
Journal of Machine Learning Research ? (2002) ?–? Submitted 4/02; Published ??/??

Internal-State Policy-Gradient Algorithms for Partially
Observable Markov Decision Processes

Douglas Aberdeen douglas.aberdeen@anu.edu.au

Research School of Information Science and Engineering
Building 115, Daley Rd
Australian National University
A.C.T, 0200, AUSTRALIA

Jonanthan Baxter jonathannebaxter@yahoo.com

Panscient Pty Ltd
Adelaide, Australia

Editor: ??

Abstract

Policy-gradient algorithms are attractive as a scalable approach to learning approximate
policies for controlling partially observable Markov decision processes (POMDPs). POMDPs
can be used to model a wide variety of learning problems, from robot navigation to speech
recognition to stock trading. The downside of this generality is that exact algorithms are
computationally intractable, motivating approximate methods. Existing policy-gradient
methods have worked well for problems admitting good memory-less solutions, but have
failed to scale to large problems requiring memory. This paper develops novel algorithms
for learning policies with memory. We present a new policy-gradient algorithm that uses
an explicit model of the POMDP to estimate gradients, and demonstrate its effectiveness
on problems with tens of thousands of states. We also describe three new Monte-Carlo
algorithms that learn by interacting with their environment. We compare these algorithms
on non-trivial POMDPs, including noisy robot navigation and multi-agent settings.

Keywords: Partially Observable Markov Decision Processes, Finite State Controllers,
Reinforcement Learning, Policy Gradient

1. Introduction

Partially observable Markov decision processes (POMDPs) provide a framework for agents
that learn how to interact with their environment in the presence of multiple forms of
uncertainty. The only performance feedback given to the agent is a scalar reward signal.
Rewards can be noisy and delayed from the actions that caused them.

Unlike the situation with fully observable Markov decision processes (MDPs), the prob-
lem of finding optimal policies for POMDPs is PSPACE-complete (Papadimitriou and Tsit-
siklis, 1987), even when the POMDP is known. Thus, approximate methods are required
even for relatively small problems with known dynamics. There are two main classes of ap-
proximate algorithms: value-function methods that seek to approximate the value of belief
states — probability distributions over world-states — see Hauskrecht (2000) for a good
overview; and policy-based methods that search for a good policy within some restricted

c©2002 Douglas Aberdeen and Jonathan Baxter.

Aberdeen and Baxter

class of policies. In this paper we introduce three new approximate algorithms of the latter
variety.

Solving POMDPs in the most general situation requires the agent to have memory, or
internal state, which can take the form of a trace of past observation/action pairs, or a belief
state describing the current probability of each world state. Another form of agent memory
is a finite state controller (FSC), which augments the agent with a set of internal states
that store information about the previous history of observations. FSCs can be considerably
more efficient memory devices than either history traces or belief states, because they can be
configured to only store relevant information about the world-state and observation history.
For example, in order to avoid being run-down by a car while crossing the road, I need
only remember that I am standing on the edge of the road, and that I have seen a car
approaching, not the color of the car nor the brand of toothpaste with which I brushed my
teeth this morning.

In the FSC model examined here, both the transitions between the internal states of the
controller, and the distribution over the agent’s actions given a particular controller internal
state, are governed by a parameterised class of policies. The agent’s goal is to adjust these
parameters in order to maximize its long-term average reward. Thus, the agent learns to
use its internal states to store information that is releveant for maximizing its long-term
reward, while simultaneously learning the optimal actions to take given its current internal
state.

All the algorithms described here are policy-gradient algorithms in the sense that the
agent adjusts the policy parameters in the direction of the gradient of the long-term average
reward. The algorithms differ in the way the gradient is computed. The first algorithm—
GAMP—relies on a known model of the POMDP to compute the gradient. It is based on
a series matrix expansion of an exact expression for the gradient. The second algorithm—
IState-GPOMDP—computes the gradient stochastically by sampling from the POMDP and
the internal-state trajectories of the agent’s FSC. The third algorithm—Exp-GPOMDP—
reduces the variance of IState-GPOMDP by computing true expectations over internal-state
trajectories.

These algorithms are designed to scale computationally to large state/observations
spaces. To achieve this the algorithms make use of the ability of FSCs to automatically
filter out large amounts of hidden state which do not contribute to the optimal policy.
Equivalently, this can be viewed as automatic state aggregation, clustering together all
environment states which do not need to be distinguished (Singh et al., 1995). Similar
approaches to date have only yielded results on trivial internal-state problems and are re-
stricted to finite-horizon tasks. We investigate some of the reasons that these algorithms
have failed to scale and present results for infinite-horizon problems including a memory-
less multi-agent task with 21,632 states and a noisy robot navigation task with a combined
world/internal state space of 4180 states.

In Section 2 we formally introduce partially observable Markov decision processes and
discuss existing algorithms for learning internal-state controllers. We pay specific attention
to FSCs — describing the extension of the POMDP model to agents with embedded FSCs.
Section 3 introduces GAMP, our model-based policy-gradient algorithm. Section 4 develops
the model free IState-GPOMDP algorithm. Section 5 develops IOHMM-GPOMDP and Exp-

2

Internal-State Policy-Gradient Algorithms for POMDPs

GPOMDP which both maintain internal belief states. Finally, Section 7 compares the use
of these algorithms on small to medium size tasks from the POMDP literature.

2. Partially Observable Markov Decision Processes

2.1 POMDP Definition

Our setting is that of an agent taking actions in a world according to a parameterised policy.
The agent seeks to adjust the policy in order to maximise the long-term average reward.
Formally, the most natural model for this problem is a partially observable Markov decision
process or POMDP. For ease of exposition we consider finite POMDPs,1 consisting of:

• ns states S = {1, . . . , ns} of the world.

• nu or actions (or controls) U = {1, . . . , nu} available to the policy.

• no observations Y = {1, . . . , no}.

• A (possibly stochastic) reward r(i) for each state i ∈ S.

Each action u ∈ U determines a stochastic matrix Q(u) = [q(j|i, u)]i=1...ns,j=1...ns , where
q(j|i, u) denotes the probability of making a transition from state i ∈ S to state j ∈ S given
action u ∈ U . For each state i, an observation y ∈ Y is generated independently according
to a probability distribution ν(i) over observations in Y. We denote the probability of
observation y by ν(y|i).

2.2 Reactive Policies

To ensure the average reward is a differentiable function of policy parameters, it is often
necessary for the policy to be stochastic. In most cases of practical interest (such as a Gibbs
soft-max distribution) the policy space is parameterized so that deterministic policies lie
on the boundary of parameter space “at infinity”. In this way the agent can approach
deterministic policies arbitrarily closely.

Memory-less or reactive policies have no internal state and simply choose an action as
a function of the current observation y. We denote the probability of choosing action u
given observation y and parameters θ ∈ Rnp as µ(u|θ, y). With these definitions, a POMDP
controlled by a reactive policy as follows:

1. Let i0 ∈ S denote the initial state of the world.

2. At time step t, generate an observation yt ∈ Y with probability ν(yt|it).

3. Generate an action ut with probability µ(ut|θ, yt).

4. Generate a new world state it+1 with probability q(it+1|it, ut).

5. t = t+ 1, goto 2.

1. For the most part, generalizations to countably or uncountably infinite POMDPs are reasonably straight-
forward (Baxter and Bartlett, 2001).

3

Aberdeen and Baxter

yt

it

Agent

ut

rt = R(it)
rt

it

ν(yt|it)
∇̂tη

World

µ(ut|θ, yt)

q(it+1|it, ut)

Figure 1: Evolution of a POMDP controller parameterised by θ

Figure 1 illustrates this process. Conceptually, the world issues rewards after each state
transition. Rewards may depend on the action and the previous state, that is, rt = r(it, ut);
but without loss of generality we will assume rewards are a function of the updated state
rt = r(j) = r(it+1) so that r0 is received after the first action is complete.2

Our goal is to find θ ∈ Rnp maximising the long-term average reward:

η(θ) := lim
T→∞

1
T
Eθ

[
T∑
t=1

r(it)

]
, (1)

where Eθ denotes the expectation over all state trajectories (i0, i1, . . .) when the policy is
µ(u|θ, y). Under certain ergodicity and smoothness assumptions to be discussed later, η(θ)
is a differentiable function of the policy parameters θ and so lends itself to optimization via
gradient-ascent.

2.3 Agents With Internal State

In the presence of observation noise, purely reactive policies are generally suboptimal; in-
stead, the agent must remember features of its history. A simple example is an agent in a
symmetric building. If it only receives observations about what is in its line of sight then
many places in the building will appear identical. However, if it remembers the last time it
saw a landmark, such as the front doors of the building, then it can infer where it is from
its memory of how it moved since seeing the landmark.

2. The more general case can be achieved by augmenting the state with information about the last action,
implicitly making the reward a function of the last action.

4

Internal-State Policy-Gradient Algorithms for POMDPs

2.3.1 History Traces

The simplest way to add state to the agent is to have the agent remember past observations
and actions ~T = {(y0, u0), (y1, u1), . . . , (yT , uT)}. This is the approach taken by methods
such as utile distinction trees McCallum (1996) and prediction suffix trees Ron et al. (1994).

However, explicitly storing ~T results in inefficient memory use because the agent po-
tentially needs to store an infinite amount of history in infinite-horizon settings. Also, the
complexity of representing policies in the worst case grows exponentially with the amount
of history that needs to be remembered. While we know that worst-case POMDPs are ex-
ponential in history length, many problems of practical interest admit far simpler solutions.

2.3.2 Belief State Methods

Instead of explicitly storing history traces, the agent can instead maintain a belief state or
probability distribution over world-states i ∈ S. The belief state is a sufficient statistic
in the sense that it contains all the information necessary for the agent to act optimally
(Åström, 1965). One popular class of POMDP algorithms operate by performing value
iteration in the space of belief states. Algorithms of this type were first introduced by
Sondik (1971) and further investigated by Kaelbling et al. (1996), Cassandra (1998). See
Murphy (2000) for a good review.

For large state spaces it becomes intractable to represent the exact value-function over
belief states (Hansen and Feng, 2000). This motivates the use of approximation schemes
which include techniques for computing policy values at a limited number of belief states
— such as the simplex boundaries for the Most Likely State algorithm (Nourbakhsh et al.,
1995) — and interpolating between points (Sutton et al., 2000, Parr and Russell, 1995,
Hauskrecht, 1997, Brafman, 1997). Other approximation methods look at factoring the
belief state into combinations of state variables (Sallans, 2000, Poupart and Boutilier, 2001,
Poupart et al., 2001, Boutilier and Poole, 1996).

2.3.3 Finite State Control of POMDPs

An alternative to recording ~T or maintaining belief states is to incorporate a finite state
controller into the agent. Let G = {1, . . . , ng} be the internal states (I-states) that the
agent can occupy. The global POMDP state is given by the tuple comprising of the current
I-state gt ∈ G, and the world state it ∈ S.

The stochastic policy is now a function µ mapping I-states g ∈ G and observations y ∈ Y
into probability distributions over the controls U . We denote the probability under µ of
control u by µ(u|θ, g, y).

The I-state evolves stochastically as a function of the current observation and a second
set of parameters φ ∈ Rni . Specifically, we assume the existence of a function ω such that the
probability of making a transition from I-state g ∈ G to I-state h ∈ G is ω(h|φ, g, y). Thus
the I-state is updated at each step based on the observation and the current internal state.
The evolution of the POMDP is now represented by Figure 2. Many parameterisations of
ω(h|φ, g, y) and µ(u|θ, h, y) are possible though we will restrict ourselves to table lookup
and multi-layer perceptrons with distributions generated by the soft-max function defined
in Section 3.5.1.

5

Aberdeen and Baxter

ut

yt

it

Agent

gt+1

rt = R(it)
rt

it

ν(yt|it)
∇̂tη

µ(ut|θ, gt+1, yt)

ω(gt+1|φ, gt, yt)

World

g

Figure 2: Evolution of a finite state POMDP controller.

The controller learns to use the I-states to remember only what is needed in order to act
optimally. This process can be viewed as an automatic quantisation of the belief state space
to provide the optimal policy representable by ng I-states. As ng → ∞ we can represent
the optimal policy arbitrarily accurately. Another way to view this process is the direct
learning of a policy graph (Meuleau et al., 1999b), which is a directed and possibly cyclic
graph where each node is labelled with a single action and transitions out of each node are
labelled with observations. Policy-gradient methods for FSCs perform a search on the space
of policy graphs (Meuleau et al., 1999b), where ng is the number of policy graph nodes.

It is possible for a large POMDP to be controlled well by a relatively simple policy
graph. Consider the Load/Unload problem Peshkin et al. (1999) shown in Figure 3(a). The
observations alone do not allow the agent to determine if it should move left or right while
it is in the middle NULL observation states. However, if the agent remembers whether it last
visited the load or unload location, using 1 bit of memory, then it can act correctly. The
smallest policy graph is shown in Figure 3(b). This policy graph suffices no matter how
many intermediate locations there are between the load and unload locations.

FSCs are equivalent to a number of other approaches including external memory algo-
rithms which use actions to set memory bits where n bits of memory provides 2n I-states
(Peshkin et al., 1999, Peshkin, 2000). Some architectures use recurrent neural networks
which are similar to finite state controllers (Lin and Mitchell, 1992) and evolutionary search
has been used to learn FSC agents for small POMDPs (Moriarty et al., 1999) and some
relatively large POMDPs (Glickman and Sycara, 2001).

2.4 Policy-Gradient Methods

The complexity of finding good policies using value iteration in belief-state space motivates
the use of local optimisation procedures such as policy-gradient methods. Unlike the ma-

6

Internal-State Policy-Gradient Algorithms for POMDPs

(a) (b)

Figure 3: 3(a) The load/unload problem with 6 locations. The agent receives a reward of 1
each time it passes through the unload location U after having first passed through
the load location L. In each state the agent has a choice of two actions: either
left or right. 3(b) The policy graph learned for the Load/Unload problem.
Each node represents an I-state. The “Left” state is interpreted as: I have a load
so move left, and the “Right” state as: I dropped my load so move right. The
dashed transitions are used during learning but not by the final policy.

jority of history and belief state techniques, policy-gradient methods do not attempt to
associate values with policies, but instead adjust the policy directly. This is a potentially
simpler task since it is often easier to learn how to act than it is to learn the value of
acting. In addition, policy-gradient approaches guarantee convergence to at least a local
maximum whereas value-based methods may diverge, especially when using function ap-
proximation (Baird and Moore, 1999, Marbach and Tsitsiklis, 1999). However, one reason
to prefer value methods is their lower variance in comparison to policy-gradient methods.
Intuitively, reduced variance comes from the extra constraints that the Bellman equation
imposes on policy values Baird and Moore (1999).

Estimating performance gradients through Monte-Carlo simulation dates back to at
least Aleksandrov et al. (1968) and Rubinstein (1969), using the likelihood-ratio method.
Extensions of the likelihood-ratio method to regenerative processes (including Markov Deci-
sion Processes) were given by Glynn (1986, 1990), Glynn and L‘Ecuyer (1995) and Reiman
and Weiss (1986, 1989), and independently for episodic POMDPs by Williams (1992), who
introduced the REINFORCE algorithm. These methods compute unbiased estimates of the
performance gradient, bounding the implications of actions by observing visits to recurrent
states i∗ ∈ S.

When the agent cannot observe when visits recurrent states occur, or when visits occur
infrequently, we resort to biased estimates of the gradient. This is the approach we adopt
from Section 4. As will be discussed, a discounted eligibility trace is used to bound the
implications of actions, but the discount factor introduces a bias. Specifically, we generalise
the GPOMDP algorithm of Baxter and Bartlett (2001) to agents which incorporate FSCs.

Similar biased estimators were developed by Kimura et al. (1997), Kimura and Kobayashi
(1998) and Marbach (1998), which both use reward baselines to lower the variance of the es-
timates. Other methods reduce variance include actor-critic techniques (Sutton and Barto,
1998, Sutton et al., 2000, Konda and Tsitsiklis, 2000). The more general setting of addi-

7

Aberdeen and Baxter

tive control variates has been studied for GPOMDP by Greensmith et al. (2002) and these
methods can be applied to reduce the variance of the Monte-Carlo algorithms developed
in this paper. Adding internal state to policy-gradient methods exacerbates the variance
problem, an issue addressed in Section 4.

