An Introduction to Machine Learning
with Kernels
Lecture 4

Alexander J. Smola
Alex.Smola@nicta.com.au

Statistical Machine Learning Program
National ICT Australia, Canberra
Day 1

Machine learning and probability theory
Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Watson Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM
Support Vector Machine
- Problem definition
- Geometrical picture
- Optimization problem

Optimization Problem
- Hard margin
- Convexity
- Dual problem
- Soft margin problem
Classification

Data
Pairs of observations \((x_i, y_i)\) generated from some distribution \(P(x, y)\), e.g., (blood status, cancer), (credit transaction, fraud), (profile of jet engine, defect)

Task
- Estimate \(y\) given \(x\) at a new location.
- Modification: find a function \(f(x)\) that does the task.
One to rule them all . . .
Optimal Separating Hyperplane

\[\{ x \mid \langle w, x \rangle + b = -1 \} \]

\[\{ x \mid \langle w, x \rangle + b = +1 \} \]

\[y_i = -1 \]

\[x_1 \]

\[x_2 \]

\[w \]

\[\langle w, (x_1 - x_2) \rangle = 2 \]

\[\Rightarrow \frac{w}{\|w\|}, (x_1 - x_2) = \frac{2}{\|w\|} \]

Note:
Optimization Problem

Margin to Norm
- Separation of sets is given by $\frac{2}{\|w\|}$ so maximize that.
- Equivalently minimize $\frac{1}{2}||w||$.
- Equivalently minimize $\frac{1}{2}||w||^2$.

Constraints
- Separation with margin, i.e.
 \[
 \langle w, x_i \rangle + b \geq 1 \quad \text{if } y_i = 1 \\
 \langle w, x_i \rangle + b \leq -1 \quad \text{if } y_i = -1
 \]
- Equivalent constraint
 \[
 y_i(\langle w, x_i \rangle + b) \geq 1
 \]
Mathematical Programming Setting

Combining the above requirements we obtain

$$\minimize \frac{1}{2} \|w\|^2$$

subject to

$$y_i (\langle w, x_i \rangle + b) - 1 \geq 0 \text{ for all } 1 \leq i \leq m$$

Properties

- Problem is convex
- Hence it has unique minimum
- Efficient algorithms for solving it exist
Lagrange Function

Objective Function
We have $\frac{1}{2}\|w\|^2$.

Constraints

\[c_i(w, b) := 1 - y_i(\langle w, x_i \rangle + b) \leq 0 \]

Lagrange Function

\[L(w, b, \alpha) = \text{PrimalObjective} + \sum_i \alpha_i c_i \]

\[= \frac{1}{2}\|w\|^2 + \sum_{i=1}^{m} \alpha_i (1 - y_i(\langle w, x_i \rangle + b)) \]

Saddle Point Condition
Partial derivatives of L with respect to w and b need to vanish.
Solving the Equations

Lagrange Function

\[
L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{m} \alpha_i (1 - y_i (\langle w, x_i \rangle + b))
\]

Saddlepoint condition

\[
\partial_w L(w, b, \alpha) = w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0 \iff w = \sum_{i=1}^{m} \alpha_i y_i x_i
\]

\[
\partial_b L(w, b, \alpha) = - \sum_{i=1}^{m} \alpha_i y_i x_i = 0 \iff \sum_{i=1}^{m} \alpha_i y_i = 0
\]

To obtain the dual optimization problem we have to substitute the values of \(w\) and \(b\) into \(L\). Note that the dual variables \(\alpha_i\) have the constraint \(\alpha_i \geq 0\).
Dual Optimization Problem

After substituting in terms for b, w the Lagrange function becomes

$$-\frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \langle x_i, x_j \rangle + \sum_{i=1}^{m} \alpha_i$$

subject to $\sum_{i=1}^{m} \alpha_i y_i = 0$ and $\alpha_i \geq 0$ for all $1 \leq i \leq m$

Practical Modification

Need to **maximize** dual objective function. Rewrite as

$$\text{minimize} \quad \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \alpha_i$$

subject to the above constraints.
Support Vector Expansion

Solution in
\[w = \sum_{i=1}^{m} \alpha_i y_i x_i \]

\(w \) is given by a linear combination of training patterns \(x_i \). **Independent of the dimensionality of \(x \).**

\(w \) depends on the Lagrange multipliers \(\alpha_i \).

