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ABSTRACT
Many inference problems that arise in sensor networks can be
formulated as a search for a global explanation which is con-
sistent with local information known to each node. Examples
include probabilistic inference, pattern classification, regression,
and constraint satisfaction. Centralized inference algorithms for
these problems often take the form of message passing on a special
type of data structure called a junction tree, which has the im-
portant property that local consistency between adjacent nodes is
sufficient to ensure global consistency between all pairs of nodes.

In this paper we present an architecture for distributed infer-

ence in sensor networks which is robust to unreliable communi-

cation and node failures. In our architecture, the nodes of the

sensor network assemble themselves into a stable spanning tree,

and use an asynchronous message passing algorithm to transform

the spanning tree into a junction tree for the inference problem.

Using asynchronous message passing on this junction tree, the

nodes can solve the inference problem efficiently and exactly. We

also present an efficient distributed algorithm for optimizing the

choice of junction tree so that the communication and computa-

tional cost of inference can be minimized. We present experimen-

tal results for three applications—distributed sensor calibration,

optimal control, and sensor field modeling—on data from a real

sensor network deployment.

1. INTRODUCTION
Sensor networks consist of nodes which can measure charac-
teristics of their local environment, perform local computa-
tions, and communicate with each other over a wireless net-
work. In recent years, advancements in hardware and low-
level software have led to viable, multi-hundred node sensor
networks that can instrument unstructured environments at
an unprecendented scale. The most popular application of
sensor networks to date has been environmental monitoring.
In these deployments the sensor data is downloaded from the
network for later analysis [15, 14] or the network aggregates
the measurements using simple local operations that com-
pute, for example, averages, maxima, or histograms [10, 11].

More advanced applications, such as tracking and actuation,
require sensor networks that can solve significantly more
complex problems like sensor fusion, data modelling, predic-
tion, and optimal control. Solving these inference problems
requires combining all of the nodes’ local measurements to
generate a globally consistent view of the environment, or in
the case of actuation, coherent controls to change it. For ex-
ample, a node with a temperature sensor can measure only
the temperature at its location; if the node’s sensor is bi-
ased, it is impossible to infer the true temperature from the
measurement. However, as we show in the next section, by
combining this local information with the measurements of
the other sensors, we can solve a global inference problem
that automatically calibrates the temperature sensors at all
nodes.

Most existing inference algorithms for sensor networks focus
on solving specific tasks such as computing contour levels
of sensor values [16], distributed sensor calibration [2], or
target tracking [20]. In this paper, we present the first gen-
eral architecture for inference in sensor networks which can
solve a wide range of inference problems including proba-
bilistic inference problems (e.g., sensor calibration and tar-
get tracking), regression (e.g., data modelling and contour
finding), and optimization (e.g., actuator control, decision-
making and pattern classification). At the core of the archi-
tecture is a powerful data structure called a junction tree,
which allows all of these inference problems to be solved by
simple asynchronous message passing algorithms [1].

Recently, there have been some proposals to use existing
centralized inference algorithms in sensor networks [5, 18,
3]. However, these inference approaches are not as general
as ours, and more importantly, they do not fully address
the practical issues that arise in real deployments: commu-
nication over wireless networks is unreliable due to noise
and packet collisions; the wireless network topology changes
over time; and, nodes can fail for a number of reasons, often
because the battery dies. To address these challenges, we
have found that it is insufficient to implement existing al-
gorithms on the sensor network architecture; fundamentally
new algorithms are required.

To address these robustness issues we propose a novel archi-
tecture consisting of three distributed algorithms: spanning
tree formation, junction tree formation, and message pass-
ing. The nodes of the sensor network first organize them-
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Figure 1: Lab deployment. The Markov graph for the

nodes’ temperature variables is overlaid; neighboring tem-

perature variables are directly correlated, and those joined

by paths are indirectly correlated.

selves into a spanning tree so that adjacent nodes have high-
quality wireless connections. By communicating along the
edges of this tree, the nodes compute the information neces-
sary to transform the spanning tree into a junction tree for
the inference problem. In addition, these two algorithms in-
teract to optimize the spanning tree so the computation and
communication required by inference is minimized. Finally,
the inference problem is solved exactly via asynchronous
message passing on the junction tree. By quickly responding
to changes in each others’ states, these three algorithms can
efficiently recover from communication and node failures.
We demonstrate the power of our architecture on three sep-
arate inference tasks using data from a real sensor network
deployment.

1.1 Inference problems in sensor networks
Our inference architecture is useful for solving a wide variety
of inference problems that arise in sensor networks. In this
section we present three such problems, probabilistic infer-
ence, regression, and optimal control, to give a sense of the
range of problems addressed.

