Reinforcement Learning
Statistical Machine Learning Overview

Douglas Aberdeen
Canberra Node, RSISE Building
Australian National University

2nd November 2004
Introduction

What is Reinforcement Learning?
Types of RL

Value-Methods

Model Based
Experience Based
Function Approximation

Partial Observability

Policy-Gradient Methods

Model Based
Experience Based
Reinforcement Learning (RL) in a Nutshell

- RL can learn any function
- RL inherently handles uncertainty
 - Uncertainty in actions (the world)
 - Uncertainty in observations (sensors)
- Directly maximise criteria we care about
- RL copes with delayed feedback
 - Temporal credit assignment problem
Reinforcement Learning (RL) in a Nutshell

- RL can learn any function
- RL inherently handles uncertainty
 - Uncertainty in actions (the world)
 - Uncertainty in observations (sensors)
- Directly maximise criteria we care about
- RL copes with delayed feedback
 - Temporal credit assignment problem
Reinforcement Learning (RL) in a Nutshell

- RL can learn any function
- RL inherently handles uncertainty
 - Uncertainty in actions (the world)
 - Uncertainty in observations (sensors)
- Directly maximise criteria we care about
- RL copes with delayed feedback
 - Temporal credit assignment problem
Reinforcement Learning (RL) in a Nutshell

- RL can learn any function
- RL inherently handles uncertainty
 - Uncertainty in actions (the world)
 - Uncertainty in observations (sensors)
- Directly maximise criteria we care about
- RL copes with delayed feedback
 - Temporal credit assignment problem
RL Can Solve Hard Problems

- Uncertainty = hidden state
- Robot
- Sensor error
- Motor error
- Hidden location
- Perceptual aliasing
- Unknown map = unknown state transition matrix
- Reward
- Goal
- Delayed rewards
- Uncertainty = hidden state

NATIONAL ICT AUSTRALIA
Examples

BackGammon: TD-Gammon [2]
- Beat the world champion in individual games
- Can learn things no human ever thought of!
- TD-Gammon opening moves now used by best humans

Australian Computer Chess Champion [1]
- Australian Champion Chess Player
- RL learns the evaluation function at leaves of min-max search

Elevator Scheduling
- Crites, Barto 1996
- Optimally dispatch multiple elevators to calls
- Not implemented as far as I know
Partially Observable Markov Decision Processes

- Partial Observability
 - \(\Pr[o|s] \)
 - \(s \)
 - \(o \)

- Value-Methods
 - \(\Pr[s'|s,a] \)
 - \(r(s) \)

- Partially Observable Markov Decision Processes (POMDP)
 - MDP
 - RL

- Policy-Gradient Methods
 - \(\Pr[a|o,w] \)
 - \(w \)
 - \(a \)
RL Axes

- Policy
- Value
- Model Based
- Experience
- DP
- MDP
- POMDP
- Value-Methods
- Partial Observability
- Policy-Gradient Methods
Optimality Criteria

- The value $V(s)$ is a long-term rewards from state s
- How do we measure long-term reward??

$$V_\infty(s) = \mathbb{E}_w \left[\sum_{t=0}^{\infty} r(s_t) | s_0 = s \right]$$

 Ill-conditioned from the decision making point of view

- Sum of discounted rewards

$$V(s) = \mathbb{E}_w \left[\sum_{t=0}^{\infty} \delta^t r(s_t) | s_0 = s \right]$$

- Finite-horizon

$$V_T(s) = \mathbb{E}_w \left[\sum_{t=0}^{T-1} r(s_t) | s_0 = s \right]$$
Criteria Continued

- Baseline reward

\[V_B(s) = \mathbb{E}_w \left[\sum_{t=0}^{\infty} r(s_t) - \bar{r} \mid s_0 = s \right] \]

- Long-term average is intuitively appealing

\[\bar{V}(s) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_w \left[\sum_{t=0}^{T-1} r(s_t) \mid s_0 = s \right] \]
Discounted or Average?