Kuhn-Tucker-Conditions

At optimal solution Constraint \(\cdot \) Lagrange Multiplier = 0

In our context this means

\[\alpha_i (1 - y_i (\langle w, x_i \rangle + b)) = 0. \]

Equivalently we have

\[\alpha_i \neq 0 \iff y_i (\langle w, x_i \rangle + b) = 1. \]

Only points at the decision boundary can contribute to the solution.
Linear Classification
- Many solutions
- Optimal separating hyperplane
- Optimization problem

Support Vector Machines
- Quadratic problem
- Lagrange function
- Dual problem

Interpretation
- Dual variables and SVs
- SV expansion
- Hard margin and infinite weights
Nonlinearity via Feature Maps

Replace x_i by $\Phi(x_i)$ in the optimization problem.

Equivalent optimization problem

$$
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j k(x_i, x_j) - \sum_{i=1}^{m} \alpha_i \\
\text{subject to} & \quad \sum_{i=1}^{m} \alpha_i y_i = 0 \text{ and } \alpha_i \geq 0 \text{ for all } 1 \leq i \leq m
\end{align*}
$$

Decision Function

From $w = \sum_{i=1}^{m} \alpha_i y_i \Phi(x_i)$ we conclude

$$f(x) = \langle w, \Phi(x) \rangle + b = \sum_{i=1}^{m} \alpha_i y_i k(x_i, x) + b.$$
Examples and Problems

Advantage
Works well when the data is noise free.

Problem
Already a single wrong observation can ruin everything — we require $y_i f(x_i) \geq 1$ for all i.

Idea
Limit the influence of individual observations by making the constraints less stringent (introduce slacks).
Optimization Problem (Soft Margin)

Recall: Hard Margin Problem

\[
\text{minimize} \quad \frac{1}{2} \|w\|^2 \\
\text{subject to} \quad y_i(\langle w, x_i \rangle + b) - 1 \geq 0
\]

Softening the Constraints

\[
\text{minimize} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i \\
\text{subject to} \quad y_i(\langle w, x_i \rangle + b) - 1 + \xi_i \geq 0 \text{ and } \xi_i \geq 0
\]
Linear SVM $C = 1$
Linear SVM $C = 2$
Linear SVM $C = 5$
Linear SVM $C = 10$
Linear SVM $C = 20$
Linear SVM $C = 50$
Linear SVM $C = 100$
Linear SVM $C = 2$
Linear SVM $C = 10$
Linear SVM $C = 20$
Linear SVM $C = 50$
Linear SVM $C = 100$
Linear SVM $C = 1$
Linear SVM $C = 2$
Linear SVM $C = 5$
Linear SVM $C = 10$
Linear SVM $C = 20$
Linear SVM $C = 50$
Linear SVM $C = 100$
Linear SVM $C = 1$
Linear SVM $C = 2$
Linear SVM $C = 5$
Linear SVM $C = 10$
Linear SVM $C = 20$
Linear SVM $C = 50$
Linear SVM $C = 100$
Changing C

- For clean data C doesn’t matter much.
- For noisy data, large C leads to narrow margin (SVM tries to do a good job at separating, even though it isn’t possible)

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data
Lagrange Function

We have \(m \) more constraints, namely those on the \(\xi_i \), for which we will use \(\eta_i \) as Lagrange multipliers.

\[
L(w, b, \xi, \alpha, \eta) = \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i \left(1 - \xi_i - y_i \langle w, x_i \rangle + b \right)
\]

Saddle Point Conditions

\[
\partial_w L(w, b, \xi, \alpha, \eta) = w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0 \iff w = \sum_{i=1}^{m} \alpha_i y_i x_i.
\]

\[
\partial_b L(w, b, \xi, \alpha, \eta) = \sum_{i=1}^{m} -\alpha_i y_i = 0 \iff \sum_{i=1}^{m} \alpha_i y_i = 0.
\]

\[
C - \alpha_i - \eta_i = 0 \iff \alpha_i \in [0, C]
\]
Dual Optimization Problem