2.5 Mathematical Preliminaries

The evolution of world/I-state pairs (i, g) is Markov, with an nsng × nsng transition prob-
ability matrix P (θ, φ) whose entries p(j, h|θ, φ, i, g)|i,j=1...ns;g,h=1...ng are given by

p(j, h|θ, φ, i, g) =
∑
y,u

ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u). (2)

We make the following assumptions:

Assumption 1 Each P (θ, φ) has a unique stationary distribution π(θ, φ) := [π1,1(θ, φ), . . . , πns,ng(θ, φ)]
satisfying the balance equations

π(θ, φ)P (θ, φ) = π(θ, φ). (3)

Assumption 2 We assume the magnitudes of the rewards, |r(i)|, are uniformly bounded
by R <∞ ∀i ∈ S.

Assumption 3 The derivatives,[5 ∂µ(u|θ,h,y)
∂θk

and ∂ω(h|φ,g,y)
∂φk

are uniformly bounded by U <
∞ and Q <∞ ∀g, h ∈ G, u ∈ U , y ∈ Y, θ ∈ Rnp and φ ∈ Rni.

Assumption 4 The ratios ∣∣∣∂µ(u|θ,h,y)
∂θk

∣∣∣
µ(u|θ, h, y)

and

∣∣∣∂ω(h|φ,g,y)
∂φk

∣∣∣
ω(h|φ, g, y)

are uniformly bounded by D <∞ and B <∞ respectively, ∀g, h ∈ G, u ∈ U , y ∈ Y, θ ∈ Rnp
and φ ∈ Rni.

Assumption 1 ensures that the Markov chain generated by P (θ, φ) has a unique recurrent
class, which mainly just makes the statement of the theorems more compact (the non-
unique case is an easy generalisation). Assumption 4 is needed because those ratios will be
used by the algorithms. Any stochastic controller or I-state function that uses a soft-max
distribution based on underlying real parameters will satisfy these conditions, as will many
others.

We now extend Equation (1) to internal state, where we seek θ ∈ Rnp and φ ∈ Rni
maximising the long-term average reward:

η(θ, φ) := lim
T→∞

1
T
Eθ,φ

[
T∑
t=1

r(it)

]
. (4)

8

Internal-State Policy-Gradient Algorithms for POMDPs

where Eθ,φ denotes the expectation over all trajectories (i0, g0), (i1, g1), . . . , with transitions
generated according to P (θ, φ). Under assumption 1, η(θ, φ) is independent of the starting
state (i0, g0) and is equal to:

η(θ, φ) =
ns∑
i=1

ng∑
g=1

πi,g(θ, φ)r(i) = π(θ, φ)r, (5)

where r := [r(1, 1), . . . , r(ns, ng)]
′ and r(i, g) is defined to be r(i) ∀g ∈ G.

3. Model Based Policy-Gradient

It is realistic to expect that we may have a model of the world in some applications. For
example, manufacturing plants may be reasonably well modelled. Much work has been
done on the state identification problem in control theory (Ogata, 1990). If we have a
model we expect to be able to produce better gradient estimates with less effort. Thus
it is useful to develop policy-gradient techniques which incorporate the use of a model
to compute the gradient. In this section we provide one such algorithm which is limited
to discrete state spaces, but which is feasible for many thousands of states, an order of
magnitude improvement over model-based value-function algorithms which can handle tens
to hundreds of states (Geffner and Bonet, 1998).

3.1 Gradient of POMDPs with Internal State

For the purposes of this discussion the model of the POMDP is represented by the global
state transition matrix P (θ, φ), whose entries are given by (2). This matrix has square
dimension of nsng and incorporates our knowledge of the underlying world MDP, the ob-
servation hiding process ν, any internal state and the current parameters.

Dropping the dependence on θ, φ, we can rewrite (5) as η = πr so ∇η = ∇πr. Differen-
tiating both sides of (3) yields (∇π) [I − P] = π∇P which should be understood as np +ni
equations, one for each of the θ and φ parameters. Combining these derivatives yields

∇η = π(∇P)[I − P]−1, (6)

which involves inverting the singular matrix [I−P]. We avoid this problem by conditioning
the matrix as follows. Let e denote the nsng-dimensional column vector consisting of all 1’s
so eπ is the nsng × nsng matrix with the stationary distribution π in each row. Since

(∇π)e =
∑
i,g

∇πi,g

= ∇
∑
i,g

πi,g

= ∇1
= 0,

we obtain (∇π)eπ = 0. Thus, we can rewrite (6) as

∇η = π∇P [I − (P − eπ)]−1 r. (7)

9

Aberdeen and Baxter

A quick induction argument shows that [P − eπ]n = Pn−eπ which converges to 0 as n→∞
by Assumption 1. So by a classical matrix theorem, [I − (P − eπ)]−1 is invertible.

3.2 The GAMP Algorithm

Equation (7) can be viewed as a system of nsng linear equations. For brevity let A =
[I − P + eπ], x = A−1r and ∇η = π∇Px. Computing A−1 exactly is O(n3

sn
3
g) hence

intractable for more than a few 100’s of states. Approximate methods for solving Ax = r
are well studied. For example, we can rewrite (7) as

∇η = lim
N→∞

π

[
N∑
n=0

(∇P)Pn
]
r, (8)

and truncate N to produce an estimate. We can bring the r vector inside the sum and, if
N is finite, we can take the ∇P term out of the sum to give the approximation

xN =
N∑
n=0

Pnr. (9)

The sum can be efficiently evaluated by successively computing vn+1 = Pvn where v0 =
r. Each vn is accumulated into x. Because this is a series of matrix-vector multiplications
we end up with an algorithm which has worst case complexity O((nsng)2N). This is a form
of Richardson iteration, a simple iterative method for solving systems of linear equations
(Kincaid and Cheney, 1991, §4.6). An O(n2) algorithm is still expensive but the matrix P is
usually very sparse since only a small subset of S tends to have non-zero probability of being
reached from some other state. For example, in the robot navigation domain of Cassandra
(1998), the move forward action leads to one of at most 3 next states, regardless of the
size of the world state. By using sparse matrix data structures and sparse multiplication
algorithms we can obtain orders of magnitude speed up depending on the POMDP.

We have also experimented with the GMRES Krylov subspace method for iteratively
computing x. This method can be thought of as a more advanced version of Richardson
iteration that computes estimates of xn+1 based on multiple previous estimates {x0, . . . , xn}
(Greenbaum, 1997, §2)(Ipsen and Meyer, 1998). While GMRES is promising for very large
systems, there are complex pre-conditioning issues for obtaining the best accuracy and
performance which we have not yet investigated so our experiments use Equation (9) to
compute x.

Evaluating π involves computing the leading left eigenvector of P , which is expensive
if done exactly. We use the power method (Anton and Rorres, 1991, §9.5) for iteratively
computing πn+1 = πnP . The iteration stops when the ‖πn+1 − πn‖L∞ falls below some
threshold. A better but more complex method for computing π, which we have not yet
implemented, is the Lanczos method (Greenbaum, 1997, §2.5) which is related to Krylov
subspace methods.

A surprisingly expensive operation is evaluating Equation (2) for each element of each
∂P/∂θk, which is in the worst case O((nsng)2npnonu). Sparsity again helps since q(j|i, u)
and ν(y|i) often evaluate to 0. Noise in transitions and observations decreases sparsity. As
the sparsity of the POMDP decreases, the complexity of computing ∇P grows faster than

10

Internal-State Policy-Gradient Algorithms for POMDPs

that of computing π and x. Simple tricks such as pre-computing all values of ∇ω(h|φ, g, y)
and ∇µ(u|θ, h, y), combining the operations of computing ∇P with multiplication by π and
x, and using sparsity, allows systems of ngns > 20, 000 to be feasibly tackled on today’s
desktop computers.

The overall procedure is summarised by Algorithm 1, named GAMP for Gradient Ap-
proximation for Modelled POMDPs. Lines 2–7 compute P ; 8–13 compute xN using Richard-
son iteration; 14–18 estimate π using the power method and 19–29 compute π(∇P)xN .
Combining the computation of ∇P with the final step of multiplying π(∇P)xN avoids ex-
plicitly storing large ∇P matrices. Practical implementations require sparse representations
and matrix multiplications. The loops for computing P and ∇P in Algorithm 1 are shown
in a simplified form for clarity. They should be constructed to take maximum advantage of
the factors in lines 5,23,26 that are often 0.

3.3 Asymptotic Convergence of GAMP

Because P is a stochastic matrix PN converges exponentially quickly to π. The exact rate
is governed by the mixing time τ of the POMDP which we define with the help of the
following definitions from Barlett and Baxter (2000).

Definition 1 The total variation distance between two discrete probability distributions P,
Q on a set S is

d(P,Q) =
∑
j∈S
|p(j)− q(j)|.

Definition 2 We say that a stochastic process {Xt} is exponentially mixing with time con-
stant τ (τ -mixing for short) if

d(Pni , π) ≤ exp(−bn
τ
c),

where Pni is the i’th row of Pn.

Intuitively τ can be though of as a measure of complexity of matrix P defined by the
POMDP and the agent. The following theorem bounds the error in the GAMP gradient
estimates as a function of τ .

Theorem 3 Let

∇̂Nη := π(∇P)

[
N∑
n=0

Pn

]
r,

then

‖∇η − ∇̂Nη‖∞ ≤ BRnuτ
exp(−bNτ c)
1− exp(−1)

.

This theorem is proved in Appendix A.1. Empirical evidence suggests that this is not a
tight bound. In particular some effort may show that the factor nuτ can be removed. The
difficulty of calculating τ for an arbitrary POMDP makes it difficult to use this theorem
to establish the required N a priori. In practice we check for convergence of x by stopping
when the angle ∠(xn+1, xn) < ε.

11

Aberdeen and Baxter

Algorithm 1 GAMP(Q, ν, r, θ, φ, εx, επ)
1: Given:

• State transition probabilities q(j|i, u) ∀j, i ∈ S, u ∈ U .

• Observation probabilities ν(y|i) ∀i ∈ S, y ∈ Y.

• Policy parameters θ ∈ Rnp .

• FSC parameters φ ∈ Rni .

• Iteration termination thresholds εx, επ.

2: for each ((i, g), (j, h)) do
3: p(i,g)(j,h) = 0
4: for each (y, u) do
5: p(i,g)(j,h) = p(i,g)(j,h) + ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u)
6: end for
7: end for
8: v = r, x = r, x̄ = 0
9: while ∠(x, x̄) > εx do

10: x̄ = x
11: v = Pv
12: x = x+ v
13: end while
14: π̄ = 1

ngns
, π = π̄P

15: while maxi |πi − π̄i| > επ do
16: π̄ = π
17: π = π̄P
18: end while
19: ∆ = [0]
20: for each ((i, g), (j, h)) do
21: for each (y, u) do
22: for each θk ∈ θ do
23: ∆k = ∆k + π(i,g)ν(y|i)ω(h|φ, g, y)∂µ(u|θ,h,y)

∂θk
q(j|i, u)xj,h

24: end for
25: for each φl ∈ φ do
26: ∆l = ∆l + π(i,g)ν(y|i)∂ω(h|φ,g,y)

∂φl
µ(u|θ, h, y)q(j|i, u)xj,h

27: end for
28: end for
29: end for
30: ∇̂Nη = ∆

12

Internal-State Policy-Gradient Algorithms for POMDPs

Figure 4: Angular error between the GAMP estimate after N iterations and the exact
gradient. This plot is based on the Pentagon POMDP with ns = 209 and ng = 5
making P a 1045× 1045 element matrix.

3.4 GAMP in Practice

Figure 3.4 demonstrates empirically how quickly the GAMP algorithm converges on an
internal-state problem with 1045 states. We computed the exact matrix inversion [I −
P + eπ]−1 for the Pentagon problem defined in Section 7.3 with ns = 209, ng = 5. The
initial parameters were set such that θk = φl = 0, ∀k, l. The Pentagon problem allows all
observations from all states by adding noise, making the observation stochastic matrices
dense. Noise is also added to the state transitions, allowing the agent to not move or move
too far, as well as moving correctly. The added noise and internal state make this a good
challenge for GAMP. Even the noisy Pentagon transition probabilities are very sparse with
only 25,875 of 1,092,025 elements of P having non-zero probabilities.

This experiment was run on an unloaded Pentium II @ 433 MHz. When computing the
exact gradient, computing π requires 315 s (wall clock time), computing the matrix inversion
requires 10.5 s and computing ∇P requires 36 s. When computing the approximate gradient
with N = 500, the Richarsdon Iteration inversion is computed in 1.41 s. A larger saving
comes from approximating π. For his experiment we used a value of επ = 0.0001. This
required 1319 iterations taking 3.50 s instead of 315 s. The angular error in the gradient
at N = 500 is 0.420◦ taking 11.3% of the time the true gradient requires. The speedup
becomes greater as nsng grows. If π is computed exactly the error is reduced by 0.016◦,
demonstrating that in this case the majority of the error is introduced by approximating x.

3.5 A Large Multi-Agent Problem

Model based methods for POMDPs have been restricted to at most few hundred states with
10’s of observations and actions (Geffner and Bonet, 1998). This section demonstrates that

13

Aberdeen and Baxter

Figure 5: Plan of the factory floor for the multi-agent problem. The dashed arrows show a
possible route traced by the optimal agents.

GAMP can learn the optimal policy for a noisy multi-agent POMDP with 21,632 states,
1024 observations and 16 actions.

The problem is shown in Figure 3.5: a factory floor with 13 grid locations to which 2
robots have access. The robots are identical except that one is given priority in situations
where both robots want to move into the same space. They can turn left or right, move
1 position ahead, or wait were they are. One agent learns to move unfinished parts from
the left shaded area to the middle area, where the part is processed instantly and then the
second agent moves the processed parts from the middle to the right shaded area. The
middle processing machine can handle only 1 part at a time, so if the first agent drops off
a part at the middle before the second agent has picked up the last part dropped at the
middle, the new part is discarded.

The large state space arises from the combined state of the two independent agents plus
the global state. Each agent can be loaded or unloaded in 13 states with 4 orientations,
giving each agent 2 × 13 × 4 = 104 states. The global state indicates if a part is waiting
at the middle processing machine and the state of the 2 agents, giving 2 × 1042 = 21, 632
states.

A reward of 1 is received for dropping off a processed part at the right. The agents
only need to exit the loading or drop off locations to pick up or drop loads. To receive the
maximum reward the agents must cooperate without explicit communication, the actions
of the first agent allowing the second agent to receive rewards.

The observations for each agent consist of 4 bits describing whether their path is blocked
in each of the 4 neighbouring positions, and a 5th bit describing if the agent is in the
uppermost corridor (which is necessary to break the symmetry of the map). The combined
observations are 10 bits, or no = 1024. The actions for each agent are {move forward,
turn left, turn right, wait}, resulting in a total of nu = 16 actions.

Uncertainty is added with a 10% chance of the agents’ action failing, resulting in no
movement, and a 10% chance of the agents’ sensors completely failing, receiving a “no
walls” observation. This problem was designed to be solved by a reactive policy. Section 7
demonstrates GAMP on problems which require memory to solve.

14

Internal-State Policy-Gradient Algorithms for POMDPs

3.5.1 Experimental Protocol

These experiments were run on an unloaded AMD Athlon @ 1.3GHz. GAMP required less
than 47 Mbytes of RAM to run this problem. All the experiments in this paper use a con-
jugate gradient ascent algorithm with an exponential line search (see Appendix B.2). The
experiments of this section use the faster value based line search, but all other experiments
use the more robust GSEARCH algorithm (Baxter et al., 2001) (see Appendix B.2). Unless
stated, all experiments use policies and FSCs parameterised by a tables indexed by (y, b).
Each index provides a vector of ng or nu real numbers (initialised to 0) for ω(h|φ, g, y) and
µ(u|θ, h, y) respectively. The soft-max function is then used to generate distributions from
the indexed vector. Computing the gradient of the soft-max function with respect to φ and
θ gives us ∇ω(h|φ, g, y) and ∇µ(u|θ, h, y) which is needed to compute ∇P .

Definition 4 Given a vector θ ∈ RN , the probability of event u ∈ 1, . . . , N according to the
soft-max distribution is

P (u) : =
exp(θu)∑N

u′=1 exp(θu′)
. (10)

∂P (u)
∂θk

= P (u)(χu(k)− P (u)),

where χu(k) is the indicator function

χu(k) :=

{
1 if k = u,

0 otherwise.

IState-GPOMDP is a model free Monte-Carlo algorithm (described in Section 4) for
estimating∇η of FSC agents. To compare GAMP to a model free algorithm IState-GPOMDP
with no memory was run 10 times with different random seeds. A gradient estimation time
of 4 × 106 steps, value estimation time of 2 × 106 steps and a discount factor β = 0.99
was used. We set θk = 0 ∀k and a quadratic penalty of q = 0.0001 is used to prevent the
parameters growing too quickly and entering a sub-optimal maxima (see Appendix B.3).