Ergodic MDP
- Irreducible: all states reachable
- Positive recurrent: finite return times
- Aperiodic: GCD of return times = 1

- If the Markov system is *ergodic* then $\bar{V}(s) = \eta$ for all s, i.e., η is constant over s
- Convert from discounted to long-term average

$$\eta = \mathbb{E}_s \frac{V(s)}{1 - \delta}$$

- We will focus on discounted $V(s)$
Dynamic Programming

- How do we compute $V(s)$?
- Solution to the unique fixed point

$$V^*(s) = r(s) + \delta \sum_{a \in A} \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V^*(s')$$

- In matrix form with vectors V^* and r:
 - Define stochastic transition matrix for current policy

$$P = \sum_{a \in A} \Pr[s'|s, a] \Pr[a|s, w]$$

- Now

$$V^* = r + \delta P V^*$$
Analytic Solution

\[V^* = r + \delta PV^* \]
\[V^* - \delta PV^* = r \]
\[(I - \delta P)V^* = r \]
\[Ax = b \]

- Computes \(V(s) \) for fixed policy (fixed \(w \))
- No solution unless \(\delta \in [0, 1) \)
- \(O(|S|^3) \) solution... not feasible
Value Iteration

- Avoid the matrix inverse with the iteration
 \[V_{t+1}(s) = r(s) + \delta \sum_{a \in A} \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V_t(s') \]

- Asymptotically converges to \(V_{\infty} = V^* \)

- Interpretation as \(t \)-step to go cost

Initialise \(V_0 = 0 \)

\[V_1(s) = r(s) \]

\[V_2(s) = r(s) + \delta \sum_{a \in A} \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V_1(s') \]

\[V_3(s) = r(s) + \delta \sum_{a \in A} \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V_2(s') \]

\[\ldots \]
Value Iteration Continued

- We really want is the value of the optimal policy
- Optimal policy chooses the maximising action

\[V_{t+1}(s) = r(s) + \delta \max_a \sum_{s' \in S} \Pr[s'|s, a] V_t(s') \]

- The maximising action will change as \(V(s) \) evolves
- Value iteration repeats until the \(\| V_{t+1} - V_t \| < \epsilon \)
- The final policy is given by

\[\Pr[\arg\max_a \sum_{s' \in S} \Pr[s'|s, a] V_t(s')|s] = 1 \]

- The parameters \(w \) are the table mapping \(s \) to an \(a \)
- What should we do about continuous state spaces?
Value Iteration Convergence

\[\| V_T - V^* \|_\infty \leq \frac{2\delta^{T+1}}{(1 - \delta)^2} \| r \|_\infty \]

- Each iteration is \(O(|S|^2) \)
- Could take a while!
- Less than \(O(|S|^3) \)?
Policy Iteration

- Actually pre-dates value iteration

Policy Iteration Algorithm

1. Pick an initial deterministic policy (state to action table) \(w \)
2. Evaluate \(V(s) \) for policy, exact or approximate
3. Compute new policy \(w \) by choosing maximising actions
4. If policy has changed, goto 2
5. Return (optimal) policy \(w \)

- Can use exact policy evaluation or approximate
- Similar convergence to value iteration
Policy Iteration, Pros and Cons

- **Pros**
 - Stopping criteria: continue until policy does not change
 - If exact evaluation by $V^* = (I - \delta P)^{-1} r$, policy is optimal

- **Cons**
 - Wastes effort computing true value of mostly non-optimal policies

- Somewhat reminiscent of the EM algorithm
Further computation wasted

\[t < |S|? \]

\[\|V^*(s)\| \]

\[\|V_t(s)\| \]
Our Progress...

Value & Pol Iteration

MDP

POMDP

Model Based Experience

Value Policy

Value-Methods

Partial Observability

Policy-Gradient Methods
Recall that \(P = \sum_{a \in A} \Pr[s' | s, a] \Pr[a | s, w] \)

Q. What happens if we don’t know \(P \) (dynamics)?

A:
- Estimate \(P \) from experience, apply value/policy iteration
- Monte-Carlo estimation of \(V^* \)
- Generate a trajectory \(\{s_0, a_0, s_1, a_1, s_2, a_2, \ldots \} \) according to some policy
- Use trajectory to learn model, or do Monte-Carlo estimate
- Monte-Carlo implicitly learns \(P \) during value estimation
Temporal Differences (TD)[?]

Temporal difference

- Key observation is that direction of $V(s)$ error is given by

$$\Delta = V_t \underbrace{- (r(s) + \delta V_t(s'))}_{\text{estimate after one-step update}}$$

- This is a temporal difference

- Think of Δ as one possible branch of the expectation

$$V^*(s) = r(s) + \delta \sum_{a \in A} \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V^*(s')$$

- Observing many branches gives back expectation
Temporal Differences Cont.

