feasible since learning reduces to solving systems of
linear equations instead of a linear program for every vector in L. The empirical
advantages of factored value functions are studied in [Hansen and Feng, 2000]
which uses algebraic decision diagrams to represent J̄β(b).

6.4 Classical Planning

The link between classical planning algorithms such as C-Buridan [Draper et al.,
1994] and POMDP algorithms is summarised by Blythe [1999]. One planning
approach is to search the tree of possible future histories ȳ to find the root action
with the highest expected payoff. Branch and bound approaches such as the
AO∗ algorithm [Nilsson, 1980, §3.2] can be used, searching the tree to a finite
depth and pruning the search by eliminating branches that have upper bounds
below the best current lower bound. At the leaves the upper and lower bounds
can be estimated using QMDP and the value-minimising-action respectively
[Washington, 1997].
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This idea is applied to factored finite-horizon POMDPs by McAllester and
Singh [1999]. While avoiding the piecewise linear value function, the algorithm
is still exponential in the horizon due to the tree search procedure. Furthermore,
since there is no concise policy representation the exponential complexity step
is performed during normal policy execution instead of only during a learning
phase. In this case ω(bt+1|φ, bt, yt) is responsible for deterministically tracking
the factored belief state, and µ(u|θ, b) is responsible for performing the tree
search in order to find the best u. The parameters θ are not learnt, but φ could
be learnt to optimise factored belief state tracking, as in Section 6.3.1.

6.5 Simulation and Belief States

The full DP update of Equation (8) is inefficient because all states are assumed
equally important. Simulation algorithms learn value functions from real expe-
rience, concentrating learning effort on the states most likely to be encountered.
This idea can be applied to learning Q-functions for finite-horizon POMDPs
by simulating a path through the POMDP while monitoring the current belief
state and performing an iteration of (8) for the current point in belief state space
instead of the associated l ∈ L [Geffner and Bonet, 1998]. This algorithm, called
RTDP-Bel, does not address the problem of representing Q(b, u) for many belief
states over large horizons. However, it has been applied to solving finite-horizon
POMDPs with hundreds of states and long-term memory.

Usually we need to learn Q-functions that generalise to all b. A simple
approach is Linear-Q which defines Q(b, u) = φu · b [Littman et al., 1995].
This method is equivalent to training a linear controller using stochastic gra-
dient ascent with training patterns given by inputs bt and target outputs r +
β maxu Q(bt+1, u). The SPOVA algorithm [Parr and Russell, 1995] is essen-
tially the same scheme, using simulation to generate gradients for updating the
smooth approximate function

J̄β(b) =

[∑

l∈L

(b · l)k

] 1

k

,

where k is a tunable smoothing parameter and the number of hyperplanes |L|
is fixed. Artificial neural networks (ANNs) can also be used to approximate
value functions with either the full belief state or a factored representation used
as the input [Rodŕıguez et al., 2000]. Both Linear-Q and SPOVA learn the θ
parameters but not φ.

6.6 Continuous State and Action Spaces

Thrun [2000] extends value iteration for belief states into continuous state spaces
and action spaces. Since infinite memory would be needed to exactly represent
belief states, Thrun uses a sampled representation of belief states. The algo-
rithm balances accuracy with running time by altering the number of samples
n used to track the belief state. The belief state is updated using a particle
filter [Fearnhead, 1998] that converges to the true belief state as n → ∞, for
arbitrary continuous distributions q(j|i, u) and ν(y|i). Approximate continuous
belief states are formed from the samples using Gaussian kernels. The hyper-
plane value-function representation cannot be used because the belief state is
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a continuous distribution, equivalent to infinitely many belief state dimensions.
Even function approximators like neural networks cannot trivially contend with
continuous belief states. Instead, the value function is approximated using a
nearest neighbour method where the output value is the average of the k near-
est neighbours (KNN) of previously evaluated infinite-dimension belief states.

Particle filters can also be used to monitor the belief state during policy
execution. Poupart et al. [2001] analyses the value loss incurred by using par-
ticle filters once a value function has already been learnt. The paper uses this
analysis to develop an adaptive scheme for choosing n based on the probability
of choosing an approximately optimal action. These methods may also help in
finite domains with many states.

6.7 Policy Search

The approaches we have discussed so far have learnt values for each state and
action. Values can be explicitly encoded in θ or used to manufacture a more
compact policy graph. This section introduces methods that learn policies di-
rectly, sometimes avoiding value estimation at all. For example, we can attempt
to learn a set of parameters θ that directly encodes a policy graph.

There are several reasons to prefer policy search methods to value function
methods, particularly in the presence of partial observability. Informally, Oc-
cam’s Razor can be invoked in favour of policy search methods by noting that it
is intuitively simpler to determine how to act instead of the value of acting. For
example, Section 6.1.3 demonstrated that a 2 node policy graph can optimally
control an arbitrarily large POMDP. The value function representation would
require storing or approximating a value for each state.