We attempted to run the exact Incremental Pruning algorithm (Zhang and Liu, 1996)
on the Factory problem however the program aborted during the first iteration of dynamic
programming after consuming all 256 MB of memory.3 Storing just one double precision
vector of length ns requires 169 Kb and exact algorithms quickly generate many thousands
of vectors for large problems. Exact algorithms based on factored belief states could work
well since the problem naturally decomposes into a few state variables (Boutilier and Poole,
1996, Hansen and Feng, 2000, Poupart and Boutilier, 2001), however we do not assume that
the state variables are known a priori.

3.5.2 Results

The agents learn to move in opposing circles around the factory which reduces the chances
of collision (shown by the dashed lines in Figure 3.5). They also learn to wait when their

3. We used Anthony Cassandra’s pomdp-solve V4.0 code.

15

Aberdeen and Baxter

Table 1: Results for multi-agent factory setting POMDP. η values are multiplied by 1×102.
IState-GPOMDP was run 10 times.

Algorithm mean η max. η var. secs to η = 5.0
GAMP 6.51 6.51 0 1035
IState-GPOMDP 5.85 6.36 1.79× 10−5 1286
Hand 6.51

sensors fail, using the wait action to gather information. Table 1 shows a comparison
between IState-GPOMDP with no memory and GAMP for this problem. The last line shows
that GAMP has learnt a policy of equivalent value to the best policy we designed by hand.

The most common local maxima occurred when the agents learnt early in training that
forward is a generally useful action, even when the sensors fail, and the agents failed to
unlearn the move forward behaviour in favour of the wait behaviour when their sensors fail.
Compared to IState-GPOMDP, GAMP consistently learns a superior policy in less time. The
performance of IState-GPOMDP can be improved at the cost of more time.

We might expect the performance advantage of GAMP to be greater considering that
GAMP has a lot more information about the problem. An intuition for the modest improve-
ment arises from a nice feature of Monte-Carlo algorithms: their ability to focus search on
the relevant parts of state space (Kaelbling et al., 1996). Except in the early stages of train-
ing IState-GPOMDP encounters only those states which are encountered by a reasonable
agent, effectively learning in a pruned state space. GAMP always considers the entire state
space, even those states which may be unreachable given a particular start state.

For this reason GAMP is less forgiving about violations of Assumption 1. For example,
when designing the Factory problem above, care must be taken to ensure that impossible
situations, such as two robots occupying the same location, have transitions to legal sit-
uations even though IState-GPOMDP would not encounter those impossible situations. If
the state space grows very large then IState-GPOMDP should out-perform GAMP unless a
form of state space pruning is used. For the smaller state spaces in the scenarios of Sec-
tion 7 GAMP exhibits greater performance improvement over Monte-Carlo methods than
the multi-agent factory problem. Section 7 also demonstrates that GAMP can successfully
learn policies with memory.

The comparison of convergence times for IState-GPOMDP and GAMP does not account
for the time it takes IState-GPOMDP to gather real experience from the world. The ability
to train agents without slow and possibly hazardous interactions with the world is a key
advantage of model-based algorithms.

3.6 Related Work

Dynamic programming model-based algorithms have been studied extensively (Murphy,
2000). Monte-Carlo policy-gradient algorithms have also been well studied, but little work
has examined policy-gradient approaches when given a model. The Linear-Q and SPOVA
algorithms (Littman et al., 1995, Parr and Russell, 1995) use gradient ascent to perform

16

Internal-State Policy-Gradient Algorithms for POMDPs

parameter updates for function approximators which learn the value of belief states but
this work varies from ours because it learns values instead of policies and still simulates
a trajectory through the world, updating the belief state using the model at each step.
The most similar approach to ours directly computes the gradient of the discounted sum of
rewards ∇Jβ, to learn a finite state controller (Meuleau et al., 1999a).

4. Model Free Policy Gradient

Without knowledge of the POMDP transition and observation models we resort to Monte
Carlo like methods for estimating ∇η. These methods simulate trajectories through the
POMDP, gathering noisy information about the true gradient at each step. Much work
has been done in this area for MDPs including the value-based TD(λ) family of algorithms
(Sutton and Barto, 1998).

As discussed in 2.3 agents require internal state to act optimally in partially observable
environments. Peshkin et al. (1999) and Peshkin (2000) extend REINFORCE to policies with
memory which we now extend to the infinite-horizon setting. Recall from Section 2.3.3 that
the policy can be augmented with a finite state controller to create an agent with memory,
allowing it to potentially remember events infinitely far into the past in order to resolve the
hidden state of the POMDP.

The task is now to estimate the gradient of the long term average reward using simula-
tion. The gradient is with respect to the parameters θ and φ,∇η(θ, φ) =

[
∇θ(θ, φ),∇φ(θ, φ)

]
;

where θ parameterises the policy µ(u|θ, h, y) and φ parameterises the stochastic finite state
controller ω(h|φ, g, y).

4.1 Estimating the Gradient by Simulation

Algorithm 2 computes estimates [∆θ
T ,∆

φ
T] of an approximation to ∇η. At each step an

observation yt is received and the distribution ω is sampled to choose gt+1. The gradient of
ω(gt+1|φ, gt, yt) is added into the trace zφt which is discounted by β ∈ [0, 1) at each step to
give more weight to recent I-state choices. The same process is followed with the new I-state
to choose an action ut from µ. At each step the immediate reward of action ut is multiplied
by the current traces and averaged to form the gradient estimate. The discount factor is
necessary to solve the temporal credit assignment problem and reflects the assumption that
rewards are exponentially more likely to be generated by recent actions. Algorithms such
as REINFORCE avoid discount factors by assuming finite-horizon POMDPs, bounding the
period in which actions can cause rewards. The following theorem establishes that IState-
GPOMDP estimates an approximation to the gradient of η, given by (4) which converges to
the approximate gradient as the number of estimation steps goes to ∞.

Theorem 5 Define the discounted reward as

Jβ(i, g) := E

[∞∑
t=0

βtr(it, gt)|i0 = i, g0 = g

]
, (11)

where the expectation is over all world/I-state trajectories. Let ∆T :=
[
∆θ
T ,∆

φ
T

]
be the

estimate produced by IState-GPOMDP after T iterations. Then under Assumptions 1–4,
limT→∞∆T = π(∇P)Jβ with probability 1.

17

Aberdeen and Baxter

This is proved in Appendix A.2.2. The next theorem establishes that as β → 1, the
approximation π(∇P)Jβ is in fact ∇η.

Theorem 6 For P parameterised by FSC parameters φ and policy parameters θ

lim
β→1

π(∇P)Jβ = ∇η.

The proof is the same as the memory-less setting by Baxter and Bartlett (2001). We now

have ∆T
T→∞−−−−→ π∇PJβ

β→1−−−→ ∇η, however the variance of ∆T scales as 1/ [T (1− β)],
reflecting the increasing difficulty of the credit assignment problem. Fortunately, ∇̂βη is
guaranteed to be a good approximation to ∇η provided 1/(1− β) exceeds the mixing time
τ . The proofs are a generalisation from the memory-less GPOMDP algorithm (Baxter and
Bartlett, 2001) which is retrieved from IState-GPOMDP by setting ng = 1.

4.2 Finite I-state Error

Finite memory approaches introduce approximation errors when the agent’s memory is in-
sufficient to resolve the relevant hidden state. One side effect is that, like reactive policies for
POMDPs (Jaakkola et al., 1995), stochastic policies and FSCs may outperform determinis-
tic policy graphs when insufficient I-states are used. This is for the same reason that good
reactive policies for POMDPs may be stochastic (Singh et al., 1994): there is insufficient
memory to resolve enough uncertainty about the state in order to pick the best action.

Consider Figure 6 which shows a fragment of a policy graph in which a lost agent uses
a compass to face north before moving on. As the number of I-states is reduced the policy
degrades until for ng = 2 the agent cannot decide between moving forward or turning,
representing a stochastic policy.

An interesting result would be to bound the error in the long-term reward between an
arbitrary policy and a policy constructed with nb I-states. Theorem 3 in Sondik (1978) takes
a step toward such a result by bounding the error between the value of a policy and the
value of an approximate policy with a finite number of hyperplanes (equivalent to I-states)
in the cost function. Unfortunately, this bound is in terms of the number of epochs of the
value-iteration algorithm rather than the number of hyperplanes. However, this result may
serve as a starting point.

5. Internal Belief States

So far we have assumed that the internal memory of the system consists of a finite state
machine and that the agent samples an I-state at each time step according to ω. Multiple
steps describe a trajectory through the state space of the finite state machine. The key
idea of this section is that we do not need to sample I-states. The finite state controller is
completely observable, allowing us to compute expectations over all possible I-state trajec-
tories. At each time step we can update the probability of occupying each I-state and use
this belief over I-states as our controller memory.

A related advantage is that belief states are more informative than sampled I-states.
It requires log2 ng bits to encode a sampled I-state, but it requires png bits to encode ng

18

Internal-State Policy-Gradient Algorithms for POMDPs

Algorithm 2 IState-GPOMDP

1: Given:

• Parameterised class of FSCs {ω(h|φ, g, y) : φ ∈ Rni} ; g ∈ G;h ∈ G; y ∈ Y.

• Parameterised class of randomised policies {µ(u|θ, h, y) : θ ∈ Rnp} ;h ∈ G; y ∈ Y.

• POMDP which when controlled by µ(u|θ, h, y) and ω(h|φ, g, y) generates a pa-
rameterised class of Markov chains satisfying Assumption 1.

• Discount β ∈ [0, 1).

• Arbitrary initial state i0 and I-state g0.

• Observation sequence y0, y1, . . . generated by the POMDP with u0, u1, . . . gen-
erated randomly according to µ, where gt+1 is generated randomly according to
ω.

• Bounded reward sequence r(i0), r(i1), . . . , where i0, i1, . . . is the (hidden) sequence
of states of the environment.

2: Set zθ0 = 0, zφ0 = 0,∆θ
0 = 0 and ∆φ = 0 (zθ0 ,∆

θ
0 ∈ Rnp , z

φ
0 ,∆

φ
0 ∈ Rni).

3: while t < T do
4: Observe yt from the world.
5: Choose gt+1 from ω.
6: Choose ut from µ.
7: zφt+1 = βzφt + ∇ω(gt+1|φ,gt,yt)

ω(gt+1|φ,gt,yt)

8: zθt+1 = βzθt + ∇µ(ut|θ,gt+1,yt)
µ(ut|θ,gt+1,yt)

9: ∆θ
t+1 = ∆θ

t + 1
t+1

[
r(it+1)zθt+1 −∆θ

t

]
10: ∆φ

t+1 = ∆φ
t + 1

t+1

[
r(it+1)zφt+1 −∆φ

t

]
11: Issue action ut.
12: t+ +.
13: end while

19

Aberdeen and Baxter

(a) (b) (c)

Figure 6: Figure 6(a) shows a 4 I-state policy-graph fragment for a lost Agent which must
move north. If the number of I-states is reduced to 3 (Figure 6(b)) then the policy
is still deterministic but degraded because it may turn left 3 times instead of right
once. In Figure 6(c) the agent cannot determine if it is facing north when it is in
the upper I-state, thus must sometimes should forward and sometimes turn.

floating point numbers of precision p. The loss of information incurred when sampling I-
states amounts to a form of internal partial observability because we throw away information
about how likely the I-state trajectory is. This section covers two methods for learning when
internal memory is a belief vector.

5.1 Hidden Markov Models for Policy Improvement

Because partially observability hides the true state of the POMDP we can use existing
algorithms which reveal hidden state. Hidden Markov models (HMMs) are a candidate
which have previously been used in conjunction with value based RL. HMMs are a generative
model, that is, they model stochastic sequences without being driven by the available data.
Bengio describes an extension to HMMs, called Input/Output HMMs, which allow them to
model one sequence while being driven by a related sequence (Bengio and Frasconi, 1996,
McCallum et al., 2000). The idea is that the driving sequence contains information useful
to prediction.

IOHMMs have been used to solve small POMDPs where actions drive the state tran-
sitions and the IOHMM predicts the observations (Chrisman, 1992, McCallum, 1996).
HMMs can also be layered at different time scales for hierarchical reinforcement learn-
ing (Theocharous et al., 2000). An alternative scheme is to drive state transitions with
observations and use them to generate actions (Shelton, 2001c,a).

5.1.1 Predicting Rewards

A problem with IOHMM methods is that estimation of the hidden state ignores the most
useful indicator of policy performance: the reward. Predicting rewards reveals the hid-

20

Internal-State Policy-Gradient Algorithms for POMDPs

den state relevant to predicting policy performance, and which is consequently relevant to
choosing actions that lead to high reward.

To include the reward we propose to drive transition probabilities by observations —
and optionally actions — and then use the IOHMM to predict rewards. The idea is that
the hidden state revealed by predicting rewards is the most relevant to maximising η.
The forward probability calculation in the estimation phase of IOHMM parameter updates
computes the probability of I-state occupation given all previous observations and rewards,
denoted αt. This quantity is equivalent to the I-state belief and is used in µ(u|θ, α, y) to
compute an action distribution. Because αt ∈ [0, 1]ng we take the function approximation
approach for parameterising µ(u|θ, α, y). This paper uses linear controllers.

5.1.2 The IOHMM-GPOMDP Algorithm

Algorithm 3 presents one way of using IOHMMs to predict rewards. The IOHMM-GPOMDP
algorithm interleaves IOHMM re-estimation phases and memory-less IState-GPOMDP phases.
The IOHMM phase re-estimates the IOHMM transition and output probabilities using a
single trajectory of observations (and possibly actions) of length Th from the POMDP. The
IState-GPOMDP phase updates the I-state belief at each time using the previous action’s
reward and the current observation. The updated I-state belief is used to compute an action
distribution.

We have deliberately left the training details of the IOHMM in line 7 of Algorithm 3
unspecified because there are many reasonable approaches that can be taken. The novel
contribution of the IOHMM-GPOMDP algorithm is to use IOHMMs for predicting rewards.
Our IOHMM implementation is based upon ng states where ng is fixed a priori. Meth-
ods for automatically determining ng are discussed by Chrisman (1992), McCallum (1996).
Rewards can take a wide range of values between (R,−R) thus continuous emission distri-
butions such as mixtures of Gaussians per state (Rabiner, 1989) are sensible. Using a single
Gaussian per state to model rewards is equivalent to the assumption that each state models
only a single reward value. If there are only a small number of instantaneous reward values
then discrete output IOHMMs can also be used. As suggested by Rabiner (1989) we found
it important to use sensible initialisations of the emission distributions in order to obtain
IOHMM convergence to the global maxima. Sensible initialisations are often easy to devise
with the assumption that each IOHMM state models a particular POMDP reward state.

5.1.3 Convergence of the IOHMM-GPOMDP Algorithm

Algorithm 3 always runs IOHMM training to convergence. This allows us to state that once
the memory-less GPOMDP algorithm estimates the gradient to be close to zero, both the φ
and θ parameters have converged since neither set of parameters will change.

Unfortunately the re-estimation of the IOHMM parameters can lead to an arbitrarily
large decrease in the performance of the policy. Consider a world with a straight road 5
sections long and assume the optimal policy is to move from on end to the other (essentially
the Load/Unload problem of Section 7.1). Initially both the IOHMM and µ(u|θ, α, y) are
initialised with random parameters. The following can occur:

21

Aberdeen and Baxter

Algorithm 3 IOHMM-GPOMDP

1: Given:

• Parameterised class of randomised policies {µ(u|θ, α, y) : θ ∈ Rnp} ;α ∈ [0, 1]; y ∈
Y.

• An IOHMM with ng states, inputs yt ∈ Y, outputs rt ∈ [−R,R] and parameterised
by φ = [φi, φo], the IOHMM state transition and output parameters respectively.

• POMDP which when controlled by µ(u|θ, α, y) generates a parameterised class of
Markov chains satisfying Assumption 1.

• Discount β ∈ [0, 1).

• Arbitrary initial state i0 and internal belief α0.

• [−R,R] bounded reward sequence r(i0), r(i1), . . . , where i0, i1, . . . is the hidden
sequence of states of the environment.

• Observation sequence y0, y1, . . . generated by the POMDP with u0, u1, . . . gener-
ated randomly according to µ(ut|θ, αt+1, yt), where αt+1 is the forward probability
vector of the IOHMM after conditioning on output rt−1 and input observation yt.

• Step size γ > 0.