Optimization Problem

minimize \[\frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j k(x_i, x_j) - \sum_{i=1}^{m} \alpha_i \]

subject to \[\sum_{i=1}^{m} \alpha_i y_i = 0 \] and \[C \geq \alpha_i \geq 0 \] for all \[1 \leq i \leq m \]

Interpretation

- Almost same optimization problem as before
- Constraint on weight of each \(\alpha_i \) (bounds influence of pattern).
- Efficient solvers exist (more about that tomorrow).
SV Classification Machine

output \(\sigma \left(\sum v_i k(x, x_i) \right) \)

weights

dot product \(\langle \Phi(x), \Phi(x_i) \rangle = k(x, x_i) \)

mapped vectors \(\Phi(x_i), \Phi(x) \)

support vectors \(x_1 \ldots x_n \)

test vector \(x \)
Gaussian RBF with $C = 1$
Gaussian RBF with $C = 2$
Gaussian RBF with $C = 5$
Gaussian RBF with $C = 10$
Gaussian RBF with $C = 20$
Gaussian RBF with $C = 50$
Gaussian RBF with $C = 100$
Gaussian RBF with $C = 1$
Gaussian RBF with $C = 2$
Gaussian RBF with $C = 5$
Gaussian RBF with $C = 10$
Gaussian RBF with $C = 20$
Gaussian RBF with $C = 50$
Gaussian RBF with $C = 100$
Gaussian RBF with $C = 1$
Gaussian RBF with $C = 2$
Gaussian RBF with $C = 5$
Gaussian RBF with $C = 10$
Gaussian RBF with $C = 20$
Gaussian RBF with $C = 50$
Gaussian RBF with $C = 100$
Gaussian RBF with $C = 1$
Gaussian RBF with $C = 2$
Gaussian RBF with $C = 5$
Gaussian RBF with $C = 10$
Gaussian RBF with $C = 20$
Gaussian RBF with $C = 50$
Gaussian RBF with \(C = 100 \)
Insights

Changing C

- For clean data C doesn’t matter much.
- For noisy data, large C leads to more complicated margin (SVM tries to do a good job at separating, even though it isn’t possible)
- Overfitting for large C

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data
Gaussian RBF with $\sigma = 1$
Gaussian RBF with $\sigma = 2$
Gaussian RBF with $\sigma = 5$
Gaussian RBF with $\sigma = 10$
Gaussian RBF with $\sigma = 1$
Gaussian RBF with $\sigma = 2$
Gaussian RBF with $\sigma = 5$
Gaussian RBF with $\sigma = 10$
Gaussian RBF with $\sigma = 1$
Gaussian RBF with $\sigma = 2$
Gaussian RBF with $\sigma = 5$
Gaussian RBF with $\sigma = 10$
Gaussian RBF with $\sigma = 1$
Gaussian RBF with $\sigma = 2$
Gaussian RBF with $\sigma = 5$
Gaussian RBF with $\sigma = 10$
Insights

Changing σ

- For clean data σ doesn’t matter much.
- For noisy data, small σ leads to more complicated margin (SVM tries to do a good job at separating, even though it isn’t possible)
- Lots of overfitting for small σ

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data
Summary

Support Vector Machine
- Problem definition
- Geometrical picture
- Optimization problem

Optimization Problem
- Hard margin
- Convexity
- Dual problem
- Soft margin problem
Today’s Summary

Machine learning and probability theory
- Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference

Density estimation and Parzen windows
- Kernels and density estimation, Silverman’s rule, Watson Nadaraya estimator, crossvalidation

Perceptron and kernels
- Hebb’s rule, perceptron algorithm, convergence, feature maps, kernel trick, examples

Support Vector classification
- Geometrical view, dual problem, convex optimization, kernels and SVM
We are hiring. For details contact
Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions

- PhD scholarships
- Postdoctoral positions, Senior researchers
- Long-term visitors (sabbaticals etc.)

More details on kernels

http://www.kernel-machines.org
http://www.learning-with-kernels.org

Schölkopf and Smola: Learning with Kernels

Machine Learning Summer School

http://canberra05.mlss.cc
MLSS’05 Canberra, Australia, 23/1-5/2/2005