More formally, approximate value function methods can perform poorly in
POMDP settings because they usually find deterministic policies (by application
of the max function in Equation (8)). Approximate POMDP methods gener-
ally require stochastic policies [Singh et al., 1994]. Value methods in function
approximation settings also lack convergence guarantees because small changes
to state values can cause discontinuous changes to the policy [Bertsekas and
Tsitsiklis, 1996].

However, policy search is still difficult. Even for restricted classes of policies,
the search is NP-hard [Meuleau et al., 1999a]. Value function methods have
the advantage of imposing the useful Bellman constraint. Consequently, value
functions are likely to remain useful for small to medium size problems.

Policy search can be implemented using policy iteration [Bertsekas and Tsit-
siklis, 1996, §2.2.3]. The first step is to evaluate the current policy and the
second step is policy improvement. Sondik [1978] described how policy eval-
uation could be performed by representing the policy as a set of polyhedral
partitions in belief space. Instead, Hansen [1998] uses the policy-graph repre-
sentation, greatly simplifying the task of evaluating the policy. Evaluating the
policy is performed by solving a set of linear equations that gives the hyperplane
representation of the value function J̄β(b). Policy improvement works by adding
or merging policy graph nodes based on how the set of vectors in L changes af-
ter a single hyperplane update on the evaluated policy. Hansen also describes a
branch and bound tree search procedure that can be used to approximate the
DP step, achieving an order of magnitude speed-up.
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The nodes of a policy graph can be interpreted as states of an internal MDP
that is observable by the agent. The process defined by the cross product of
world states with policy-graph states is Markov [Hansen, 1998]. The value of
the cross product MDP can be computed using value iteration. Meuleau et al.
[1999a] finds optimal policy graphs within a constrained space using a branch
and bound search method, computing the value of complete policies at the leaves
only when needed.

The same paper also shows how gradient ascent can be used to search the
space of stochastic policy graphs, which we refer to as finite state controllers
(FSCs). FSCs are described in detail in Section 7.2.5. Given a model, the
gradient of the discounted sum of rewards can be computed directly, requiring
large matrix inversions. This is the first algorithm discussed so far that does
not evaluate values explicitly. Because it does this with gradient ascent it is
our first example of a policy-gradient method. It is also our first example of a
stochastic internal-state function.

The simulation methods of Section 6.5 can be used to generate policies in-
stead of value functions. For example, if the belief state is tracked during
simulation and used as an input to a neural network, then network outputs can
be mapped to a distribution over actions.

6.8 Hybrid Value-Policy Methods

MDP Value methods may fail to converge for POMDPs or when using func-
tion approximation in the MDP setting. In contrast, policy-gradient methods
converge to a local maximum under mild conditions. However, policy-gradient
methods exhibit high variance [Marbach and Tsitsiklis, 2000]. One reason for
high variance is that they ignore the Bellman equation which is a useful con-
straint for agents [Peshkin et al., 1999, Baird and Moore, 1999]. In an attempt
to combine the low variance of value based methods with the convergence to
local maximum guarantees of policy-gradient methods, Baird and Moore [1999]
introduced VAPS. This algorithm specifies a parameter ρ ∈ [0, 1] that gives a
pure Q-learning algorithm when ρ = 0 — satisfying the Bellman equation — and
a pure policy search algorithm when ρ = 1 — locally maximising the long-term
reward using the Williams’ REINFORCE algorithm [Williams, 1992] described
in Section 7.3. Intermediate values of ρ invoke an hybrid algorithm that is
guaranteed to converge even for POMDPs.

However, it is not clear how to choose ρ given a POMDP, and because VAPS
is not a pure gradient ascent it may not converge to a locally optimal policy
when ρ < 1 [Sutton et al., 2000]. An alternative introduced by Sutton et al.
[2000], which does converge to a locally optimal policy, incorporates a learnt
Q-function directly into the gradient estimation of ∇J̄β or ∇η. In this case
the Q-function works like a critic aiding the actor to learn a policy [Konda and
Tsitsiklis, 2000].

Both Williams’ REINFORCE and VAPS were developed in the context of
solving MDPs using function approximation. They can be extended to POMDPs
either by assuming that observations map directly to world states — implying
the assumption that a reactive policy is sufficient — and learning the policy
µ(u|θ, y), or by using the model and ω(bt+1|φ, bt, yt) to track belief states that
are fed to the hybrid policy represented by µ(ut|θ, bt+1).
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Coarse grained value estimates can be used as a seed for fine grained policy-
search methods, avoiding the disadvantages of the curse of dimensionality for
DP and the high variance of policy-search in the early stages. This approach is
demonstrated on a real robot using a continuous time model by Roy and Thrun
[2001].

Konda and Tsitsiklis [2000] present hybrid algorithms as actor-critic algo-
rithms. The actor uses a policy-gradient approach to learn a policy as a func-
tion of a low-dimension projection of the exact value function. The projection
of the value function is learnt by the critic. Convergence is shown for arbitrary
state/action spaces with linear critics. The paper shows that the value function
projection that should be used by the critic is determined by the how the actor
is parameterised.