2: Set z0 = 0, and ∆ = 0 (z0,∆0 ∈ Rnp).
3: Set φi to uniform initial transitions.
4: Set φo to appropriate initial output probabilities.
5: while ‖∆Tg‖ > ε do
6: Execute policy for Th steps, ~ = {(y0, r0), . . . , (yTh−1, rTh−1)}
7: train IOHMM to convergence(φ ,~)
8: while t < Tg do
9: Observe yt from the world

10: Observe rt−1 from the world
11: αt(j) =

∑ng
i=1 αt−1(i)P (rt−1|φo, i)P (j|φi, i, yt)

12: Choose ut from µ(ut|θ, αt, yt)
13: zt+1 = βzt + ∇µ̄(ut|θ,φ,yt)

µ̄(ut|θ,φ,yt)
14: ∆t+1 = ∆t + 1

t+1 [r(it+1)zt+1 −∆t]
15: t+ +
16: end while
17: θ ← θ + γ∆Tg

18: end while

22

Internal-State Policy-Gradient Algorithms for POMDPs

1. With random µ(u|θ, α, y) the IOHMM learns that rewards are more likely when move
left actions occur after the “L” observation, or move right actions occur after the
“U” observation.

2. µ becomes a good policy based on the current IOHMM.

3. The change in policy parameters θ, changes the extrema of the IOHMM. Consequently
the IOHMM can move into a different local maxima based on the sample ~ gathered
using the old φ. The IOHMM may learn that a reward usually occurs every 5 steps.

4. The policy represented by θ is no longer optimal under the IOHMM represented by
the new φ. The reward may drop to a level worse than the uniform random policy.

5. The policy is no longer near optimal and rewards no longer occur every 5 steps, thus
the IOHMM must re-learn the concept it learnt in the first step.

Thus, allowing the IOHMM and µ(u|θ, α, y) to bootstrap from each other can result in
learning cycles which do not converge. If, during Step 4, GPOMDP quickly learns a new
policy that is good under the new φ, then we may achieve convergence. However we do not
usually want GPOMDP to completely converge in one iteration because it will generally end
up in a pool local minimum. To avoid this we penalise large values of θ (see Appendix B.3).

5.1.4 Drawbacks of the IOHMM-GPOMDP Algorithm

We have just observed IOHMM-GPOMDP may fail to converge. A second drawback is
that being able to successfully predict rewards does not necessarily lead to revealing the
hidden state necessary for optimal policies. Consider the deterministic POMDP shown
in Figure 7(a). Solid lines are deterministic transitions. Dotted lines are followed with
probability 0.5. Actions only impact rewards when the current observation is a. To chose
the optimal action we must recall one past observation. If the previous observation was d,
then execute action u2, otherwise execute action u1. This is a simple policy requiring ng = 2
and it is easily learnt by the IState-GPOMDP algorithm of Section 2. Now consider the task
of learning an IOHMM to predict rewards. Figure 7(b) shows an optimal IOHMM with
ng = 3. This IOHMM waits for observation c or b while predicting 0 reward. Observation
c always implies a reward of -1 after the next action and b always implies a reward of 1
after the next action. This IOHMM successfully reveals the hidden state associated with
observation r because the IOHMM forward probability will indicate which of the two r world
states we are in. However it does not allow us to implement an optimal policy because we
need to know whether to issue action u1 or u2 before seeing observations a or b. Adding
states to the IOHMM does not help because the IOHMM is not required to remember the
critical observations d and e in order to optimise its performance.

These two drawbacks cause poor performance of IOHMM-GPOMDP on non-trivial prob-
lems, as we will observe in Section 7.

5.2 The Exp-GPOMDP Algorithm

One reason for the high variance of existing policy gradient methods is the noise introduced
through estimating the gradient by simulating a trajectory through the environment state

23

Aberdeen and Baxter

(a) (b)

Figure 7: 7(a) A POMDP with U = {u1, u2} and Y = {a,b,c,d,e,r}. The states with
observation r, have non-zero rewards shown. This POMDP can always be solved
by IState-GPOMDP with ng = 2 but will not be solved by the optimal IOHMM
shown in Figure 7(b), or one with more or less states.

space.4 Thus far we have viewed internal states as augmenting the global state space,
resulting in the method of sampling both world states and I-states. However, we can do
better than simply sampling one long I-state trajectory. Recall the reasons for introducing
simulation in the first place:

1. The POMDP model may not be available;

2. dynamic programming becomes infeasible for large ns.

Since we always know the current I-state transition model and the number of I-states
is typically small compared to the world state space, the main reasons for using simulation
do not apply. In short, we can use the current I-state FSC model to compute the gradient
equivalent to that we would compute if we could sample all possible I-state trajectories.
Equivalently, we are taking the expectation of the IState-GPOMDP gradient across all pos-
sible I-state trajectories. Since sampling I-state trajectories exacerbates the high variance
problem, we expect that computing the expectation over all possible trajectories will reduce
the variance, reducing the number of simulation steps required.

The algorithm modifies the IState-GPOMDP view by considering the discrete I-state
update process to be a hidden component of the policy µ. The parameters φ of ω are
now embedded in µ. At the top level the new algorithm is identical to memory-less IState-
GPOMDP. The change is in the way we compute µ(u|θ, φ, y) and in the way we represent
the I-state: as a belief vector of I-state occupation probabilities. We denote the belief vector
α, equivalent to the forward probability of an IOHMM.
4. The GAMP algorithm of Section 3.2 is an exception since it avoids simulating trajectories by direct

gradient estimation from the POMDP model.

24

Internal-State Policy-Gradient Algorithms for POMDPs

Definition 7 Let αt(g|φ, ~t) be the probability that gt = g given the current parameters and
the observation/action history ~t.

The new I-state update is simply

αt+1(h|φ, ~t+1) =
∑
g∈G

αt(g|φ, ~t)ω(h|φ, g, y). (12)

If the initial world state of the system is deterministic then we make the I-state belief de-
terministic, setting α0(g) = 1 for arbitrary g and 0 ∀g′ 6= g. If we have no prior information
about the initial state we choose α0(g) = 1/ng, ∀g. Now we write down the new form of
the policy which takes the expectation of µ over internal states

µ̄(u|θ, φ, y) =
∑
g∈G

αt+1(g|φ, ~t+1)µ(u|θ, g, y). (13)

Alternatively, µ̄ could be any bounded differentiable function of θ, φ, and y which incor-
porates α. We can view these equations as representing a form of IOHMM, where µ̄ is
the probability of emitting symbol (action) u given all previous observations. To finish the
algorithm we need to compute ∇µ̄ and use it in the IState-GPOMDP algorithm in place of
∇µ. This is straight forward after noting that ∇αt+1 can be updated recursively from ∇αt
and computing

∇θµ̄ =
∑
g∈G

αt+1(g|φ, ~t+1)∇µ(u|θ, g, y),

∇φµ̄ =
∑
g∈G

(∇αt+1(g|φ, ~t+1))µ(u|θ, g, y).

The algorithm, named Exp-GPOMDP, is shown in Algorithm 4.
The combination of (12) and (13) imply that each simulated step will now have a

complexity of at least O(ng(nu + ng)) compared to the IState-GPOMDP complexity of
O(nu + ng) per step. Experimental results of Section 7 show that while the wall clock time
of Exp-GPOMDP may be greater than IState-GPOMDP, the former requires fewer simula-
tion steps, which is desirable when world interactions are expensive. Finally, we note that
Exp-GPOMDP has the same convergence to local maxima guarantees as IState-GPOMDP
and the same bias/variance tradeoff for choosing β.

5.2.1 Related Work

Using a recursively updated forward probability variable α to compute an expectation over
all possible paths through a state lattice is an important aspect of hidden Markov Model
training (Poritz, 1988). By viewing state transitions as being driven by the observations, and
viewing actions as symbols generated by the HMM, the algorithm above looks like a method
of training Input/Output HMMs without using the backward probability component of
HMM training. Dropping the backward component allows infinite-horizon problems to be
tackled. If we restrict ourselves to finite-horizon tasks then it makes sense to perform the full
HMM style update, updating the gradient for each control step based on future as well as
past experience. This is exactly what the work of Shelton (2001b,c) does when incorporating
internal state into REINFORCE algorithm. Our work can be viewed as modifying theirs to
cope with non-episodic tasks.

25

Aberdeen and Baxter

Algorithm 4 Exp-GPOMDP

1: Given:

• Same requirements as IState-GPOMDP (Algorithm 2).

2: Set z0 = 0, and ∆ = 0 (z0,∆0 ∈ Rnp+ni).
3: for each internal state g do
4: Set α0(g) = 1/ng and ∇α0(g) = 0.
5: end for
6: while t < T do
7: Observe yt from the world.
8: for each internal state h do
9: αt+1(h|φ, ~t+1) =

∑
g∈G αt(g|φ, ~t)ω(h|φ, yt, g).

10: ∇αt+1(h|φ, ~t+1) =
∑

g∈G ∇αt(g|φ, ~t)ω(h|φ, yt, g) + αt(g|φ, ~t)∇ω(h|φ, yt, g).
11: end for
12: Choose ut from µ̄(ut|θ, φ, yt) =

∑
g∈G αt+1(g|φ, ~t)µ(u|θ, h, y).

13: zt+1 = βzt + ∇µ̄(ut|θ,φ,yt)
µ̄(ut|θ,φ,yt)

14: ∆t+1 = ∆t + 1
t+1 [r(it+1)zt+1 −∆t]

15: Issue action ut.
16: t+ +.
17: end while

6. Small FSC Gradients

We observed that policy-gradient FSC methods initialised with small random parameter
values failed to learn to use the I-states for non-trivial problems due to small gradients.
Increasing maxl φl (that is, the range of the random number generator), helps somewhat
but increasing this value too much results in the agent starting near a poor local maximum.
This problem arises from having a collection of I-states which are initially undifferentiated.
IState-GPOMDP fails to prefer one I-state over another for recording important events.

If a policy’s action probabilities µ(u|θ, h, y) are the same for each I-state g, the gradient
of the average reward with respect to the policy’s I-state parameters will be zero. Hence
policies whose starting distributions are close to uniform will be close to a point of zero gra-
dient with respect to the internal-state parameters, and will tend to exhibit poor behaviour
in gradient-based optimisation.

In addition, if the I-state transitions are close to uniform then the conditional probability
over I-state trajectories given most observation/action trajectories will be close to uniform.
Thus, it will be difficult for the controller to determine which I-state transitions to adjust
in order to maximise reward. The following theorem formalises this argument.

Theorem 8 If we choose θ and φ such that ω(h|φ, g, y) = ω(h|φ, g′, y) ∀g, g′, y and µ(u|θ, h, y) =
µ(u|θ, h′, y) ∀h, h′, y then ∇φη = 0.

This theorem is proved in Appendix A.3. Even if the conditions of the theorem are
met when we begin training, they may be violated by updates to the parameters θ during
training, allowing a useful finite state controller to be learnt. Appendix A.3 also analyses

26

Internal-State Policy-Gradient Algorithms for POMDPs

this phenomenon, establishing an additional condition for perpetual failure learn a finite
state controller, despite changes to θ during learning. The additional condition for lookup
tables is simply that ω(h|φ, g, y) = 1/ng ∀g, h, y.

The same problem has been observed in the setting of learning value functions when the
policy can set memory bits (Lanzi, 2000). Multiple trajectories through the memory states
have the same reward termed aliasing on the payoffs. A solution was hinted at by Meuleau
et al. (1999a) when it was noted that finite state controllers were difficult to learn using
Monte Carlo approaches unless strong structural constraints were imposed.

6.1 Sparse FSCs

To overcome the problem of random internal state trajectories, we use a modified I-state
representation: a large sparse I-state FSC where all I-states have out-degree k � ng. The
future I-states that can be reached from the current I-state must depend on the current
observation. This trick imposes the necessary constraints on the class of learnable FSCs
without requiring domain knowledge. Each observation/action trajectory will generate min-
imally overlapping distributions of I-state trajectories. Intuitively, this allows the correlation
of high-reward observation/action trajectories to a set of I-state trajectories.

The complexity of each IState-GPOMDP step now has complexity O(nuk), allowing the
use of many I-states provided k is small. The complexity of Exp-GPOMDP grows with
O(ng(nu + k)), restricting the number of I-states it is practical to use. For both algorithms
increasing ng results in more parameters, requiring more simulation steps during early
training.

Setting k = 1 is an interesting case which forces a single I-state trajectory for each
observation/action trajectory, however I-state trajectories may not be unique, or may merge,
causing the FSC to “forget” previous observations. If we use k = 1 we need large ngto avoid
merging I-state trajectories. This approach is valid for finite-horizon tasks and is equivalent
to a finite memory controller.

6.2 Empirical Effects of Sparse FSCs

Theorem 11 shows that the gradient of the stochastic finite state controller is 0 when the
transitions probabilities are independent of the internal state. This includes the apparently
sensible choice of initial controller which sets all transitions to equal probability (equivalent
to θk = φl = 0 ∀k, l) for lookup tables and many other sensible parameterisations. A
natural question is what happens to the gradient as we approach the uniform case. Figure 8
provides an empirical answer. We see that the gradient estimated by IState-GPOMDP with
4 I-states on the Load/Unload problem of Section 7.1 smoothly increases as we diverge from
uniform distributions for all algorithm variants. The dense ω shows results for the worst
case scenario fully-connected FSC. The rightmost point represents θk = φl = 0 ∀k, l. The
sparse ω line shows the results for k = 2. Det µ shows the effect of setting µ a priori to
be a deterministic function of (y, g). This is an alternative way to break the zero gradient
conditions but requires stronger assumptions about the best FSC policy. The IOHMM line
shows the magnitude of the θ gradients, computed after one IOHMM parameter estimation
phase. The increased gradient magnitude shows the benefit of computing gradients for
smaller set of parameters (the IOHMM estimates the remaining parameters). The dive in

27

Aberdeen and Baxter

Figure 8: Degradation of the magnitude of the gradient for IState-GPOMDP as FSC distri-
butions and action distributions approach uniformity. The lower lines have points
labelled with the range of the random initial values for parameters. Results are
averaged over 100 runs.

gradient for maxl φl = maxk θk > 2 shows the effect of pushing the initial parameters into a
local maxima. The sparse ω line shows that we can choose parameters which generate near
uniform distributions provided we use the sparse FSC trick.

The sparsity introduces an extra parameter k, the out-degree of each I-state. Figure 6.2
shows how the magnitude of the gradient varies as k is increased for the Load/Unload
problem to be described in Section 7.1. This problem is a useful benchmark because only
1 bit of internal state is required to formulate the best policy; though in this experiment
we set ng = 10 to demonstrate the effects of changing k. The top line represents ‖∇η‖ and
the lower line is ‖∆T ‖ estimated using Exp-GPOMDP with an estimation time of T = 105

steps and β = 0.8. The initial parameters are set to 0 so that all generated distributions
are initially uniform. As k is increased the gradient magnitude drops until at k = 10 we
have a dense FSC and ‖∇η‖ is within machine tolerance of 0 and ‖∆T ‖ = 3.13 × 10−7

which indicates the level of noise in the estimate since the true gradient is 0. The strongest
gradient is at k = 1 but at least for infinite-horizon tasks this choice is unsuitable because
the agent needs to learn useful loops in the FSC which is impossible if it has no choice of
I-state transitions. Thus k = 2 or k = 3 are reasonable choices for k.

Introducing sparsity restricts the class of policies hence generating purely random FSCs
may create an FSC which cannot represent a good ng I-state policy. It is useful to gen-
erate sparse FSCs using heuristics such as: “I-states should always be able to make self-
transitions,” representing the situation where no additional information needs to be stored
at that step. Domain knowledge can also be encoded in the choice of initial FSC.

28

Internal-State Policy-Gradient Algorithms for POMDPs

Figure 9: Effect of increasing the connectivity for the Load/Unload problem with ng = 10.
Results are averaged over 30 runs.

Section 7.2 demonstrates of the effect of sparse transitions on the Heaven-Hell problem,
for which we could not achieve convergence without using sparse transitions.

7. Empirical Comparisons

This section examines the relative performance of the four algorithms discussed in this paper
on three POMDPs from the literature. We begin with the simple Load/Unload problem,
move on to the small but challenging Heaven/Hell problem and finish with a medium size
noisy robot navigation problem. For all problems in this section the initial parameters are
set to 0.

7.1 Load/Unload

7.1.1 Problem Description

The Load/Unload problem of Peshkin et al. (1999) is described in Figure 3(a). It is a simple
POMDP which requires internal state to solve. There is no noise added to the problem and
we require only ng = 2 to learn the best finite state controller represented by the policy
graph in Figure 3(b).

7.1.2 Experimental Protocol

With the exception of IOHMM-GPOMDP, all the algorithms in this paper will reliably solve
the simple Load/Unload problem given sufficient resources. We set the number of gradient
estimation steps to be 5000, deliberately under estimating the steps required in order to
gauge the relative performance of the algorithms. No quadratic penalty was used for these
runs. A discount factor of β = 0.8 is sufficient for this simple problem. All runs used ng = 4
for a total of 4× 10 = 40 states. We did not use the minimum possible ng = 2 because this
value is too small to allow a sparse FSC with k > 1.