- Update in the direction of Δ yields estimate V_{t+1}

$$V_{t+1}(s) = V_t(s) + \alpha_t \left(V_t(s) - (r(s) + \delta V_t(s')) \right)$$

- Looks like gradient ascent (because it is)
- Normal issues with choosing α

Stochastic approximation conditions

$$\sum_{t=0}^{\infty} \alpha_t = \infty, \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty$$

- Call this the one-step backup for state s
TD(0)

1. Initialise V_0 to anything
2. Set s' randomly
3. Set $s \leftarrow s'$
4. Receive reward $r(s)$
5. Choose an action a
6. Observe new state s'
7. Compute $\Delta = V_t(s) - (r(s) + \delta V_t(s'))$
8. Update $V_{t+1}(s) = V_t(s) + \alpha_t \Delta$
9. If not converged, goto 3
Introducing Q-Values

- $Q(s, a)$ is the value of taking action a in s, then acting normally
- Sometimes known as **Quality** function

$$Q_{t+1}(s, a) = r(s) + \delta \sum_{s' \in S} \Pr[s'|s, a] \Pr[a|s, w] V_t(s')$$

- Greedy policy given $Q(s, a)$ is trivial to compute

$$\Pr[\arg \max_a Q(s, a)|s] = 1$$

- Use of Q-values does not imply we are doing Q-learning
- The SARSA(0) algorithm learns Q-values directly
Exploration versus Exploitation

- How do we select actions during TD(0)?
- All states must be visited tried
- We should exploit our current knowledge of good actions
- Trade off is tricky
- Rule of thumb.... always allow some exploration
- Common action selection policies:
 - Epsilon soft: Greedy with prob. $1 - \epsilon$, random otherwise
 - Soft-max:

$$
\Pr[a|Q_t(s, \cdot)] = \frac{\exp(Q_t(s, a)/k)}{\sum_{a'} \exp(Q_t(s, a')/k)},
$$

where k is a temperature parameter.

- With exploration and table of values, TD(0) finds global maximum
TD(0) $\delta = 0.5, \alpha = 1.0$ Trial 1
TD(0) \(\delta = 0.5, \alpha = 1.0 \) Trial 2
TD(0) $\delta = 0.5$, $\alpha = 1.0$ Trial 3
TD(0) $\delta = 0.5, \alpha = 1.0$ Trial 4

<table>
<thead>
<tr>
<th>v=0</th>
<th>0</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$v=0$ moves to the next state, which is rewarded with $r=1$. The value function update is calculated using $\delta = 0.5$ and $\alpha = 1.0$. The value function v is updated as follows:

$v_{t+1} = v_t + \alpha (r + \delta v_{t+1} - v_t)$
TD(0) $\delta = 0.5$, $\alpha = 1.0$ Trial 5

<table>
<thead>
<tr>
<th></th>
<th>0.03125</th>
<th>0.0625</th>
<th>0.125</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0625</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>r=1</td>
</tr>
</tbody>
</table>

$r=1$
Problem With One-Step Backup

- Suppose we have $r(s) = 0$ except for a $r(goal) = 1$
- All values are initially 0
- Sample trajectories from a start point to the goal
- If n steps to the goal, we need \textit{at least} n trajectories!
- Goal reward propagates one step further back on each trajectory
- Can we update all steps that lead to goal with one trajectory?
Multi-Step TD
Forward View

- We can define multiple step temporal differences

\[\Delta_1 = V(s) - (r(s_t) + \delta V(s_{t+1})) \]
\[\Delta_2 = V(s) - (r(s_t) + \delta r(s_{t+1}) + \delta^2 V(s_{t+2})) \]
\[\vdots \]
\[\Delta_n = V(s) - (r(s_t) + \delta r(s_{t+1}) + \delta^2 r(s_{t+2}) + \cdots + \delta^n V(s_n)) \]

- TD(0) takes only \(\Delta_1 \) as the error estimate
 - Tends to be low variance and high bias
- A Monte-Carlo approach for \(T \) step episodes uses \(\Delta_T \)
 - Tends to be low bias but high variance
Exponentially Weighting n-Step Errors

- Weight n-step errors exponentially, combining
 - Low bias of Monte-Carlo
 - Low variance of one-step backup

- Weight factor λ:

$$\Delta = (1 - \lambda)\Delta_1 + \lambda(1 - \lambda)\Delta_2 + \cdots + \lambda^{n-1}(1 - \lambda)\Delta_n + \ldots$$

- Exercise: show that infinite sum of weight terms

$$\sum_{n=1}^{\infty} \lambda^{n-1}(1 - \lambda) = 1$$
Q: How do we implement an algorithm that needs future returns?