7 Learning Without a Model

From this point on we do not assume knowledge of the underlying MDP dynam-
ics q(j|i, u), the observation probabilities ν(y|i), or the rewards r(i). To learn
good policies the agent interacts with the world, comparing observation/action
trajectories under different policies. With enough samples, rewards can be cor-
related with actions and the probability of choosing good actions increased.
Section 5 briefly described Q-learning which is one example of a model-free al-
gorithm for MDPs. It is also a starting point for model-free POMDPs.

7.1 Ignoring Hidden State

We can modify MDP Q-learning to learn the value of observations instead of
states, that is, Q(y, u) instead of Q(i, u). This is equivalent to learning values
over distributions of states instead of single states [Singh et al., 1994]. Such
reactive policies generally need to be stochastic. If the agent is uncertain about
the state then it may be optimal to choose actions stochastically. Examples can
be constructed for which a stochastic reactive policy is arbitrarily better than the
optimal deterministic reactive policy [Williams and Singh, 1999]. This method
is used with stochastic-policy iteration by Jaakkola et al. [1995], converging to
a local maximum when Q(y, u) is parameterised by a table. A similar result is
shown [Singh et al., 1994] that also has convergence results for a modified TD(0)
MDP algorithm [Sutton and Barto, 1998].

In this memory-less setting |G| = 1 making ω(h|φ, g, y) trivial. Consequently,
the policy reduces to µ(u|θ, y).

7.2 Incorporating Memory

When the POMDP model is not available agents cannot track the belief state.
The alternative to reactive policies is to use memory of the past observations
and actions to resolve the hidden world state. This section describes several
mechanisms for adding memory to agents.

7.2.1 HMM Based Methods

Solving POMDPs can be re-cast as the problem of determining the hidden state
of the world and then applying MDP methods. A natural approach is to use

19



hidden Markov models which have been successfully applied to many other
hidden state estimation problems [Poritz, 1988]. This approach was taken by
Chrisman [1992] where HMMs are used to predict observations based on the
observation/action history ȳ. A nice feature of this algorithm is the ability
to grow the number of states in the HMM until performance stops improving.
HMMs for predicting observations were also studied by McCallum [1996].

A problem with this approach is that the hidden state revealed by modelling
observations is not guaranteed to reveal the state necessary to maximise the re-
ward. One alternative studied in Aberdeen [2003] uses HMMs to model rewards.
Also, gradient ascent of HMMs can be used to model action generation [Shelton,
2001a,b]. All of the HMM methods discussed in this section use a generalisation
of HMMs introduced by Bengio and Frasconi [1995] called Input/Output HMMs
(IOHMMs). The state transitions of IOHMMs can be driven by a signal other
than the one being modeled.

In these models B is the set of reachable belief states over HMM states.
This internal-state belief is equivalent to the forward probability over states
used during Baum-Welch training of HMMs [Rabiner and Juang, 1986]. The
probability of occupying each HMM state is updated using ω(h|φ, g, y) given
current assumed internal belief g and input observation y (or the previous action
if observations are being modeled).

The policy µ(u|θ, h, y) maps the belief state over HMM states to actions. For
example, if the HMM is trained to emit actions then µ(u|θ, h, y) represents the
emission probabilities of HMM-state h [Shelton, 2001a]. In this case φ parame-
terises HMM transition probabilities and θ parameterises emission densities for
predicted observations or generated actions. The internal-state belief update
is deterministic, but the policy is stochastic. Alternatively, µ(u|θ, h, y) can be
learnt by DP, estimating values of internal-state beliefs. This is the approach
used by Chrisman [1992] where the QMDP heuristic is used to assign values to
internal-state beliefs.

7.2.2 Finite History Methods

Finite history methods produce policies that are functions of a finite window of
past observations/actions. They have existed in the context of POMDPs at least
since Brown [1972]. Window-Q uses an artificial neural network (ANN) to learn
Q-values where the ANN inputs are the last n observations and actions [Lin and
Mitchell, 1992]. Time-delay neural networks incorporate n steps of history into
each node of the neural network [Lin, 1994]. In either case ω(h|φ, g, y) determin-
istically records a finite window of ȳ, and µ(u|θ, ȳ) uses an ANN parameterised
by θ to assign probability 1 to the action that maximises the value.

Adaptive history methods grow or shrink the number of past events that are
needed to reveal the hidden state. Probabilistic Suffix Automata [Ron et al.,
1994] model partially observable Markov decision processes using a tree. The
history defines a path through the tree starting at the root. The root corre-
sponds to the earliest history element. The leaf can be used to predict the next
symbol, or it can be labelled with the optimal next action given the history. Mc-
Callum [1996] uses the latter approach in the UTREE algorithm (see Figure 6) to
control large POMDPs such as the New York Driving problem. A statistical test
is applied to leaf nodes to determine if the long-term reward can be improved
by growing the tree, automatically determining the amount of memory needed.
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Figure 6: A history tree learnt by UTREE for some POMDP with Y = {A, B}
and U = {l, r}. Leaves are labelled with optimal actions and a sample path is
shown for the history {(A,r)(B,l)(A,·)} choosing action r. The most recent
observation gives the first branch to take from the root of the tree.