29

Aberdeen and Baxter

Table 2: Results over 100 runs on the Load/Unload scenario with 5 positions. η values are
multiplied by 10.

Algorithm mean η max. η var. ×103 sec. to 2.0
GAMP dense 0.500 0.500 0 — (0)
GAMP k = 2 2.39 2.50 1.16 0.22 (96)
IState-GPOMDP dense 0.540 2.48 0.383 2.75 (1)
IState-GPOMDP k = 2 1.15 2.50 7.86 2.05 (31)
Exp-GPOMDP dense 0.521 0.571 6.05× 10−3 — (0)
Exp-GPOMDP k = 2 2.18 2.50 3.40 9.75 (82)
IOHMM-GPOMDP 1.41 2.50 6.96 5.53 (46)
Inc. Prune. 2.50 2.50 0 3.27 (100)

For the IOHMM-GPOMDP runs we took samples of 1000 steps in order to re-estimate
the IOHMM parameters. The Load/Unload IOHMM indexes state transitions distributions
by the current observation and IOHMM state. In order to achieve convergence the IOHMM
had to distinguish between rewards for loading and rewards for unloading. To do this we
used a reward of 1.0 for loading and 2.0 for unloading. This allowed us to use discrete
emission distributions with 3 symbols: rt = 0, rt = 1 and rt = 2. This does not change
the optimal policy and the quoted results have been adjusted back to the normal reward
schedule.

The Incremental Pruning algorithm results are provided to allow comparison with exact
methods. We used Anthony Cassandra’s pomdp-solve V4.0 source code which performs
value-iteration, learning value functions represented by convex piecewise linear functions
(Cassandra, 1998). This code outputs a policy graph which can be loaded by our code to
obtain results for comparison.

All algorithms except IOHMM-GPOMDP and Incremental Pruning used lookup tables
to represent ω(h|φ, g, y) and µ(u|θ, h, y). IOHMM-GPOMDP used a linear controller µ due
to the real valued inputs. As with all parameterisations used in the paper, the soft-max
function (10) is used to generate output distributions. The total number of parameters in
the table case is 56 for dense FSCs and 32 for sparse FSCs with k = 2. IOHMM-GPOMDP
used 64 parameters.

7.1.3 Results

Table 2 summarises the results for this problem on all the algorithms described in this paper,
using both sparse FSCs and dense FSCs. The rightmost column represents the mean time
in seconds taken to converge to a value of η which represents a reasonable policy. Only those
runs which achieve the cut-off value are included in the figures for time to convergence. The
number of runs which reach the cut-off is written in brackets next to the convergence time.
This allows a comparison of the running times of different algorithms which may not always
achieve a good policy.

30

Internal-State Policy-Gradient Algorithms for POMDPs

There are several interesting results in Table 2. The first is the complete failure of GAMP
to learn when a dense initial FSC is used. This is an expected consequence of Theorem 8
which tells us that the gradient of the φ parameters is always 0 in this case. As expected,
the Exp-GPOMDP algorithm also fails in this case but both algorithms do well when we
use sparse FSCs. The IState-GPOMDP algorithm with a dense FSC occasionally succeeds,
which is simply due to noise in the gradient estimates moving the parameters in such a way
that Theorem 8 no longer applies. This does not happen for GAMP and Exp-GPOMDP due
to their lower variance.

The GAMP algorithm performs consistently well for sparse FSCs and is the fastest
algorithm. As expected, the sparse version of Exp-GPOMDP performs significantly better
than the sparse IState-GPOMDP algorithm.

We would not get the IOHMM-GPOMDP algorithm to converge reliably, and although
it outperforms the IState-GPOMDP algorithm in this experiment, simply increasing the
gradient estimation time will allow IState-GPOMDP to converge more reliably than IOHMM-
GPOMDP. This is consistent with the problems identified in Section 5.1.4. Figure 10 shows
how quickly the three simulation based algorithms converge. The Exp-GPOMDP algorithm
clearly outperforms the other two. According to a single-tailed t-test the IOHMM-GPOMDP
algorithm is statistically better than IState-GPOMDP with a confidence of 95%. The Exp-
GPOMDP result is significantly better than IState-GPOMDP with a 99% confidence interval.

Unsurprisingly the exact Incremental Pruning algorithm works extremely well on this
small problem, always obtaining the optimal policy. Using VAPS in an episodic setting of
the Load/Unload problem achieved convergence within around 20,000 steps Peshkin et al.
(1999). Their version of the problem provided information about which position the agent
was in on the road, rather than the null observations we give for non-end points. The
episodic constraint also makes the problem easier.

7.2 Heaven/Hell

7.2.1 Problem Description

The Heaven-Hell problem of Geffner and Bonet (1998), Thrun (2000) is shown in Figure 11.
The agent starts in either position shown with probability 0.5. The state is completely
observable except that the agent does not initially know if it starts in the left world or the
right world. The agent must first visit the signpost which provides this information, and
remember the sign direction until the top-middle state. The agent should then move in
the direction the signpost points to receive a reward of 1, or -1 for the wrong direction. In
theory 3 I-states are sufficient for optimal control.

Although this problem has only 20 world states, it contains two features which make
it a difficult task. Firstly, it requires long-term memory. The signpost direction must be
remembered for 5 time steps. Secondly, the temporal credit assignment problem is hard
because the actions critical to receiving a consistent reward happen up to 11 steps before
receiving the reward. There is nothing in the reward structure which informs the agent that
visiting the signpost is good, that is, for a random policy the same average reward of 0 is
received regardless of whether the agent saw the signpost.

31

Aberdeen and Baxter

Figure 10: Convergence plots comparing 100 runs of IState-GPOMDP and Exp-GPOMDP
with 4 I-states and a connectivity of k = 2. This figure also shows the results for
IOHMM-GPOMDP trained using an IOHMM with 4 states and 1000 observations
per re-estimation. The variance bars show 0.2

√
(var) to reduce clutter.

Figure 11: The Heaven/Hell problem: the optimal policy is to visit the signpost to find out
whether to move left or right at the top-middle state in order to reach heaven.

32

Internal-State Policy-Gradient Algorithms for POMDPs

7.2.2 Experimental Protocol

Agents are parameterised by lookup tables with a total of 1540 parameters. Quadratic
penalties were used to avoid local maxima (see Appendix B.3). GAMP used a penalty of
q = 1× 10−7. Good convergence was found to be sensitive to the penalty, with some runs
failing when the penalty was set to 1×10−6 or 1×10−8. IState-GPOMDP is less sensitive to
the penalty and used q = 1× 10−4. IState-GPOMDP used a discount factor of β = 0.99 and
gradient estimation times of 107 steps. The global state space comprises of 20 world states
and 20 I-states, for a total of nsng = 400. We use more I-states than necessary to increase
the ease with which the sparse FSC will learn cycles in the policy-graph of the appropriate
length. An analogy can be drawn with multi-layer perceptrons where we often choose the
number of hidden units to be larger than strictly required for the problem.

We ran Incremental Pruning for this problem, however it failed to converge after running
for 100,000 seconds, producing policy graphs with ng > 2000 states when the optimal
infinite-horizon policy graph can be represented with ng = 24.5 This poor performance
results from the failure of the algorithms to identify that the task is actually episodic and
that the belief state can be reset after receiving a reward. Using a fixed number of I-states
has forced our algorithms to identify useful cycles in the policy graph, hence identifying the
episodic qualities of the POMDP.

7.2.3 Results

To demonstrate the necessity of sparse I-state transitions the experiments were run with
dense initial FSCs and with FSCs with k = 3 possible next I-states for each combination
of current I-state and observation. The stochasticity in the GAMP algorithm comes from
the random choice of initial FSC. IState-GPOMDP contains the additional randomness of
different trajectories taken through the global state space.

Table 3 shows the results of these experiments. Both algorithms find the optimum policy,
but only GAMP finds it consistently. The two failed IState-GPOMDP runs had η ≈ 0. All
GAMP k = 3 runs succeeded. Also notice that the experiments with dense FSCs all failed
with no runs converging. For a dense FSC, the initial gradient magnitude estimated by
GAMP is within machine tolerance of 0. The agents typically learnt to use about half of
the available I-states, learning to never to make transitions to the unused-states.

The wall clock times to convergence quoted for these experiments are not directly com-
parable. The IState-GPOMDP experiments were run using 94 processors of a 550 MHz dual
CPU PIII Beowulf cluster. The GAMP experiments were run on a 1.3 GHz Athlon, roughly
equivalent to 3 CPUs of the cluster. It is extraordinary that GAMP converged in less than
0.3% of the time required by IState-GPOMDP, with better results. This demonstrates the
advantage of having a model of the world.

The same problem was tackled by Geffner and Bonet (1998) and a continuous state
space version was tackled by Thrun (2000). Both of these papers assumed knowledge of the
POMDP model and that the problem is episodic. Within our knowledge this is the first

5. Exact algorithms compute policy graphs equivalent to a deterministic ω(h|φ, g, y) function and allowing
only one action per node. Because we make the policy µ(u|θ, h, y) a function of current observation as
well as the I-state (equivalent to a policy-graph node), we can compute optimal policies with far fewer
I-states. In the case of Heaven/Hell, ng = 3 is sufficient.

33

Aberdeen and Baxter

Table 3: Results over 10 runs for the Heaven/Hell scenario. η values are multiplied by 102.

Algorithm mean η max. η var. ×105 sec. to 5.0
GAMP k = 3 9.01 9.09 0.514 34 (10)
GAMP dense 5.24× 10−3 5.24× 10−3 0 — (0)
IState-GPOMDP k = 3 6.49 9.09 10.8 11436 (8)
IState-GPOMDP dense 0.0178 0.0339 3.23× 10−4 — (0)
Optimum 9.09

time the Heaven/Hell problem has been solved using a model free algorithm. We could not
get the IOHMM-GPOMDP algorithm to solve this problem.

7.3 Pentagon

7.3.1 Problem Description

An interesting set of problems are defined by Cassandra (1998). In these problems a robot
must navigate through corridors to reach a goal. The world is mapped into discrete loca-
tions. The robot occupies a location pointing North, South, East or West. The actions
it can take are U = {move forward, turn left, turn right, declare goal}. Actions
do nothing with 11% probability, or move/turn one too many steps with 1% probability.
This models the unreliability of the movement systems. There are 28 observations which
indicate whether the locations immediately to the front and sides of the robot are reachable.
The observations have a 12% chance of being misleading, modelling sensor uncertainty. We
modified the problem slightly from the original definition to make it an infinite-horizon task
and to make rewards control-independent. The modification means that the declare goal
action in the correct state leads to a special state where a reward of 1 is received for any
action before the agent is taken back to the initial state. No penalty is received for the
declare goal action in the wrong state. In this experiment the agent always starts in the
same place but the noise means the agent can quickly become confused about its location
even if it has a perfect memory of past observations and actions.

Figure 12 shows the Pentagon navigation problem where the robot must move from the
bottom left state to the extra state in the upper left of the middle. This problem exhibits a
lot of symmetry, meaning the agent finds many states hard to distinguish by observations
alone.

7.3.2 Experimental Protocol

This problem has 209 world states plus internal states. For 20 I-states the global state space
size is 20×209 = 4180 states. The IState-GPOMDP algorithm required a gradient estimation
time of 2×106 steps to achieve consistent gradient estimates and Exp-GPOMDP required 106

steps, demonstrating an effective reduction in variance. Each step in the gradient-ascent line
search used an estimation time of one quarter of the standard estimation time. This speeds
up convergence, taking advantage of the GSEARCH algorithm’s ability to tolerate poor

34

Internal-State Policy-Gradient Algorithms for POMDPs

Figure 12: The Pentagon robot navigation problem maze.

gradient estimates during the line search (see Appendix B.2). For the simulated algorithms
a quadratic penalty of q = 10−4 was used along with a discount factor of β = 0.99.

The Belief experiment uses the POMDP model and the observations to maintain a belief
state over the 209 world states. The belief state is passed to IState-GPOMDP in place of
y. The belief state sufficiently summarises all past events (Åström, 1965) thus the optimal
policy is memory-less and we set the number of I-states to 1.6 Because belief states are
vectors in [0, 1]ns we cannot use tables to parameterise policies. Instead we use a linear
policy with 209 inputs and 4 outputs passed through a soft-max function to generate action
distributions. The largest experiments required 3920 parameters to be estimated.

As in the Load/Unload experiment, the IOHMM experiment uses discrete transition dis-
tributions indexed by IOHMM state and observation. Unlike the Load/Unload experiment,
reward emissions are generated by a single Gaussian for each state, bounded to [−1, 1].

7.3.3 Results

The lower part of the table provides baseline figures. I-states approximate the policies
achievable using a full belief state thus the Belief result of η = 3.65 (Table 4) is an empirical
upper bound for the η we should be able to achieve using a large number of I-states. IState-
GPOMDP with ng = 1 is a memory-less policy which should lower bound the I-state results.
Values between these empirical bounds show that I-states can be used to learn better than
memory-less policies with a finite amount of memory. The MDP line gives the results for
learning when the agent is told the true state of the world, giving us an empirical value
for the best policy achievable in a fully observable environment. The Noiseless line is the
theoretical maximum that can be achieved if no observation or transition noise is added.

The Incremental Pruning algorithm aborted after 5 value-iteration steps, consuming all
256 MB of memory on the system in 10,800 seconds. Cassandra (1998) contains results
for the Pentagon problem which were obtained using the most likely state heuristic. This

6. Using the model to generate belief states which take the place of y in IState-GPOMDP is another form
of model based policy-gradient algorithm with the potential to solve large problems, especially in com-
bination with belief state factorisation. This idea was applied to gradient methods for learning value
functions by Rodŕiguez et al. (1999).

35

Aberdeen and Baxter

Table 4: Results over 10 runs for various algorithms on the Pentagon scenario. η values are
multiplied by 102.

Algorithm ng k mean η max. η var. ×105 sec. to 2.0
GAMP 5 2 2.55 2.70 0.102 611 (10)

10 2 2.50 2.63 0.128 4367 (10)
20 2 2.50 2.80 0.250 31311 (10)
20 3 2.89 3.00 0.0613 47206 (10)

IState-GPOMDP 5 2 2.06 2.42 2.81 649 (9)
10 2 2.18 2.37 0.180 869 (9)
20 2 2.12 2.28 0.137 1390 (9)
20 3 2.15 2.33 0.138 1624 (9)

Exp-GPOMDP 5 2 1.96 2.33 4.01 1708 (7)
10 2 2.19 2.40 0.151 6020 (9)
20 2 2.11 2.27 0.105 29640 (8)
20 3 2.26 2.36 0.0448 48296 (10)

IOHMM-GPOMDP 1 1.39 1.26 1.3 — (0)
IOHMM-GPOMDP 5 1.47 1.63 3.65 — (0)
IState-GPOMDP 1 1 1.35 1.37 0.00324 — (0)
Belief 2.67 3.65 7.78 2313 (7)
MDP 4.93 5.01 0.148 24 (10)
Noiseless 5.56 5.56

36

Internal-State Policy-Gradient Algorithms for POMDPs

method uses the belief state only to identify the most likely current state, performing value
updates based on the assumption that the system is in that state, greatly simplifying the
problem of representing the value function. To perform a comparison we ran our trained
policies on the original POMDP and used the sum of discounted rewards criteria as used in
the thesis. The maximum Belief GPOMDP result of 3.64 gives a discounted reward of 0.764.
This result sits between Cassandra’s results of 0.791 for a known start state and 0.729 for a
uniform initial belief state. We do not reset the I-state after receiving rewards so the state
in the initial position is not fixed, however the probability of occupying each I-state is not
uniform, thus Cassandra’s results bracketing ours is a reasonable result.

GAMP has the best finite-memory results because it has access to the POMDP model,
however, it does not out-perform the Belief experiments which have access to the model
and the full belief state. For large or infinite state spaces tracking the full belief state
is intractable so finite memory methods such as GAMP are useful. The GAMP result of
η = 3.00 for ng = 20 and k = 3 is the best finite state controller, coming close to the best
expected result of η = 3.65 while using only 20 I-states. In fact the mean value for GAMP
is greater than the mean value for the Belief experiment, indicating that GAMP gradient
estimates have lower variance and that the Belief experiments should have used a longer
gradient estimation time. Increasing ng and the FSC connectivity k generally improves the
results due to the increasing richness of the parameterisation. However setting k > 3 caused
failures due to small initial gradients.