A: Eligibility Traces

- When state s is visited, add 1 to $e(s)$
- Discount vector e by $\lambda \delta$ after each step
- λ helps convergence, δ is a part of the domain
- e is the eligibility of each state for update
- This leads to the TD(λ) algorithm...
TD(λ)

1. Initialise V_0 to anything
2. Set s' randomly
3. Set $s \leftarrow s'$
4. Receive reward $r(s)$
5. Choose an action a
6. Observe new state s'
7. Compute $\Delta = V_t(s) - (r(s) + \delta V_t(s'))$
8. $e(s) = e(s) + 1$
9. Update $V_{t+1} = V_t + \alpha_t \Delta e_t$
10. $e = \delta \lambda e$
11. If not converged, goto 3

This algorithm is equivalent to forward view (\lambda weighted multi-step backup)
$\text{TD}(0.5)$ $\delta = 0.5$, $\alpha = 1.0$ Trial 1
TD(0.5) $\delta = 0.5$, $\alpha = 1.0$ Trial 2

$v = ??$

<table>
<thead>
<tr>
<th>0.0039</th>
<th>0.0156</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0156</td>
<td>0</td>
<td>0.063 + 0.188 + 0.063 = 0.313</td>
<td>0.5 (\triangle = 0.25)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$r = 1$
Function Approximation

Bellman’s Curse of Dimensionality

- Suppose there are \(v \) binary variables \(x_1, \ldots, x_v \)
- Number of states is \(2^v \)
- 20 variables = 1,048,576 states

- Usually too many states to store \(V(s) \) for each \(s \)
- Let’s use our knowledge of training function approximators
- Approximate \(V(s) \) with \(\hat{V}(s, w) \), parameterised by \(w \)
- E.g., linear approximation (perceptron)

\[
\hat{V}(s, w) = \sum_{i=1}^{v} w_i x_i = w^\top x
\]

- Change to TD(\(\lambda \)) line 8: \(e = e + \nabla_w \hat{V}(s, w) \)
Eligibility trace is now a vector of length v
- It stores eligibility of each parameter for update
- Generally destroys convergence guarantees
- If $\lambda = 0$, and perceptron, can converge to best
- If fixed policy, and perceptron approximator

$$\|V^* - \hat{V}\|_\pi \leq \frac{1 - \delta \lambda}{1 - \delta} \|\hat{V}^* - V^*\|_\pi$$

- final error
- best possible error

- If $\lambda = 1$ can find best approximation \hat{V}^*
Q-Learning

- Recall Q-function learns value of action a in state s
- Can learn Q-function using SARSA(λ) variant of TD(λ)
- But both TD and SARSA learn value of current policy
- What if we could learn the optimal Q-function **off-policy**
 - Learn the best policy while exploring
 - Re-use expensive real-world experience
- Q-learning does this
- Slow because it ignores off-policy transitions
Partial Observability

- We have assumed so far that $o = s$, full observability
- What if we don’t know? Markov assumption violated
 - Ostrich approach (SARSA works well in practice)
 - Exact methods
 - Direct policy search: bypass values, local convergence

- Exact policy is based on full history

$$
\Pr[a_t|o_t, a_{t-1}, o_{t-1}, \ldots, a_1, o_1]
$$

- **Belief states** summarise history sufficiently for optimal decisions

$$
b_{t+1}(s') = \sum_{s' \in S} b_t(s) \Pr[s'|s, a]
$$

- Probability of each world state computed from history
Value Iteration For Belief States

- Do normal VI, but replace states with belief state b
 \[
 V(b) = r(b) + \sum_b \sum_a \Pr[b' | b, a] V(b')
 \]

- Expanding out b
 \[
 V(b) = \sum_{s \in S} b(s) r(s) + \sum_{a \in A} \sum_{o \in O} \sum_{s \in S} \sum_{s' \in S} \Pr[s' | s, a] \Pr[o, s] \Pr[a | o, w] b(s) V(s')
 \]

- What is $V(b)$?
 \[
 V(b) = \max_{l \in \mathcal{L}} l^T b
 \]
Piecewise Linear Representation

- Action u
- Belief state space
- $V(b)$
- $b_0 = 1 - b_1$
- Useful hyperplane

Common action u
Complexity

High Level Value Iteration for POMDPs

1. Initialise b_0 (uniform/set state)
2. Receive observation o
3. Update belief state b
4. Find maximising hyperplane l for b
5. Choose action a
6. Generate new l for each observation and future action
7. While not converged, goto 2

- Specifics of 4 generate lots of algorithms
- Number of hyperplanes grows exponentially: P-space hard
- Infinite horizon problems *might* need infinite hyperplanes
- Approximations mostly learn value of representative belief states
Introduction

Value-Methods

Partial Observability

Policy-Gradient Methods

Progress...

- Exact VI
- SARSA?
- Value & Pol Iteration
- MDP
- POMDP

Model Based

Experience
Jonathan Baxter, Andrew Tridgell, and Lex Weaver.
KnightCap: A chess program that learns by combining TD(λ) with game-tree search.

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.

Gerald Tesauro.
TD-Gammon, a self-teaching backgammon program, achieves master-level play.