Observation branches can be selected by a subset of the observation vector,
filtering out useless distinctions between observations. Tree methods have not
been extended to continuous observation/action spaces within our knowledge.
Here µ(u|θ, ȳ) applies the UTREE algorithm, where the tree is represented by θ.
The length of history recorded is given by the maximum depth of the tree.

A similar algorithm to UTREE was described by Dutech [2000], with an
enhancement for cases when a deterministic POMDP model is known. The
enhancement grows the UTREE when an examination of the POMDP model
determines that a path down the tree still results in an ambiguous world-state,
and therefore a possibly ambiguous action.

Deterministically assigning actions to history tree leaves can lead to large
trees and over-fitting in noisy worlds. Suematsu and Hayashi [1999] uses Bayesian
inference to construct future reward and observation models as a function of a
learnt history tree, providing a smoother model than UTREE. The policy can be
constructed by performing DP on the history tree model, similar to performing
DP on HMMs.

7.2.3 RNN Based Methods

Recurrent neural networks (RNNs) augment the output of an ANN with con-
tinuous state outputs that are fed back into a previous layer of the network
(see Figure 7). The network has a continuous internal-state space allowing a
POMDP to be controlled by presenting observations as inputs and interpreting
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Figure 7: A simple recurrent neural network for learning Q-values.

outputs as action distributions (Recurrent-model [Lin and Mitchell, 1992]), Q-
values (Recurrent-Q [Lin and Mitchell, 1992]), or by learning a second function
mapping the internal state and future input predictions to actions [Schmidhu-
ber, 1991].

The agents in this section learn both φ: the recurrent state model, and θ:
the Q-value or action outputs. Here G is the set of vectors in R

n that are the
n RNN outputs fed back to the previous layer. The internal-state update is
deterministic and the actions may be chosen deterministically or stochastically.

One RNN training algorithm is back-propagation through time (BPTT)
[Rumelhart et al., 1986, §8] that unfolds the network over T steps then uses
the standard error back propagation algorithm for ANNs. This means that
the network can only be explicitly trained to have a T step memory. How-
ever, during operation the internal state may carry relevant information for
more than T steps. Real-time recurrent learning (RTRL) [Williams and Zipser,
1989] overcomes this problem by efficiently propagating errors back to time 0.
These algorithms have been applied to speech recognition [Bourlard and Mor-
gan, 1994].

Unfortunately BPTT and RTRL have difficulty learning long-term memory
because the back propagated error signals tend to blow up or vanish depending
on the feedback weights. Learning long term memory appears to be a prob-
lem for all model-free POMDP algorithms. History compression [Schmidhuber,
1992] uses an RNN to filter out short term information by attempting to pre-
dict its own next input as well as learning actions. When the RNN prediction
fails the input is passed to a higher level RNN that concentrates on modelling
long-term features of the input.

Alternatively, long short-term memory (LSTM) introduces complex neurons
that learn to turn on or off their memory inputs and outputs. Another feature
of LSTM is that the back-propagated error signal does not explode or vanish
[Hochreiter and Schmidhuber, 1997]. LSTM has been applied to navigation
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POMDPs constructed to require up to 70 steps of memory [Bakker, 2001]. The
LSTM network learns Q-values and uses the interesting idea of adapting the
Q-learning exploration probability by training a non-recurrent ANN to predict
the variance of the Q-values.

7.2.4 Evolutionary Methods

Evolutionary methods create populations of agents and use combination and
mutation rules to generate new populations. The long-term average reward is
the natural fitness measure of an agent. Methods include rule based agents
[Kwee et al., 2001], lookup-table agents [Moriarty et al., 1999], and probabilis-
tic program agents [Sa lustowicz and Schmidhuber, 1997]. The last two both
have the advantage of allowing stochastic agents. There is a strong connection
between reactive Q-learning and some evolutionary classifier algorithms [Lanzi,
1997].

Evolutionary algorithms can resolve partial observability by adding memory
registers that the agent can learn to set. One successful example is a POMDP
algorithm that evolves stochastic RNNs to control large POMDPs such as the
New York driving scenario [Glickman and Sycara, 2001]. The hidden units of
the RNN each choose an output of 1 or 0 from a distribution controlled by the
squashed sum of the weighted inputs. A single output unit causes one of 3
actions to be chosen depending on which of 3 ranges the output value falls in.
In this case φ represents the weights of the hidden units, and θ represents the
weights of the output unit.

7.2.5 Finite State Controllers

The idea behind finite state controllers (FSCs) is that past events which are rel-
evant to choosing optimal actions can be remembered indefinitely by a directed
cyclic graph of internal states. Each node of the FSC is an I-state from G. This
model uses φ to parameterise probabilities of I-state transitions based on the
current I-state and observation. The next state is chosen stochastically from the
distribution ω(·|φ, g, y). Similarly, θ parameterises learnt action probabilities for
each I-state, so that u is chosen stochastically from µ(·|θ, h, y).