The fact that the best IState-GPOMDP results come from ng < 20 is because we did not
scale the number of gradient estimation steps with the number of I-states. Exp-GPOMDP’s
reduced variance allowed it to demonstrate performance increases as ng is increased, even
when using fewer gradient estimation steps. Fewer estimation steps means fewer expensive
interactions with the world. This claim is backed up by Figure 13 which demonstrates that
for ng = 20, Exp-GPOMDP produces a superior result in fewer steps than IState-GPOMDP.

8. Future Work

The state space of a POMDP grows exponentially with the number of state variables in
the system. Factored belief state methods for POMDPs (Hansen and Feng, 2000) oper-
ate on state variables directly, greatly compacting the representation of the POMDP and
hence allowing much larger problems to be tackled. To scale to hundreds of thousands of
states algorithms such as GAMP should be extended to factored representations. Factored
representations can also be used with IState-GPOMDP when observations are replaced by
factored belief states computed using the world model (similar to the Belief experiment of
Section 7.3).

We have so far assumed a fixed number of I-states, ng. We would prefer algorithms that
begin with a small number of I-states and add more as found necessary. A simple approach
is to split states which have non-deterministic transitions or actions. Similar ideas have
been applied to HMMs (Chrisman, 1992) and utile distinction trees (McCallum, 1996).

Extending the trick of sparse FSCs to function approximators like neural networks is
relatively straight forward and we plan to apply it to problems with continuous state spaces
such as speech processing.

37

Aberdeen and Baxter

Figure 13: Convergence of IState-GPOMDP and Exp-GPOMDP on the Pentagon problem
with ng = 20 and k = 3.

For applications that learn from real experience it is important to keep the number
of interactions with the world to a minimum (Peshkin and Shelton, 2001). For example,
it is not feasible to allow a robot to run around a building making millions of random
high level decisions. Combining techniques like importance sampling (Glynn, 1996, Ortiz
and Kaelbling, 2000, Shelton, 2001b) with Exp-GPOMDP is an interesting prospect for
minimising world interactions.

9. Conclusion

We have described and empirically compared four policy-gradient algorithms for learning
parameterised policies for POMDPs. All the algorithms incorporate internal state to help
cope with the loss of the Markov property that occurs with partial observability. The GAMP
algorithm makes use of a model of the environment to compute approximations to the gradi-
ent of the long term average reward. The IState-GPOMDP algorithm estimates the gradient
without a model by interacting with the world. The IOHMM-GPOMDP algorithm reveals
hidden state by attempting to predict rewards and the Exp-GPOMDP algorithm behaves
similarly to IState-GPOMDP but it computes the expectation over all I-state trajectories
instead of simulating paths. We also analysed as problem with finite state controller agents
which occurs when the I-states are initially undifferentiated. We have demonstrated the
ability of these algorithms to learn POMDPs with thousands of states, increasing by an
order of magnitude the size of POMDPs previously learnt using FSCs.

38

Internal-State Policy-Gradient Algorithms for POMDPs

10. Acknowledgements

The Authors would like to thank Professors Markus Hegland, Sebastian Thrun, Brian An-
derson and Yutaka Yamamoto for their comments. Thanks also to Phillip Williams for
mathematical assistance. Douglas Aberdeen is supported by an Australian Postgraduate
Award.

Appendix A. Proofs

A.1 Proof of Theorem 3

Proof

‖∇̂η −∇η‖∞ = ‖π
∞∑
n=N

∇PPnr‖

≤ ‖π‖‖
∞∑
n=N

∇PPnr‖, Cauchy-Schwartz inequality,

≤ ‖π‖
∞∑
n=N

‖Vn‖, Triangle inequality,

≤
∞∑
n=N

‖Vn‖, ‖π‖∞ ≤ 1 (14)

where ‖Vn‖ is defined by the following expression in which the vector ξn takes the place of
PPnr and ξn,j is the j’th element of ξn

‖Vn‖ = ‖∇PPnr‖
= ‖∇Pξn‖

= ‖
∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)ξn,j‖.

Now we show the computation for each element of ξn, defining it in terms of the sum of η
and the variation of ξn,j away from η

ξn, i =
∑
j

Pnijrj

=
∑
j

(πj + (Pij − πj))rj

=
∑
j

(πj + ∆n(i, j))rj

= η +
∑
j

∆n(i, j)rj .

39

Aberdeen and Baxter

Substituting back into ‖Vn‖ we obtain

‖Vn‖ = ‖
∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)(η +
∑
m

∆n(j,m)rm)‖

= ‖
∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)η+

∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)
∑
m

∆n(j,m)rm‖

= ‖η
∑
y

ν(y|i)∇
∑
u

µ(u|θ, y)
∑
j

q(j|i, u)︸ ︷︷ ︸
=1

+

∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)
∑
m

∆n(j,m)rm‖

= ‖η
∑
y

ν(y|i)∇
∑
u

µ(u|θ, y)︸ ︷︷ ︸
=0

+

∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)
∑
m

∆n(j,m)rm‖

= ‖
∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)
∑
m

∆n(j,m)rm‖,

which has only one vector quantity µ(u|θ, y) so we can take the scalar factors outside the
norm, taking the absolute value of the |

∑
m ∆n(j,m)| which is the only possibly negative

quantity

= ‖
∑
j,y,u

ν(y|i)∇µ(u|θ, y)q(j|i, u)
∑
m

∆n(j,m)rm‖

≤
∑
y,u

ν(y|i)‖∇µ(u|θ, y)‖
∑
j

q(j|i, u)|
∑
m

∆n(j,m)rm|

≤ R
∑
y,u

ν(y|i)U
∑
j

q(j|i, u)|
∑
m

∆n(j,m)|. (15)

The last line makes use of the bounds on ∇µ(u|θ, y) and rm stated in Assumptions 2 and
3. Now observe that

|
∑
m

∆n(j,m)| ≤
∑
m

|∆n(j,m)|, Triangle inequality

=
∑
m

|Pnjm − πm|

= d(Pnj , π),

40

Internal-State Policy-Gradient Algorithms for POMDPs

that is, the total variation distance from Definition 1. Returning to (15) and substituting
the inequality above

≤ UR
∑
y,u

ν(y|i)
∑
j

q(j|i, u)d(Pnj , π),

which is further simplified by letting d̄(n) = maxj d(Pnj , π), giving

≤ UR
∑
y,u

ν(y|i)
∑
j

q(j|i, u)d̄(n)

= URd̄(n)
∑
y,u

ν(y|i)
∑
j

q(j|i, u)︸ ︷︷ ︸
=1

= URd̄(n)
∑
y,u

ν(y|i)︸ ︷︷ ︸
=nu

= URnud̄(n).

Now we substitute this value for ‖Vn‖ into (14)

‖∇̂η −∇η‖ ≤
∞∑
n=N

URnud̄(n)

= URnu

∞∑
n=N

d̄(n).

Now we make use of Definition 2, bounding d̄(n) in terms of τ of the matrix P

≤ URnu
∞∑
n=N

exp(−bn
τ
c)

= URnu


 ∞∑
l=bN

τ
c+1

τ−1∑
k=0

exp(−l)

+
τ−1∑

k=N mod τ

exp(−bN
τ
c)

 (16)

≤ URnu
∞∑

l=bN
τ
c

τ−1∑
k=0

exp(−l).

(17)

The last two lines re-write the bound so that the floor operator does not appear in the
summation. We arrive at (16) by re-writing the first line as a sum of sums for which
the l = bn/τc value is constant. The second term of (16) is eliminated by noting that
k = N mod τ ≤ τ and combining it with the first sum by subtracting one from the initial

41

Aberdeen and Baxter

summation index l. We can now observe we are performing the first sum τ times and apply
a a standard series convergence result

= URnuτ

∞∑
l=bN

τ
c

exp(−l)

= URnuτ
∞∑

l=bN
τ
c

(
1

exp(1)

)l

= URnuτ
exp(−bNτ c)
1− exp(−1)

.

A.2 IState-GPOMDP Proofs

A.2.1 Proof of Theorem 5

The following proof is copied from Baxter and Bartlett (2001) and is not the author’s work.
Proof Recall from Equation (7) that

∇η = π∇P [I − (P − eπ)]−1r

A quick induction argument shows that [P − eπ]n = Pn−eπ which converges to 0 as n→∞
by Assumption 1. So by a classical matrix theorem, [I − (P − eπ)]−1 exists and is equal to∑∞

n=0 [Pn − eπ]. Observe that (∇P)e = 0 so (7) can be rewritten as

∇η = π

[∞∑
n=0

(∇P)Pn
]
r. (18)

Now let β ∈ [0, 1] be a discount factor and consider the following modification to Equa-
tion (18)

∇̂βη := π

[∞∑
n=0

(∇P)(βP)n
]
r. (19)

Since limβ→1∇βη = ∇η, and since (βP)n = βnPn → βneπ → 0, we can take ∇P back out
of the sum and write

∇̂βη := π(∇P)

[∞∑
n=0

βnPn

]
r. (20)

But [
∑∞

n=0 β
nPn] r = Jβ where Jβ = [Jβ(1, 1), . . . , Jβ(ns, ng)] is the vector of expected

discounted reward from each world/I-state pair (i, g):

Jβ(i, g) := E

[∞∑
t=0

βtr(it, gt)|i0 = i, g0 = g

]
, (21)

42

Internal-State Policy-Gradient Algorithms for POMDPs

where the expectation is over all sample paths (i, g), (i1, g1), (i2, g2), This give us the
required expression

lim
β→1

π(∇P)r = ∇η.

A.2.2 Proof of Theorem 5

This proof is an easy generalisation of (Baxter and Bartlett, 2001, Thm. 4).
Proof Let X0, X1, . . . , Xt, . . . denote the random process corresponding to the environment
Markov chain generated by P (θ, φ). Also, let G0, G1, . . . , Gt, . . . denote the random process
corresponding to the I-state Markov chain generated by P (θ, φ). By Assumption 1, {Xt, Gt}
is asymptotically stationary, and we can write

π∇PJβ =
∑
i,j

π(i, g)∇p(i,g)(j,h)(θ, φ)Jβ(j, h)

=
∑

i,j,y,u,g,h

π(i, g)q(j|i, u)νy(i)[
ω(h|φ, g, y)∇θµ(u|θ, h, y),∇φω(h|φ, g, y)µ(u|θ, h, y)

]
Jβ(j, h), from (2)

=
∑

i,j,y,u,g,h

π(i, g)p(i,g)(j,h)(u)νy(i)[
ω(h|φ, g, y)

∇θµ(u|θ, h, y)
µ(u|θ, h, y)

µ(u|θ, h, y)Jβ(j, h),

∇φω(h|φ, g, y)
ω(h|φ, g, y)

ω(h|φ, g, y)µ(u|θ, h, y)Jβ(j, h)
]
.

There are two independent sets of gradient values for the θ and φ parameters. The remainder
of the proof follows the gradient w.r.t. φ however the proof w.r.t. θ is the same. Dropping
the ∇θ components, we can rewrite the last expression the right-hand-side as∑

i,j,y,u,g,h

Eχi(Xt)χj(Xt+1)χg(Gt)χh(Gt+1)χu(Ut)χy(Yt)
∇ω(h|φ, g, y)
ω(h|φ, g, y)

J(t+ 1),

where χi(X) denotes the indicator function for state i of random process X

χi(Xt) :=

{
1 if Xt = i,

0 otherwise,

and the expectation is with respect to the joint distribution of {Xt, Xt+1, Yt, Gt, Gt+1, Ut}
when Xt is stationary. Here J(t+1) is the process governing the discounted infinite horizon
reward

J(t+ 1) =
∞∑

s=t+1

βs−t−1r(Xs, Gs)

43

Aberdeen and Baxter

such that

Jβ(j, h) = E[J(t+ 1)|Xt+1 = j,Gt+1 = h]

follows from the boundedness of the rewards and Lebesgue’s dominated convergence theo-
rem.

IfXt is stationary thenXt is also ergodic and the joint process {Xt, Xt+1, Yt, Gt, Gt+1, Ut}
is stationary and ergodic (because Yt is i.i.d. given Xt, Gt+1 is i.i.d. given Gt and Yt, Ut
is i.i.d. given Gt+1 and Yt, and Xt+1 is i.i.d. given Xt and Ut). Since {Zt} is obtained
by taking a fixed function of {Xt, Xt+1, Yt, Gt, Gt+1, Ut}, it is also stationary and ergodic
(see (Breiman, 1966, Proposition 6.31)). As

∥∥∥∇ω(h|φ,g,y)
ω(h|φ,g,y)

∥∥∥ is bounded by Assumption 4, from
the ergodic theorem we obtain (with obvious notation):

π∇φPJβ =∑
i,j,y,u,g,h

lim
T→∞

1
T

T−1∑
t=0

χijuygh(Xt, Xt+1, Ut, Yt, Gt, Gt+1)
∇ω(h|φ, g, y)
ω(h|φ, g, y)

J(t+ 1)

= lim
T→∞

1
T

T−1∑
t=0

∑
ijyugh

χijuygh(Xt, Xt+1, Ut, Yt, Gt, Gt+1)
∇ω(h|φ, g, y)
ω(h|φ, g, y)

J(t+ 1)

= lim
T→∞

1
T

T−1∑
t=0

∇ω(Gt+1|φ,Gt, Yt)
ω(Gt+1|φ,Gt, Yt)

J(t+ 1)

= lim
T→∞

1
T

T−1∑
t=0

∇ω(Gt+1|φ,Gt, Yt)
ω(Gt+1|φ,Gt, Yt)

[
T∑

s=t+1

βs−t−1r(Xs, Gs) +
∞∑

s=T+1

βs−t−1r(Xs, Gs)

]
.

(22)

Concentrating on the second term in the right-hand-side of (22), observe that:

∥∥∥∥∥ 1
T

T−1∑
t=0

∇ω(Gt+1|φ,Gt, Yt)
ω(Gt+1|φ,Gt, Yt)

∞∑
s=T+1

βs−t−1r(Xs, Gs)

∥∥∥∥∥
≤ 1
T

T−1∑
t=0

∥∥∥∥∇ω(Gt+1|φ,Gt, Yt)
ω(Gt+1|φ,Gt, Yt)

∥∥∥∥ ∞∑
s=T+1

βs−t−1 |r(Xs, Gs)|

≤ BR

T

T−1∑
t=0

∞∑
s=T+1

βs−t−1

=
BR

T

T−1∑
t=0

βT−t

1− β

=
BRβ

(
1− βT

)
T (1− β)2

→ 0 as T →∞,

44

Internal-State Policy-Gradient Algorithms for POMDPs

where R and B are the bounds on the magnitudes of the rewards and ‖∇ω/ω‖ from As-
sumptions 2 and 4. Hence,

π∇φPJβ = lim
T→∞

1
T

T−1∑
t=0

∇ω(Gt+1|φ,Gt, Yt)
ω(Gt+1|φ,Gt, Yt)

T∑
s=t+1

βs−t−1r(Xs, Gs),

almost surely. Unrolling the equation for ∆φ
T in the IState-GPOMDP algorithm shows it is

equal to

1
T

T−1∑
t=0

∇ω(gt+1|φ, gt, yt)
ω(gt+1|φ, gt, yt)

T∑
s=t+1

βs−t−1rs−1,

hence ∆φ
T → π∇φPJβ w.p.1 as required. The same procedure is followed to show that this

is also true with respect to the parameters θ.

A.3 Conditions for Zero Gradient of the I-state Controller

To increase η by utilising internal state, for some (θ, φ) we require ‖∇φη‖ > 0. From (8),
we have

∇η = π

[∞∑
n=0

(∇P)Pn
]
r. (23)

We must select (θ, φ) to provide an initial FSC and policy prior to training. A sensible
choice for the FSC is one that makes the least assumptions about the task: a uniform FSC
where any observation y is equally likely to lead to any next I-state h from any current
I-state g. Here we shall prove that this and similarly sensible choices of initial FSC result
in ‖∇φη‖ = 0.

Recall from (2) that the transition probability matrix P (θ, φ) has dimension nsng×nsng
and the entries p(i,g)(j,h)(θ, φ)|i,j=1...ns;g,h=1...ng are given by

p(i,g)(j,h)(θ, φ) =
∑
y∈Y

∑
u∈U

ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u). (24)

Also, r = [r1, r2, ṡ, rns]′ is a column vector of the rewards received for being in state i. In
the case of I-states r(i,g) = ri.

Notation 1 For the remainder of this section we will abuse notation to allow ω(h|φ, g, y) =
ω(h|φ, y) to mean ω(h|φ, g, y) = ω(h|φ, g′, y) ∀g, g′, y for the specified choice of θ or φ. In
words we say that in this situation ω(h|φ, y) is independent of the choice of I-state. When
taking the gradient of these functions we will reintroduce the I-state dependence since the
gradient may vary with the I-state even when the value does not.