1.1.1 Probabilistic inference
Probabilistic inference is a powerful tool for solving prob-
lems where we must reason with partial or noisy information
[4]. These problems often arise in sensor networks, where
the sensor measurements give an incomplete view of the
instrumented environment. We will focus on a particular
application to which probabilistic inference may be applied:
distributed sensor calibration. After a sensor network is
deployed, the sensors can be adversely affected by the envi-
ronment, leading to biased measurements. The distributed
sensor calibration task involves automatic detection and re-
moval of these biases [2]. This is possible because the quanti-
ties measured by nearby nodes are correlated but the biases
of different nodes are independent.

Figure 1 shows a sensor network of 54 nodes that we de-
ployed in our lab; the data from this deployment indicates
that the temperatures at the nodes’ locations fluctuate through-
out the day, but that there are significant correlations be-
tween the temperatures at nearby nodes. We fit a proba-
bilistic model to this data set where each node i has three
associated variables: its observed temperature measurement

0
5

10
15

20
25

30
35

0
20

40
60

80
100
18

20

22

24

26

28

30

x
y

T
em

pe
ra

tu
re

 (
C

)

Figure 2: The temperature measurements from the deploy-

ment in Figure 1 and a regressed function.

Mi, the true (unobserved) temperature at its location Ti,
and the (unobserved) bias of its temperature sensor Bi.

The probability model for this data has two main parts: a
prior model representing the correlations between tempera-
tures at various locations, and sensor models for each node
which give the likelihood of a possible sensor measurement
given the true temperature and sensor bias. The tempera-
ture prior is a structured model called a Markov network [4],
shown in Figure 1, which compactly represents direct and in-
direct correlations between the temperature variables. The
complete joint probability density is given by:

Pr{T1, . . . , TN , B1, . . . , BN ,M1, . . . ,MN}

∝
Y

(i,j)∈E

ψij(Ti, Tj)| {z }
temperature prior

NY
n=1

Pr{Bn}| {z }
bias prior

Pr{Mn |Bn, Tn}| {z }
measurement model

(1)

where ψij(Ti, Tj) is a factor (or part) of the Markov network
that defines the prior over temperature. There is one such
factor for each of the edges in the Markov network in Figure
1, and they are learned from previous observations from the
network.

Assume we have obtained some sensor measurements m1:N =
(m1, . . . ,mN ). By plugging these into the joint density (1)
and marginalizing out all variables except Ti, we get the
posterior distribution of Ti given the measurements:

Pr{ti |m1:N} ∝
X
b1:N

X
t\i

Pr{ti, t\i,b1:N ,m1:N} (2)

This probability distribution for Ti represents an estimate
of the temperature at node i using all of the sensor mea-
surements to filter out sensor bias and noise. Under our
model learned from the deployment data, we calculate that
if the sensor biases have a standard deviation of 1◦C, then
in expectation these posterior estimates eliminate 44% of
the bias. As the sensor network becomes denser, leading to
more strongly correlated variables, a larger fraction of the
bias can be automatically eliminated. For details on this
model, please see [17].

1.1.2 Regression
Many current sensor network deployments are used in a
“data gathering mode”: all of the network’s measurements



are uploaded to a central location. Transmitting all of the
measurements can be wasteful because the measurements
at nearby locations are often correlated (such as the tem-
perature measurements of the previous example). In other
words, the effective dimensionality of the data in these net-
works is often significantly lower than the total number of
sensor measurements. Regression, or function fitting, is a
powerful and general framework for maintaining the struc-
ture of the sensor field while significantly decreasing the
communication required to access it [8]. In linear regres-
sion, the sensor field is modeled by a weighted combination
of basis functions:

bf(x, y, t)
4
=

kX
j=1

wjbj(x, y, t).

Here, bf(x, y, t) represents an approximation to the value of
the sensor field at location (x, y) at time t, and the bj(x, y, t)
are basis functions which are chosen in advance. The weights
wj are optimized to minimize the sum squared error between

the observed measurements and the model bf :

w∗ 4
= argmax

w

NX
i=1

 
mi −

kX
j=1

wjbj(xi, yi, ti)

!2

, (3)

where (xi, yi, ti) is the location of node i and the time mea-
surement mi was obtained. The optimal weights w∗ can be
found by solving a linear system; these weights and their
basis functions then provide a structured summarization of
the original data. Figure 2 shows the result of fitting such a
function to temperature data from our deployment.

In the general case, computing the optimal weights requires
solving a dense linear system, which is expensive to solve
in distributed settings. Kernel linear regression is a spe-
cialization of this technique that can effectively model local
correlation in the data with significantly less computational
cost. In this case, each basis function has bounded sup-
port (a region of influence), and the optimal weights are the
solution to a sparse linear system. As shown in [8], these re-
gression problems can be solved efficiently using the junction
tree data structure and message passing algorithm.