The agent learns to use the I-states to remember only what is needed in order
to act optimally. This process can be viewed as an automatic quantisation of
the belief state space to provide the optimal policy representable by |G| I-states.
As |G| → ∞ we can represent the optimal policy arbitrarily accurately [Bonet,
2002].

Another way to view this process is as direct learning of a stochastic policy
graph [Meuleau et al., 1999b]. Recall from Section 6.1.3 that the nodes of a
policy graph are synonymous with the I-states of an FSC. However, exact algo-
rithms compute policy graphs with deterministic I-state transitions equivalent
to a deterministic ω(h|φ, g, y) function. Furthermore, they permit only one ac-
tion per node. We allow stochastic I-state transitions and the policy µ(u|θ, h, y)
allows a different action distribution for each I-state and each observation. This
means we can compute optimal policies with far fewer I-states than the equiv-
alent policy graph.

A third way to view the process is as a grid method (recall Section 6.2.2)
where the number of points is fixed, but the location of the points can move

23



forward

check
compass

turn
right

turn
left

NorthWest

Lost

LostLost

East/
South

(a)

forward

check
compass

turn
left

North

Lost

West
South/
East/

Lost

(b)

check
compass

Lost

East/
South/
West

North/

Lost

forward
turn left

(c)

Figure 8: Figure 8(a) shows the optimal policy graph fragment for a lost agent
that must move north. If the number of I-states is reduced to 3 (8(b)) then
the policy is still deterministic but degraded because it may turn left 3 times
instead of right once. In Figure 8(c) the agent cannot determine if it is facing
north when it is in the upper I-state, thus must sometimes move forward and
sometimes turn.

around to best cover the interesting regions of belief state space.
Though it is a small comfort, training an agent from the class of algorithms

based on restricted FSCs has NP-hard complexity instead of the PSPACE-hard
complexity of exact algorithms [Meuleau et al., 1999a].

The FSC framework encompasses other algorithms that differ by how they
learn ω(h|φ, g, y). For example, Peshkin et al. [1999] and Peshkin [2000], where
the action space of SARSA or VAPS is augmented with external-memory-setting
actions. Also, the algorithms of Sections 7.2.1–7.2.4 can be cast as FSC methods.
FSCs can also be learnt by depth first search in constrained spaces of FSC
[Meuleau et al., 1999b].

Section 7.1 discusses the necessity of stochastic policies for POMDPs in the
absence of memory. Stochasticity is also needed when |G| is too small. When
there is insufficient memory to resolve the uncertainty about the current state
there is insufficient information for determining which action is best. Consider
Figure 8, showing a fragment of an FSC in which a lost agent uses a compass
to face north before moving on. As the number of I-states is reduced the policy
degrades until for |G| = 2 the agent cannot decide between moving forward
or turning, which is a stochastic policy. Only finitely transient POMDPs (see
Section 6.1.3) have optimal deterministic FSCs, that is, an optimal policy that
can be represented by a policy graph.

Finite state controllers have been proposed as a useful method for fully
observable MDPs with very large state spaces where the optimal reactive policy
is too hard to represent. Kim et al. [2000] uses VAPS to perform policy-search in
the space of FSCs where the state is fully observable but factored as described
in Section 6.3.

Finite state controllers exhibit difficulties when learning non-trivial I-state
functions such as those requiring long-term memory. When all I-state trajecto-
ries are nearly equally likely to occur for any world-state trajectory, there can
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be little correlation between a particular I-state trajectory and a high reward,
hence no single I-state trajectory is reinforced. This explanation for difficul-
ties with long term memory was proposed for value function methods by Lanzi
[2000] and termed aliasing on the payoffs. This problem was further analysed
by Aberdeen [2003] where sufficient conditions for failure of FSC policy-gradient
methods are established.

7.3 Policy-Gradient Methods

This section introduces policy-gradient methods for model-free agent training.
Policy gradient methods compute (or estimate) the gradient of η(φ, θ) (1) with
respect to the parameters of the agent φ and θ. This allows η to be maximised
by some form of gradient ascent procedure. In Section 6.7 we discussed some
advantages of using policy-gradient methods instead of value-function meth-
ods. Another advantage is that gradient ascent is a local optimisation method.
This means means we can avoid the computation complexity of exact POMDP
methods. However, the trade-off is that we cannot guarantee convergence to
the global maximum of η(φ, θ). Consideration must also be given to the con-
ditions under which the gradient is well defined, which generally requires the
world-state Markov process to be ergodic, and the processes ω(h|φ, g, y) and
µ(u|θ, h, y) to be differentiable.

It is easy to add domain knowledge to agents in the policy-gradient setting.
Hard-wired rules can modify the distributions ω(h|φ, g, y) and µ(u|θ, h, y) addi-
tively, hence having no impact on the gradient computation. Domain knowledge
can also be used to shape the rewards [Laud and DeJong, 2002], or to factor the
observations.