Lemma 9 If we choose θ and φ such that ω(h|φ, g, y) = ω(h|φ, y) ∀g and µ(u|θ, h, y) =
µ(u|θ, y) ∀h that is, independent of the current I-state, then (∇φP)P = 0.

45

Aberdeen and Baxter

Proof
We start by re-writing (2), taking into account the simplified distributions and combining

the two summations for brevity

p(i,g)(j,h)(θ, φ) =
∑
y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|i, u). (25)

Similarly we can write down the simplified gradient of the x’th parameter of φ, denoted φl

∂p(i,g)(j,h)(θ, φ)
∂φx

=
∂

∂φl

[∑
y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|i, u)

]

=
∑
y,u

ν(y|i)∂ω(h|φ, g, y)
∂φx

µ(u|θ, y)q(j|i, u).

Now, the (i, g)(j, h)’th element of (∂P∂φl)P is the dot product of row (i, g) of ∂P
∂φl

with column
(j, h) of P . Here (k, c) defines which dot product element we are computing(

∂P

∂φl
P

)
(i,g)(j,h)

=
∑
k∈S

∑
c∈G

∂p(i,g)(k,c)(θ, φ)
∂φx

p(k,c)(j,h)

=
∑
k∈S

∑
c∈G

(∑
y,u

ν(y|i)∂ω(c|φ, g, y)
∂φx

µ(u|θ, y)q(k|i, u)

)
(∑
y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|k, u)

)
.

From (25) we see that p(k,c)(j,h)(θ, φ) does not depend on c, so we define p(k,c)(j,h)(θ, φ) :=

p(k)(j,h)(θ, φ) and continue by moving the sum over c inside ∂p(i,g)(k,c)(θ,φ)

∂φx

=
∑
k∈S

(∑
y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∑
c∈G

∂ω(c|φ, g, y)
∂φx

)
p(k)(j,h)(θ, φ)

=
∑
k∈S

(∑
y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∂

∂φl

∑
c∈G

ω(c|φ, g, y)

)
p(k)(j,h)(θ, φ)

=
∑
k∈S

(∑
y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∂

∂φl
1

)
p(k)(j,h)(θ, φ)

=
∑
k∈S

(∑
y,u

ν(y|i)µ(u|θ, y)q(k|i, u)0

)
p(k)(j,h)(θ, φ)

= [0].

46

Internal-State Policy-Gradient Algorithms for POMDPs

Lemma 10 Under the same conditions as Lemma 9 and if r is a column vector of rewards
with r(i,a) = ri, then (∇φP)r = 0.

Proof The (i, g)’th element of (∂P∂φl)r is the dot product of row (i, g) of ∂P
∂φl

with r. By
definition r(k,c) = rl is independent of c, giving us(

∂P

∂φl
r

)
(i,g)

=
∑
k∈S

∑
c∈G

(∑
y,u

ν(y|i)∂ω(c|φ, g, y)
∂φx

µ(u|θ, y)q(k|i, u)

)
rl.

Now we move the sum over c inside ∂p(i,g)(k,c)(θ,φ)

∂φx
. The rest of the proof is the same as

Lemma 9.

Theorem 11 If we choose θ and φ such that ω(h|φ, g, y) = ω(h|φ, y) ∀a and µ(u|θ, h, y) =
µ(u|θ, y) ∀b then ∇φη = 0.

Proof We expand (23) and apply Lemmas 9 and 10

∂η

∂φl
= π

[
∂P

∂φl
+
∞∑
n=1

∂P

∂φl
Pn

]
r

= π
∂P

∂φl
r + π

[∞∑
n=1

∂P

∂φl
Pn

]
r

= π[0] + π

[∞∑
n=1

∂P

∂φl
PPn−1

]
r

= π

[∞∑
n=1

[0]Pn−1

]
r

= π[0]r
= 0.

A.3.1 Conditions for Perpetual Zero Gradient

So far we have not shown any results about ∇θη. It is possible that ‖∇θη‖ > 0 even under
conditions for Theorem 11. There are at least three situations in which this can happen:

1. In some POMDPs it possible to increase η by changing the stationary distribution of
actions, that is, emitting some actions more frequently than others regardless of the
observation. If this is possible then ‖∇θη‖ > 0 is possible.

2. If the µ process is a function of y then µ can learn the optimal reactive policy, ignoring
h.

47

Aberdeen and Baxter

3. If we choose φ s.t. ω(h|φ, g, y) = ω(h|φ, y) 6= 1/ng then h tells us something about y
even though it tells us nothing about the previous I-state, g. In this case ω(h|φ, y) is a
partial observation hiding process in the same way that ν(y|i) is a partial state hiding
process. Because h is still a useful indicator of state ∇θη may have different values
for parameters related to different I-states, indicating that internal state can help to
maximise η. A single iteration of gradient ascent may therefore cause the condition
µ(u|θ, h, y) = µ(u|θ, y) of Theorem 11 to be violated, such that the next computation
of the gradient results in ‖∇φη‖ > 0.

The last case is interesting because it allows us to initialise µ(u|θ, h, y) = µ(u|θ, y) and
ω(h|φ, g, y) = ω(h|φ, y) and possibly still learn to utilise I-states despite that fact Theo-
rem 11 tells us that these initialisations are sufficient for ‖∇φη‖ = 0. This possibility has
been verified experimentally.

When this happens depends on the choice of parameterisation for µ(u|θ, h, y). We will
now show that for a µ(u|θ, h, y) parameterised by a real-valued table and a soft-max output
distribution, and under slightly tighter initialisation conditions than Theorem 11, that it
is not possible for these conditions to be violated and hence ‖∇φη‖ = 0 from one gradient
ascent iteration to another, resulting in perpetual failure to learn to utilise I-states.

Lemma 12 Choose ω(h|φ, g, y) = 1/ng and some µ(u|θ, h, y) = µ(u|θ, y). Then ∇θη is
independent of the I-state, that is, the equation for each element of ∇θη is not a function
of the I-state.

Proof If we rewrite (2) using the simplified definitions we find there is no dependence on
the I-state

∂p(i,g)(j,h)(θ, φ)
∂φx

=
∂

∂φl

[∑
y,u

ν(y|i) 1
ng
µ(u|θ, y)q(j|i, u)

]

=
∑
y,u

ν(y|i)∂ω(h|φ, g, y)
∂φx

µ(u|θ, y)q(j|i, u),

so we can define p(k,c)(j,h)(θ, φ) := p(k)(j)(θ, φ). Now even if ∇θµ(u|θ, h, y) is generally a
function of g, ∇θη is independent of g under the conditions given. This is because the
dependence of the gradient, for any element p of θ, on the I-state is always marginalised
out during the dot-product(

∂P

∂θp
P

)
(i,g)(j,h)

=
∑
k∈S

∑
c∈G

(
1
ng

∑
u,y

ν(y|i)q(k|i, u)
∂µ(u|θ, c, y)

∂θp

)
p(k)(j)

=
∑
k∈S

(
1
ng

∑
u,y

ν(y|i)q(k|i, u)
∑
c∈G

∂µ(u|θ, c, y)
∂θp

)
p(k)(j)

At this point we observe that (∂P∂θp)P is completely independent of the internal state. Be-

cause the rewards are independent of the internal state it follows that (∂P∂θp)r is also inde-
pendent of the internal state. If we can show that π is independent of internal state then
follows from (23) that ∇θη is independent of the internal state.

48

Internal-State Policy-Gradient Algorithms for POMDPs

Since we have defined ω(h|φ, g, y) = 1/ng, and with the further assumption that the
initial distribution on I-states is π(g) = 1/ng, then the probability of being in any I-state
at any time is 1/ng. This allows us to state π(i,g) = πi

ng
. Therefore, all components of (23)

are independent of the current internal state and thus ∇θη is independent of the internal
state.

After estimating the gradient we make a step ∆θ := γ∇θη, where γ is a positive step
size. Whether or not the conditions of Lemma 12 lead to the perpetual 0 gradient situation
depends on whether µ(u|θ+ ∆θ, g, y) alters the conditions for Lemma 12. These conditions
can be broken even when ∇θη is independent of the I-state in the way Lemma 12 defines.

So we need to prove µ(u|θ+∆θ, g, y) = µ(u|θ+∆θ, y) for individual choices of µ(u|θ, h, y).
We start by showing this is true for a lookup table indexed by (g, y) and which provides an
R
nu vector turned into an action distribution using a soft-max function (10) (equivalently

a Boltzmann function with a temperature co-efficient of 1.0). Since the use of the soft-
max distribution is a common choice for turning real number vectors into distributions, the
following proof forms a basis for showing many common choices of µ(u|θ, h, y) can lead to
perpetual ∇φη = 0 situations.

Lemma 13 Let x, y ∈ RN and u ∈ U where U = {1, . . . , N}. Define d(u) : U 7→ R.
Assume

exp(xu)∑N
u′=1 exp(x′u)

=
exp(yu)∑N
u′=1 exp(y′u)

∀u, (26)

then
exp(xu + d(u))∑N

u′=1 exp(x′u + d(u′))
=

exp(yu + d(u))∑N
u′=1 exp(y′u + d(u′))

∀u. (27)

Proof
For (26) to be true, the xu’s and yu’s must differ by at most some constant c. This

can be shown with a short proof by contradiction starting with xu = yu + cu and assuming
∃cu′ 6= cu for which the equality holds. This fact and some algebra give us the result:

exp(xu + d(u))∑N
u′=1 exp(x′u + d(u′))

=
exp(c) exp(xu + d(u))∑N

u′=1 exp(c) exp(x′u + d(u′))

=
exp(xu + c+ d(u))∑N

u′=1 exp(x′u + c+ d(u′))

=
exp(yu + d(u))∑N

u′=1 exp(y′u + d(u′))

49

Aberdeen and Baxter

This lemma tells us that if we have two equal soft-max distributions generated by the
possibly different vectors x and y, then adding a quantity independent of x or y (but
possibly dependent on the element index) to both vectors results in distributions which
remain equal (though they represent an altered distribution to the equality of (26)). This
is useful because we wish to show that when we have two vectors generated by different
I-states, which result in the same output distribution, then adding a quantity independent
of the I-state does not change the equality of the distributions and hence the independence
of the distributions with respect to the I-state conditioning.

Lemma 14 For µ(u|θ, h, y) parameterised by a lookup-table with soft-max output distribu-
tion µ(u|θ, h, y), and under the conditions of Lemma 12 then µ(u|θ + ∆θ, g, y) = µ(u|θ +
∆θ, y) implies ‖∇φη‖ = 0 always.

Proof Set xu = θugy and yu = θuḡy. If we set

d(u) = γ
∂η

∂θugy
,

then the left hand side of (27) is equal to µ(u|θ + ∆θ, g, y). If we set

d(u) = γ
∂η

∂θuḡy
,

then the right hand side gives us µ(u|θ + ∆θ, ḡ, y). However, Lemma 13 requires d(u) be
the same on the left and right sides, which is precisely what Lemma 12 tells us is the case
so

d(u) = γ
∂η

∂θugy
= γ

∂η

∂θuḡy
.

Lemma 13 can be applied for all choices of g and ḡ, resulting in

µ(u|θ + ∆θ, g, y) = µ(u|θ + ∆θ, ḡ, y) ∀g, ḡ
= µ(u|θ + ∆θ, y).

In summary Lemma 14 tells us that if we meet the necessary conditions for Lemma 12,
then ‖∇φη‖ = 0 from one step of the GPOMDP algorithm to another, and by induction we
have ‖∇φη‖ = 0 always.

Because we have based the proof on the value of the true gradient, the result holds for
any algorithm that estimates the gradient. This includes GPOMDP and I-state Williams
REINFORCE (Peshkin et al., 1999).

The analysis above presents a method for avoiding 0 gradient regions of parameter space.
We simply select initial controllers which violate the conditions of Theorem 11. By making
the set of future states reachable from I-state g a subset of G and by ensuring that the
subset we can reach is different for all g and y, we neatly avoid the problem and increase
computational efficiency by taking advantage of the sparseness. This allows us to use very

50

Internal-State Policy-Gradient Algorithms for POMDPs

large I-state space without slowing down each step of the computation. However, large
I-state spaces will require more steps.

Lemma 12 assumes a table-lookup controller with a soft-max output distribution. The
following generalises the same argument to arbitrary functions with soft-max output distri-
butions.

Theorem 15 Let f(θ, g, y, u) : Rnp × G × Y × U 7→ R. Then using a soft-max output
distribution we can write

µ(u|θ, h, y) =
exp(f(θ, g, y, u))∑

u′∈U exp(f(θ, g, y, u′))
.

If µ(u|θ, h, y) fulfils the conditions of Lemma 12, and if we can write µ(u|θ, h, y) after a
step in the gradient direction as

µ(u|θ, h, y) =
exp(f(θ, g, y, u) + f(∆θ, y, u))∑

u′∈U exp(f(φ, g, y, u′) + f(∆θ, y, u′))
,

then ‖∇φη‖ = 0 always.

Proof The theorem is a generalisation of Lemma 14. By allowing an arbitrary function
f(θ, g, y, u) in place of θugy and if a parameter step of ∆θ is separable so that

f(θ + ∆θ, g, y, u) = f(θ, g, y, u) + f(∆θ, y, u),

then the same argument as Lemma 14 holds. Note that we require the second term to be
independent of g so that it takes the place of d(u) in Lemma 14.

Using Theorem 15 we can easily show that 0 gradient problems exist for linear controllers

f(θ, g, y, u) =
nf∑
l=1

ψl(g, y)θgu.

that is, a controller with nf features {ψ1(g, y), . . . , ψnf (g, y)} and parameters θlu where
l = 1, . . . , nf , u = 1, . . . , nu. Linear controllers are separable as required by the corollary.

One simple choice of no + nf + 1 features we used in early experiments is

f(θ, g, y, u) =


χb(g) g ≤ ng
χy(g − ng) ng < g ≤ ng + no
1 g = ng + no + 1

These features turn on a weight for each of the current I-state and observation as well as a
bias weight, so we can alternatively write f as

f(θ, g, y, u) = θbu + θyu + θu;

and the additional parameter step component as

f(∆θ, g, y, u) = γ

(
∂η

θbu
+
∂η

θyu
+
∂η

θu

)
.

51

Aberdeen and Baxter

Theorem 12 tells us this is equal to f(∆θ, g′, y, u) for all g, g′. So all conditions of Corol-
lary 15 are satisfied with appropriate choices of initial θ and φ implying ‖∇φη‖ = 0 always.

We can also show a simple example that demonstrates that not all linear controllers are
subject to the 0 gradient regions of parameter space we have analysed.7 Let there be only
1 feature ψ(θ, g, y, u) = g. If we set ω(h|φ, g, y) = 1/ng and θ = 0 then all conditions for
Theorem 11 are met, but f(∆θ, g, y, u) = g∆θu which is not independent of g as required
for Corollary 15.

As a final linear example, we retrieve Theorem 14 from Corollary 15 by defining nf =
ngno input features:

ψḡȳ(g, y) = χḡ(g)χȳ(y);

which is simply a binary input for every possible combination of observation and internal
state.

Appendix B. GPOMDP and Gradient Ascent Techniques

This section provides details of the original GPOMDP algorithm and also provides details of
the gradient ascent techniques we use including the conjugate gradient algorithm and the
GSEARCH algorithm.

B.1 The GPOMDP Algorithm

The GPOMDP algorithm is a policy-gradient algorithm for learning memoryless policies
for controlling POMDPs (Baxter and Bartlett, 2001). It extends REINFORCE to infinite-
horizon problems by eliminating the need to identify at least one recurrent state. The IState-
GPOMDP algorithm is a generalisation of GPOMDP to include a finite state controller. To
retrieve the original GPOMDP algorithm set ng = 1, that is, only one internal state which
makes the policy memoryless.

B.2 The GSEARCH Algorithm

Once a gradient estimate has been obtained the conjugate gradient algorithm (Fine, 1999,
§5.5.2) computes the search direction h. The conjugate gradient algorithm (Algorithm 5)
ensures that successive search directions are orthogonal, avoiding problems such as succes-
sive parameter updates “bouncing” between opposite walls of a ridge instead of in an uphill
direction along the ridge top.

The parameters are updated using θn+1 = θn + hγ where γ is a positive step size. To
choose γ we perform an exponential line search, trying a sequence of exponentially increasing
values {γ1, γ2, . . . }, attempting to bracket the maximum value of η in the search direction.
After bracketing the maxima quadratic interpolation is used to compute the final value for
γ. The estimate of η at each γm is noisy due to the use of simulation. A more robust solution
is to compute another gradient estimate ∇η(θn + hγm). Let ε be the machine tolerance for
0. While

sgn(∇η(θn + hγm) · h) > ε

7. The use of the soft-max function means the gradient approaches 0 in the limit as f(θ, g, y, u) → ∞.
Other 0 gradient situations may exist and are a well known problem of gradient optimisation.