1.1.3 Optimal control
Other interesting inference problems arise when nodes can
control their environment to achieve some end. Consider
a greenhouse deployment where nodes actuate the blinds
to achieve specific desired light levels at different locations.
The light level measured by each node will depend on the
state of nearby blinds, and nearby nodes may have conflict-
ing desires. To achieve the setting of the blinds that are best
for all of the nodes, we can specify for each node a reward
function which specifies its local utility for a setting of the
blinds given its current light measurement. For example,
the reward function for node 1 may be Q1(A1, A2, A3;m1)
indicating the utility of all settings A1, A2, A3 of the nearby
blinds given its current measurement m1. Given this reward
function, node 1’s preferred blind setting is given by:

argmax
a1,a2,a3

Q1(a1, a2, a3;m1).

In the general problem where we have multiple nodes, each
with its own desired light level. Here, balance the nodes’

competing desires by maximizing the sum of all reward func-
tions:

argmax
a

X
i

Qi(ai;mi), (4)

where a is a setting for all blinds, and ai is the restriction of
this setting to the blinds that affect the light at the location
of node i. If solved näıvely, this optimization problem is
very expensive; e.g., if each blind setting Ai ∈ {up, down},
then enumerating the possible settings requires exponential
time. Fortunately, junction trees again provide an abstrac-
tion for solving this problem efficiently. We refer the reader
to [9] for more details, and for an algorithm for obtaining
the functions Qi.

1.2 Message passing on junction trees
The three inference problems described above are instances
of a large class of inference problems that can be solved
efficiently by message passing on a data structure called a
junction tree. In this section we provide an introduction
to inference using junction trees; for more detail see [1].

1.2.1 Inference problems
In this section we show how each of these three inference
problems is an example of a general class of inference prob-
lems. This requires us to introduce a couple of simple ab-
stractions: variables, which are the unknown quantities of
interest; and factors, which represent partial knowledge about
sets of variables. To make these notions concrete, we will
use probabilistic inference as a running example and men-
tion only briefly how regression and optimal control can also
be represented in these terms; for more detail see [8, 9]. For
readers familiar with database systems, we also make con-
nections to the relational algebra used in relational query
processing, which is yet another example of this problem
class.

Each of the problems described above can be viewed as in-
ference about some set of unknown quantities which we will
call variables. We will use capital letters to represent vari-
ables, e.g., X,Y, . . ., and boldface capital letters to represent
sets of variables, e.g., C,D, . . .. Each inference problem has
an associated set of variables, which we will denote V.

Example 1 (variables). In probabilistic inference, V is
the set of unobserved random variables; in the calibration
problem described above, V contains for each node i of the
sensor network the unknown temperature Ti at node i’s lo-
cation and the bias Bi of its temperature sensor. (The tem-
perature measurement Mi is an observed quantity, so it is
not in V.)

In regression, the variables in the problem are the opti-
mal weights wi of the basis functions, while in the con-
trol problem, the variables are the optimal controls Ai. In
relational query processing, variables are attributes of the
database.

Solving these inference problems requires us to operate on
information about the variables: some of this information
may be obtained from sensor measurements, and some may
be prior knowledge. We will encode both types of knowledge
in terms of factors. A factor represents partial knowledge



about a subset of the variables, which is called the domain
of the factor. We use lower case Greek letters (e.g., φ, ψ, π,
etc.) to represent factors, and we write φ : D to represent
that φ is a factor whose domain is D ⊆ V.

Example 2 (factors). In probabilistic inference, a factor
is a term of the posterior joint probability density, such as
a local prior or conditional probability density function, or
a likelihood function. Consider the joint probability density

Pr{t1, b1,m1} = Pr{t1}Pr{b1}Pr{m1 | t1, b1}

over the variables T1, B1,M1. If we observe M1 = m1, then
the posterior joint density is

Pr{t1, b1 |m1} ∝ Pr{t1}Pr{b1}Pr{m1 | t1, b1} (5)

i.e., it is proportional to a product of functions over the
unobserved variables. The factors of this problem are

φ1 : {T1} defined by φ1(t1) = Pr{t1}
φ2 : {B1} defined by φ2(b1) = Pr{b1}

φ3 : {T1, B1} defined by φ3(t1, b1) = Pr{m1 | t1, b1}

Because functions are hard to represent and manipulate,
these factors are represented by a set of parameters. For
example: if the variables T1 and B1 each have k values, then
φ3(t1, b1) is often represented as a k × k table of function
values; if they are continuous and Gaussian, then φ3(t1, b1)
can be represented by a 2×1 vector and a 2×2 matrix that
parameterize a log-quadratic function [4].