Early algorithms that estimated gradients of performance measures using
Monte-Carlo like methods include the likelihood-ratio method [Aleksandrov et al.,
1968, Rubinstein, 1969]. Extensions of the likelihood-ratio method to regenera-
tive processes (including Markov Decision Processes) were given by Glynn [1986,
1990], Glynn and L’Ecuyer [1995], Reiman and Weiss [1986], and Reiman and
Weiss [1989]; and independently for finite-horizon MDPs by Williams [1992].
Glynn showed that the gradient could be estimated by sampling a trajectory
through the state space for a T step episode of a finite-horizon MDP. The esti-
mated gradient extended to the POMDP setting is given by

∇̂η =

(
T∑

t=1

rt

)
T∑

t=1

∇µ(ut|θ, yt)

µ(ut|θ, yt)
, (10)

where the gradient is with respect to the policy parameters θ. This is a memory-
less agent which assumes that yt reveals sufficient world-state to act well. This

scheme requires ∇µ(ut|θ,yt)
µ(ut |θ,yt)

be well behaved. This is the case if µ(ut|θ, yt) is

parameterised so that ∇µ(ut|θ, yt) and µ(ut|θ, yt) go to zero at the same rate.
One such choice of µ(ut|θ, yt) is the soft-max function. Once the gradient has
been estimated a stochastic gradient ascent algorithm can be used to maximise
η. Equation (10) does not take into account the causality of rewards, that
is, rewards gathered before time t can contribute to the gradient induced by
actions after time t. A simple fix to this is implemented by Meuleau et al.
[2001], replacing the sum of rewards with the sum of rewards up to time t.
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Williams’ REINFORCE is unbiased. It converges to the true gradient over
many episodes. Williams’ REINFORCE only works for episodic tasks because
the algorithm awards equal credit for the reward up to time t to each action.
If we attempted to use Williams’ REINFORCE on an infinite-horizon POMDP,
using a single infinitely-long sample trajectory through state space, we cannot
assign credit to specific actions because there are infinitely many of them. In
order to apply Williams’ REINFORCE to POMDPs it is necessary to be able
to identify when the system enters a recurrent state, indicating the end of an
episode and bounding the implications of actions on the long-term reward. This
is non-trivial when the true state is masked by the observation process ν(y|i).

If the agent cannot observe visits to recurrent states, or if visits occur infre-
quently, we resort to biased estimates of the gradient. A number of researchers
introduced discounted eligibility traces [Marbach and Tsitsiklis, 2000, Kimura
et al., 1997] to bound the implications of actions, but the discount factor in-
troduces a bias. The eligibility trace acts as memory, telling the agent what
proportion of the current reward each previous action should be credited with.

The similar approach of Baxter and Bartlett [2001] is to derive, from scratch,
an algorithm that directly approximates ∇η for infinite-horizon POMDPs. This
derivation also introduces a discounted eligibility trace with discount factor
β ∈ [0, 1), showing that in the limit as β → 1 the approximated gradient
converges to ∇η. The algorithm is summarised by the following expression
that can be unrolled to form the core of the GPOMDP algorithm [Baxter and
Bartlett, 2000, Barlett and Baxter, 2000, Baxter and Bartlett, 2001]

∇̂η = lim
T→∞

1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ(ut|θ, yt)

T∑

s=t+1

βs−t−1rs.

The left hand side is the approximation of the true gradient. As β → 1 the
approximation becomes perfect, but the variance goes to ∞. When β < 1
we make the assumption that the effect of actions on the reward decays ex-
ponentially with time, allowing the temporal credit assignment problem to be
solved. Other methods of bounding the period in which rewards can be linked to
actions are valid but the exponential decay model is easy to analyse and imple-
ment.4 Baxter et al. [2001] shows that the variance of the estimate scales with
1/ [T (1− β)], which reflects the fact that as the credit for rewards is spread
over a longer time, the temporal credit assignment problem becomes harder,
until the case of β = 1 gives us no discounting and the variance is infinite. The
GPOMDP algorithm was proved to extend to the setting of infinite state and
action spaces. An example of a continuous action space is given by Kimura and
Kobayashi [1998]. Convergence rates for GPOMDP in terms of the POMDP mix-
ing time have also been established [Bartlett et al., 2000, Bartlett and Baxter,
2002].

Williams’ REINFORCE has been used as a policy-gradient algorithm for
learning FSCs [Peshkin, 2000] but in its basic form is restricted to POMDPs for
which a recurrent state can be identified. Aberdeen [2003] extends FSC learning
to the infinite-horizon case, based on the GPOMDP algorithm.

4This is true of a broad class of reinforcement learning algorithms that use discount factors.
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8 Further Issues

This section presents useful ideas for improving most POMDPs methods.

8.1 Variance Reduction for POMDP Methods

Monte-Carlo algorithms for POMDPs have high-variance, policy-gradient meth-
ods in particular. This section describes established methods for reducing the
variance.