52

Internal-State Policy-Gradient Algorithms for POMDPs

Algorithm 5 ConjGrad(∇, θ, s0, ε)
1: Given:

• ∇ : RK → R
K : a (possibly noisy and biased) estimate of the gradient of the

objective function to be maximised.

• Starting parameters θ ∈ RK (set to maximum on return).

• Initial step size s0 > 0.

• Gradient resolution ε.

2: g = h = ∇(θ)
3: while ‖g‖2 ≥ ε do
4: GSearch(∇, θ, h, s0, ε)
5: ∆ = ∇(θ)
6: γ = (∆− g) ·∆/‖g‖2
7: h = ∆ + γh
8: if h ·∆ < 0 then
9: h = ∆

10: end if
11: g = ∆
12: end while

we have not yet bracketed the maxima. Because we only care about the sign of the calcu-
lation a poor trial step gradient can be tolerated, allowing the search to be performed with
fewer simulation steps than a value based search requires. See Algorithm 6 for details.

B.3 Quadratic Penalties

Gradient estimates early in learning often point to local maxima. Because line search
algorithms attempt to find the γ that maximises η in one iteration, it is easy to end up
caught in a local maximum. For output distribution functions such as (10) local maxima
are associated with large parameter values. We can avoid these local maxima by adding a
constraint term to the search direction which penalises large parameter values.

For example, in the multi-agent problem of Section 3.5 the initial gradient direction tells
the agents to move forward when the sensors fail. Without a penalty term the line search
pushes the parameters for this situation to values which result in near 0 gradients for those
parameters during subsequent ∇η estimations. The end result is that the agents never
learn to wait. However, if we restrict the initial parameter growth, the agents have a chance
to correct their policies. An alternative intuition arises by observing that large parameter
values result in near deterministic policies, reducing exploration during simulation. If an
agent does not experience the preferred policy it cannot learn it.

We use a quadratic penalty term. Let q ∈ [0,∞)np be a vector of penalties, with qx
giving the penalty for parameter θx. Let Q be a square matrix with q along the diagonal

53

Aberdeen and Baxter

Algorithm 6 GSearch(∇, θ0, θ
∗, s0, ε)

1: Given:

• ∇ : RK → R
K : a (possibly noisy and biased) estimate of the gradient of the

objective function.

• Starting parameters θ0 ∈ RK (set to maximum on return).

• Search direction θ∗ ∈ RK with ∇(θ0) · θ∗ > 0.

• Initial step size s0 > 0.

• Inner product resolution ε >= 0.

2: s = s0

3: θ = θ0 + sθ∗

4: ∆ = ∇(θ)
5: if ∆ · θ∗ < 0 then
6: Step back to bracket the maximum:
7: repeat
8: s+ = s
9: p+ = ∆ · θ∗

10: s = s/2
11: θ = θ0 + sθ∗

12: ∆ = ∇(θ)
13: until ∆ · θ∗ > −ε
14: s− = s
15: p− = ∆ · θ∗
16: else
17: Step forward to bracket the maximum:
18: repeat
19: s− = s
20: p− = ∆ · θ∗
21: s = 2s
22: θ = θ0 + sθ∗

23: ∆ = ∇(θ)
24: until ∆ · θ∗ < ε
25: s+ = s
26: p+ = ∆ · θ∗
27: end if
28: if p− > 0 and p+ < 0 then
29: s = s− − p− s+−s−p+−p−
30: else
31: s = s−+s+

2
32: end if
33: θ0 = θ0 + sθ∗

54

Internal-State Policy-Gradient Algorithms for POMDPs

and 0 elsewhere. We define the penalised η as

η̄ := η − θQθ′

2
∂η̄

θx
=
∂η

θx
− qxθx.

In practice we use the same penalty for all parameters, though in some situations, such as
having independent sets of parameters θ and φ, non-uniform q could aid convergence.

To eventually settle into a maximum we reduce the penalty over time. We halve the
penalty if η̄ fails to increase by 2% over 3 or more iterations of GSEARCH.

References

V M Aleksandrov, V I Sysoyev, and V V Shemeneva. Stochastic optimaization. Engineering
Cybernetics, 5:11–16, 1968.

Howard Anton and Chris Rorres. Elementary Linear Algebra: applications version. Wiley,
New York, NY., 6 edition, 1991.

K J Åström. Optimal control of Markov decision processes with incomplete state estimation.
Journal of Mathematical Analysis and Applications, 10, 1965.

Leemon C. Baird and Andrew W. Moore. Gradient descent for general reinforcement
learning. In Advances in Neural Information Processing Systems 11. MIT Press, 1999.
http://www.cs.cmu.edu/~leemon/papers/index.html.

Peter L. Barlett and Jonathan Baxter. Estimation and approximation bounds for gradi-
ent based reinforcment learning. In Thirteenth Annual Conference on Computational
Learning Theory, 2000. http://discus.anu.edu.au/~bartlett/.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15:319–350, 2001.

Jonathan Baxter, Peter L. Bartlett, and Lex Weaver. Experiments with infinite-horizon,
policy-gradient estimation. Journal of Artificial Intelligence Research, 15:351–381, 2001.

Yoshua Bengio and Paolo Frasconi. Input-output HMM’s for sequence processing. IEEE
Transactions on Neural Networks, 7(5):1231–1249, 1996. URL citeseer.nj.nec.com/
bengio95inputoutput.html.

C. Boutilier and D. Poole. Computing optimal policies for partially observable decision
processes using compact representations, 1996.

Ronen I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence (AAAI ’97), 1997.

Leo Breiman. Probability. Addison-Wesley, 1966.

Anthony Cassandra. Exact and Approximate Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, Brown University, May 1998.

55

Aberdeen and Baxter

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinc-
tions approach. In National Conference on Artificial Intelligence, pages 183–188, 1992.
citeseer.nj.nec.com/chrisman92reinforcement.html.

Terrence L Fine. Feedforward Neural Network Methodology. Springer, New York, 1999.

Héctor Geffner and Blai Bonet. Solving large pomdps by real time dynamic programming.
Working Notes Fall AAAI Symposium on POMDPS, 1998. http://www.cs.ucla.edu/
~bonet/.

Matthew R. Glickman and Katia Sycara. Evolutionary search, stochastic policies with
memory, and reinforcement learning with hidden state. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 194–201. Morgan Kaufmann, June
2001.

Peter W Glynn. Stochastic approximation for monte-carlo optimization. In Proceedings of
the 1986 Winter Simulation Conference, pages 356–365, 1986.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communica-
tions of the ACM, 33:75–84, 1990.

Peter W. Glynn. Importance sampling for monte carlo estimation of quantiles. Technical
report, Dept. of Operations Research, Stanford University, 1996. URL citeseer.nj.
nec.com/glynn96importance.html.

Peter W Glynn and Paul L‘Ecuyer. Likelihood ratio gradient estimation for regenerative
stochastic recursions. Advances in Applied Probability, 27, 4 (1995), 27:1019–1053, 1995.

Anne Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in applied math-
emtics. SIAM, Philadelphia, PA, 1997. ISBN 0-89871-396-X.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction techniques
for gradient estimates in reinforcement learning. In Advances in Neural Information
Processing Systems 13 (2001), Vancouver, BC, December 2002. MIT Press. In press.

Eric A. Hansen and Zhengzhu Feng. Dynamic programming for POMDPs using a factored
state representation. In Fith International Conference on Artificial Intelligence Planning
and Scheduling, pages 130–139, Breckenridge, Colarado, April 2000. URL citeseer.nj.
nec.com/hansen00dynamic.html.

Milos Hauskrecht. Incremental methods for computing bounds in partially observable
markov decision processes. In Proceedings of the 14th National Conference on Artifi-
cial Intelligence (AAAI-97), pages 734–739, Providence, Rhode Island, 1997. MIT Press.
ISBN 0-262-51095-2.

Milos Hauskrecht. Value-function approximations for partially observable markov decsion
processes. Journal of Artificial Intelligence Research, 13:33–94, August 2000.

Ilse C. F. Ipsen and Carl D. Meyer. The idea behind Krylov methods. American Mathe-
matical Monthly, 105(10):889–899, 1998. URL citeseer.nj.nec.com/135899.html.

56

Internal-State Policy-Gradient Algorithms for POMDPs

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learn-
ing algorithm for partially observable Markov decision problems. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Sys-
tems, volume 7, pages 345–352. The MIT Press, 1995. URL citeseer.nj.nec.com/
jaakkola95reinforcement.html.

Leslie Pack Kaelbling, Michael L.Littman, and Andrew W.Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, (4):237–285, May 1996.

Hajime Kimura and Shigenobu Kobayashi. Reinforcement learning for continuous action
using stochastic gradient ascent. In Intelligent Autonomous Systems (IAS-5), pages 288–
295, 1998.

Hajime Kimura, Kazuteru Miyazaki, and Shigenobu Kobayashi. Reinforcement learning
in POMDPs with function approximation. In Proc. 14th International Conference on
Machine Learning, pages 152–160. Morgan Kaufmann, 1997.

David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole Publishers, Pacific
Grove, California, 1991. ISBN 0-534-13014-3.

V. Konda and J. Tsitsiklis. Actor-critic algorithms, 2000. URL citeseer.nj.nec.com/
434910.html.

Pier Luca Lanzi. Adaptive agents with reinforcement learning and internal memory. In Sixth
International Conference on the Simulation of Adaptive Behavior (SAB2000), 2000. URL
citeseer.nj.nec.com/346913.html.

Long-Ji Lin and Tom M. Mitchell. Memory approaches to reinforcement learning in non-
Markovian domains. Technical Report CS-92-138, Carnegie Mellon, Pittsburgh, PA,
1992.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for
partially observable environments: Scaling up. In Armand Prieditis and Stuart Russell,
editors, Proceedings of the Twelfth International Conference on Machine Learning, pages
362–370, San Francisco, CA, 1995. Morgan Kaufmann. URL citeseer.nj.nec.com/
littman95learning.html.

Perter Marbach and John N. Tsitsiklis. Gradient-based optimisation of markov reward pro-
cesses: Practical variants. In 38th IEEE Conference on Decsions and Control, December
1999.

Peter Marbach. Simulation-Based Methods for Markov Decision Processes. PhD thesis,
Laboratory for Information and Decision Systems, MIT, 1998.

Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy markov mod-
els for information extraction and segmentation. In Proceedings of ICML-2000, 2000.
http://www.cs.cmu.edu/~mccallum/.

Andrew Kachites McCallum. Reinformcement Learning with Selective Perception and Hid-
den State. PhD thesis, University of Rochester, 1996.

57

Aberdeen and Baxter

Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra. Solv-
ing POMDPs by searching the space of finite policies. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages 127–136. Computer Science
Dept., Brown University, Morgan Kaufmann, July 1999a.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learn-
ing finite-state controllers for partially observable environments. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence. Computer Science Dept.,
Brown University, Morgan Kaufmann, July 1999b.

David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary algorithms for
reinforcement learning. Journal of Artificial Intelligence Research, (11):199–229, August
1999.

Kevin P. Murphy. A survey of pomdp solution techniques. Technical report, Dept.
of Computer Science, U.C.Berkeley, September 2000. http://www.cs.berkeley.edu/
~murphyk/publ.html.

I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-navigating robot. AI
Magazine, 16(2):53–60, 1995.

Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, New Jersey, U.S., 2nd edi-
tion, 1990. ISBN 0-12-589128-0.

Luis E. Ortiz and Leslie Pack Kaelbling. Adaptive importance sampling for estimation in
structured]domains. In Proceedings of the Sixteenth Annual Conference on Uncertainty
in Articial Intelligence (UAI2000), pages 446–454. Morgan Kaufmann Publishers, 2000.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

Ronald Parr and Stuart Russell. Approximating optimal policies for partially observable
stochastic domains. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1088–1094. Morgan Kaufmann, 1995. URL citeseer.nj.nec.com/
parr95approximating.html.

Leonid Peshkin, Nicolas Meuleau, and Leslie Kaelbling. Learning policies with external
memory. In I. Bratko and S. Dzeroski, editors, Proceedings of the Sixteenth International
Conference in Machine Learning, pages 307–314. Morgan Kaufmann, 1999. http://www.
ai.mit.edu/~pesha/Public/papers.html.

Leonid Peshkin and Christian R. Shelton. Learning from scarce experience. http://www.
ai.mit.edu/~pesha/Public/papers.html, 2001.

Leonid M. Peshkin. Thesis proposal: Architectures for policy search. http://www.ai.mit.
edu/~pesha/Public/papers.html, July 2000.

Alan B. Poritz. Hidden markov models: A guided tour. In ICASSP ’88, pages 7–13. Morgan
Kaufmann, 1988.

58

Internal-State Policy-Gradient Algorithms for POMDPs

Pascal Poupart and Craig Boutilier. Vector-space analysys of belief-state approximation for
POMDPs. In Uncertainty in Artificial Intelligence 2001, August 2001.

Pascal Poupart, Luis E. Ortiz, and Craig Boutilier. Value-directed sampling methods for
monitoring pomdps. In Uncertainty in Artificial Intelligence 2001, August 2001. URL
citeseer.nj.nec.com/445996.html.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech processing. In Proceedings on the IEEE, volume 77. IEEE, February 1989.

M I Reiman and A Weiss. Sensitivity analysis via likelihood ratios. In Proceedings of the
1986 Winter Simulation Conference, 1986.

M I Reiman and A Weiss. Sensitivity analysis for simulations via likelihood ratios. Opera-
tions Research, 37, 1989.

Andrés Rodŕiguez, Ronald Parr, and Daphne Koller. Reinforcement learning using approx-
imate belief states, 1999.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia. In Jack D. Cowan,
Gerald Tesauro, and Joshua Alspector, editors, Advances in Neural Information Process-
ing Systems, volume 6, pages 176–183. Morgan Kaufmann Publishers, Inc., 1994. URL
citeseer.nj.nec.com/ron94power.html.

Reuven Y. Rubinstein. Some Problems in Monte Carlo Optimization. PhD thesis, 1969.

Brian Sallans. Learning factored representations for partially observable Markov deci-
sion processes. In S. A. Solla, T. K. Leen, and K-R. Muller, editors, Neural Infor-
mation Processing Systems, volume 12. MIT Press, 2000. URL citeseer.nj.nec.com/
sallans00learning.html.

Christian R. Shelton. Importance sampling estimates for policies with memory. Uncertainty
in Artificial Intelligence Workskop, August 2001a. http://www.ai.mit.edu/people/
cshelton/papers/.

Christian R. Shelton. Policy imporovemnt for pomdps using normalized importance sam-
pling. Technical Report AI Memo 2001-002, MIT, Cambridge, MA, March 2001b.
http://www.ai.mit.edu/people/cshelton/papers/.

Christian R. Shelton. Policy improvement for pomdps using normalized importance sam-
pling. In Uncertainty in Artificial Intelligence, August 2001c.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially ob-
servable Markovian decision processes. In Proceedings of ICML-11, 1994.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning with
soft state aggregation. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems, volume 7, pages 361–368. The MIT Press, 1995.
URL citeseer.nj.nec.com/article/singh95reinforcement.html.

59

Aberdeen and Baxter

Edward J. Sondik. The Optimal Control of Paritally Observable Markov Decision Processes.
PhD thesis, Stanford University, Standford, CA., 1971.

Edward J Sondik. The optimal control of partially observable Markov decision processes
over the infinite horizon: Discounted costs. Operations Research, 26(2):282–304, 1978.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge MA, 1998. ISBN 0-262-19398-1.

Richard S. Sutton, David McAllester, and Yishay Mansour Satinder Singh. Policy gradient
methods for reinforcement learning with function approximation. Advances in Neural
Information Processing Systems, 12:1057–1063, 2000.

Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Mahadevan. Learning and
planning with hierarchical stochastic models for robot navigation. In ICML 2000 Work-
shop on Machine Learning of Spatial Knowledge, Stanford, 2000.

Sebastian Thrun. Monte Carlo POMDPs. In S. A. Solla, T. K. Leen, and K-R. Müller,
editors, Advances in Neural Information Processing Systems 12. MIT Press, 2000. http:
//citeseer.nj.nec.com/thrun99monte.html.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229–256, 1992.

Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem characteristics
and approximation. Technical Report HKUST-CS96-31, Dept. of Computer Science,
Hong Kong University of Science and Technology, 1996. URL citeseer.nj.nec.com/
article/zhang96planning.html.

60