8.1.1 Importance Sampling

Importance Sampling (IS) is a method for improving estimates of functions of
arbitrary distributions that are known only up to a normalising constant. The
idea is to sample from an appropriately selected known distribution. Samples
are weighted by the ratio of the probability under their true distribution to their
probability under the sampling distribution. The sampling distribution should
be our best guess of the true distribution. This means the weights reflect the
relative importance of each sample of the unknown distribution. Variance reduc-
tion occurs when more weight is given to the areas of the sampling distribution
where the bulk of the unknown distribution’s probability mass is concentrated.

The application of IS to Monte-Carlo methods is discussed by Glynn [1996]
and applied to Williams’ REINFORCE and VAPS by Meuleau et al. [2000]. IS
can be used to implement off-policy policy-gradient methods [Peshkin and Shel-
ton, 2002], reducing the number of world interactions required as described in
Section 5. These methods permit computation of bounds on the probability of
finding an ε-approximation of the true value using a finite number of samples
from the world [Peshkin and Shelton, 2002, Peshkin, 2002]. IS and Williams’
REINFORCE have been used in conjunction with learning finite state controllers
(Section 7.2.5) as well as reactive policies [Shelton, 2001c,b].

IS has also been extended to monitoring belief states with transitions mod-
eled by BNs, directly minimising the variance of the belief state estimates,
combining the ideas of Sections 6.3.1 and 6.6 [Ortiz and Kaelbling, 2000].

8.1.2 Reward Baselines

Marbach and Tsitsiklis [1999] use rt − η as a performance indicator at each
time step instead of just the long-term reward η. The difference between rt

and the reward baseline η indicates whether the reward was above or below
average. Intuitively, this indicates whether positive or negative reinforcement
is required, providing variance reducing information. Weaver and Tao [2001]
proved that η is the optimal baseline for policy-gradient algorithms. Greensmith
et al. [2002] show that the widely used Jβ baseline is sub-optimal. That paper
also analyses the use of general additive control variates, such as actor-critic
methods, to reduce variance. These ideas are similar to the actor-critic style
estimates proposed by Sutton et al. [2000] and Konda and Tsitsiklis [2000].

8.1.3 Fixed Random Number Generators

A source of variance in value-function or policy-gradient estimates arises from
uncertainty in the transitions, that is, it is possible to execute T policy steps
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starting from the same start state and obtain different average rewards. Ng and
Jordan [2000] extend the work of Kearns et al. [1999], developing the PEGASUS
algorithm that is applicable to POMDPs simulated with a controlled source of
randomness. It transforms arbitrary POMDPs into POMDPs with deterministic
transitions by augmenting the state space with a record of the random numbers
that will be used to generate the state and observation trajectories. Long-term
rewards are then estimated starting from m initial states drawn at random.
The m needed to obtain ε-convergence of the value-function scales polynomially
with the discount factor and the complexity of the policy space, but not with
the number of states in the POMDP. In practice this method can be applied by
re-seeding the simulator’s random number generator to a fixed value before each
episode. PEGASUS is similar to paired statistical tests for policy evaluation and
is compared to them under various optimisation methods by Strens and Moore
[2001].

We apply the method to our Monte-Carlo policy-gradient algorithms, reduc-
ing the variance in gradient estimates. The variance reduction is not free since
the method can introduce false local maxima [Aberdeen, 2003].

8.2 Multi-Agent Problems

Most algorithms discussed in this paper can be extended to multiple agents. The
idea is to alter the set of actions U such that it contains the cross product of all
the actions available to each agent, that is, for n agents, U = {U1×U2×· · ·×Un}.
If the agent parameters are independent, then each agent independently chooses
actions that are combined to form the meta-action. For stochastic policies, the
overall action distribution is just the joint distribution of actions for each agent,
µ(u1, u2, . . . |θ1, θ2, . . . , h1, h2, . . . , y1, y2, . . . ).

Examples of multi-agent learning in the policy-gradient setting include train-
ing independent neurons in the brain [Barlett and Baxter, 1999] and training
multiple network routers for maximum throughput [Tao et al., 2001]. Dutech
et al. [2001] uses an on-line version of the GPOMDP algorithm to incremen-
tally train more and more agents, in larger and larger worlds. By using value
functions, multiple automated guided vehicles have been trained to operate in
a factory [Makar et al., 2001].

8.3 Hierarchical POMDPs

The MAXQ algorithm extends Q-learning into tasks which have been broken
down into a hierarchy of sub-tasks [Dietterich, 2000]. To achieve the full benefit
of the hierarchy we also require methods to abstract states at each level so
that Q-learning only proceeds on the variables relevant to that task [Dietterich,
2000]. MAXQ assumes the world is observable. In the POMDP case we can
optimistically train a hierarchy of reactive policies [Wiering and Schmidhuber,
1997] or use a hierarchy of HMMs performing MAXQ on the induced state
space [Theocharous et al., 2000]. Since HMMs return distributions over states a
heuristic such as MLS (Section 6.2.1) is used. An alternative to HMMs is to use
a hierarchy of the finite history models (Section 7.2.2), known as hierarchical
suffix memory [Hernandez-Gardio and Mahadevan, 2001].

The more high-level the state model is, the more long-term the memory is
at that level; which is similar to the idea of history compression (Section 7.2.3).
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Useful hierarchies can be automatically determined by forming maps of POMDP
states and aggregating “close” states into high level abstract states [Engel and
Mannor, 2001b,a].

An hierarchy can also be useful to reason about actions at different time
scales [Precup, 2000]. Ghavamzadeh and Mahadevan [2001] and Makar et al.
[2001] extend MAXQ to continuous time and demonstrate the algorithm in a
multi-agent automated guided vehicle setting.

9 Summary

Table 1 summarises the model-based algorithms described in this paper. Table 2
correspondingly summarises the model-free algorithms. Particular attention
is paid to comparing the how the ω(h|φ, g, y) and µ(u|θ, h, y) processes are
parameterised for each algorithm.

10 Conclusion

POMDPs offer the most general learning framework of which the authors are
aware. Any causal day to day problem can be modelled as a POMDP. Finding
useful algorithms, in the sense of learning reasonable policies in a timely fashion,
is a tremendous and interesting challenge.

This survey has covered a small fraction of the papers in the field however
the attempt was made to touch on all existing approaches to solving POMDPs.
Murphy [2000] is another useful POMDP survey.
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Table 1: A summary of the model-based algorithms described in this paper.
The ω column contains d if the internal state update is deterministic and s if
the update is stochastic. Similarly, the µ column indicates if the choice of action
is deterministic of stochastic. Uppercase D indicates that the function is fixed
instead of learnt. The last column describes how φ parameterises ω(h|φ, g, y)
and θ parameterises µ(u|θ, h, y).

Method ω µ
φ parameters

θ parameters

MDP [§5] e.g. Value
Iteration

d d
Fully observable, therefore no memory required

θ stores long-term value of each state

Exact [§6.1] e.g.
Incremental Pruning

D d
I-state is bt, φ represented by q(j|i, u) and ν(y|i)

Piecewise linear hyperplanes or policy graph

Heuristic [§6.2.1] D d
As for exact

Approximation to piecewise linear hyperplanes

Grid [§6.2.2] D d
As for exact

µ(u|θ, h, y) interpolates grid point values stored by θ

Factored belief [§6.3.1] d d
φ encodes Bayesian network or algebraic decision tree

Could be any of the previous parameterisations

Factored value [§6.3.2] d d
Any of previous, including exact and factored

Linear combinations of basis functions or ADDs

Planning [§6.4] d D
Any belief state tracking method

µ(u|b, y) searches space of future trajectories

RTDP-Bel [§6.5] d d
Any method to track sampled beliefs bt

θ stores value of all visited belief states

SPOVA & Linear-Q

[§6.5]
d d

Any method to track sampled beliefs bt

Smooth approx. of exact J̄β learnt by gradient ascent

Particle Filters [§6.6] d d
φ represents tracked bt as n particles

KNN to infer value for bt represented by particles

Policy Iteration [§6.7] d d
φ is a policy graph (PG) converted to J̄β for learning steps

θ maps policy graph nodes to actions, learnt during DP

Depth first PG search
[§6.7]

d d
φ chosen by search of a tree of constrained PGs

θ maps PG nodes to actions

Gradient ascent of
PGs [§6.7]

s s
φ is PG transition probs. learnt by gradient ascent

θ stochastically maps PG nodes to actions

Approx. Gradient PG
[§6.7]

s s
PG transition probabilities controlled by ANN

ANN maps PG nodes to action probabilities

Actor-Critic &
VAPS[§ 6.8]
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Usually no internal state
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Table 2: A summary of the model-free algorithms described in this paper. Each
column has the same meaning as Table 1. The tables are not a complete sum-
mary of all POMDP algorithms.

Method ω µ
φ parameters

θ parameters

JSJ Q-learning [§7.1] D s
Assume yt = it, so no internal state

θ stores long-term values of each observation

HMM methods
[§7.2.1]

d s
φ is HMM transition probabilities

θ is action probs. or value of HMM belief states

Window-Q [§7.2.2] D d
φ deterministically records last n observations ȳ

θ is ANN weights mapping ȳ to values

UTREE [§7.2.2] D d
φ deterministically records last n observations ȳ

θ represents tree; follow ȳ branch to get ut

RNNs [§7.2.3] d d
RNN maps yt & RNN state output to new state output

RNN maps yt & RNN state output to actions or values

Evolutionary [§7.2.4] s D
φ is RNN trained using EAs & stochastic sigmoid outputs

θ weights sigmoid outputs to select actions

FSCs [§7.2.5] s s
φ is prob. of I-state transition g → h

θ is prob. of ut given I-state h

Williams’
REINFORCE [§7.3]

s s
I-states may be changed by memory setting actions

Grad ascent of θ that maps yt → ut

GPOMDP [§7.3] s s
I-state FSC learnt via gradient

Grad ascent of θ that maps yt → ut for infinite-horizons
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