In the control problem, the factors are the Qi functions.
In regression, each factor consists of a matrix and a vector
summarizing the impact of some measurements on compo-
nents of the optimal weight vector. In relational queries, a
factor is a relation (or table of tuples), and its domain is its
attribute set.

Inference consists of two operations on factors; the first is
combination. ⊗ is an operator that combines the informa-
tion represented by two factors into a single factor. The
combination of φ and ψ is written φ⊗ψ, and its domain
is the union of the domains of φ and ψ:

φ : C and ψ : D =⇒ φ⊗ ψ : C ∪D (6)

We require that ⊗ is symmetric and associative, so that
combination is an order-independent operation.

Example 3 (combining factors). In probabilistic infer-
ence, combination is simply multiplication. For example,
the combination of two factors φ : {T1, T2} and ψ : {T1, T3}
is π : {T1, T2, T3} where

π = φ⊗ ψ ⇐⇒ π(t1, t2, t3) = φ(t1, t2)× ψ(t1, t3)

Thus, the posterior density (5) can be written as

3O
i=1

φi
4
= φ1 ⊗ φ2 ⊗ φ3

(Order independence makes this notation unambiguous.)

In regression and control problems, the combination opera-
tion corresponds to addition; in the former we add matrices
and vectors, and in the latter Qi functions. In the rela-
tional algebra, ⊗ is the join operator 1, which combines

two relations to produce a relation with the union of their
attributes.

The second operation is summarization.
L

is an operator
that takes a factor ψ and a set of variables S and produces a
new factor summarizing the information ψ represents about
S. The summary of φ to S is written

L
S φ, and its

domain contains those variables in the domain of φ that are
also in S:

φ : D =⇒
M
S

φ : D ∩ S (7)

Like combination, we require that summary is an order-
independent operation:

L
S

L
T φ =

L
S∩T φ.

Example 4 (summarizing factors). In probabilistic in-
ference, the summary operator is marginalization. For ex-
ample, the summary of φ : {T1, T2, T3, T4} down to {T1, T2}
is computed by marginalizing out all variables but T1 and
T2:

ψ =
M

{T1,T2}

φ ⇐⇒ ψ(t1, t2) =
X
t3

X
t4

φ(t1, t2, t3, t4)

In our control problem, the summarization operation com-
putes the maximum possible value of a Q function for set-
tings of a subset of the control variables. In regression, the
summarization operation corresponds to steps of the Gaus-
sian elimination algorithm for solving linear systems of equa-
tions. In the relational algebra, the summary operator is the
project operator π, which eliminates unneeded attributes.
(It can also include a selection operators σ which selects a
subset of the tuples.)

We now have the concepts necessary to give a formal defini-
tion of the inference problem. We have a collection of factors
Φ = {φ1, φ2, . . . , φk} that represent our knowledge about the
variables. In the inference problem, we must combine these
factors to integrate our knowledge, and then summarize the
result to a set of query variables Q:

β =
M
Q

kO
i=1

φi (8)

Example 5 (inference problems). The posterior marginal
of T1 given M1 = m1 is given by marginalizing out all vari-
ables except T1 out of (5):

Pr{t1 |m1} ∝
X
b1

Pr{t1}Pr{b1}Pr{m1 | t1, b1}

This is an inference problem of the form (8) where Q = {T1}:

β(t1) = Pr{t1 |m1} ⇐⇒ β =
M
{T1}

3O
i=1

φi

The inference problems in regression and control are spec-
ified in a similar fashion, leading to the solution of Equa-
tions (3) and (4). In the case of regression, the result of
inference is the optimal weights for a subset of the basis
functions; in control the result specifies the maximum pos-
sible utility obtainable for different settings of some control



variables. In the relational algebra, the result of inference is
a relation formed by joining relations and applying projec-
tion and selection operations.

1.2.2 Algebraic structure in inference problems
So that our inference problems can be solved efficiently, we
require that the combination and summary operators sat-
isfy some simple algebraic properties. In addition to the
order-independence properties mentioned above, we define
the null factor 1 : ∅, which represents a lack of information
about any variables, so that ψ ⊗ 1 = ψ and

L
S 1 = 1.

The crucial property that yields efficient inference algorithms
is that combination must distribute over summary. For-
mally, this is written

ψ : D and D ⊆ S =⇒
M
S

(ψ ⊗ φ) = ψ ⊗
M
S

φ (9)

In other words, when computing a summary of a combina-
tion of factors, we can “push” the summary past any factors
whose domains are contained in the summary set.

Example 6 (algebraic structure). In probabilistic infer-
ence, it is easy to verify the order-independence of combina-
tion and summary, as these properties are inherited directly
from multiplication and addition. Distributivity also follows
since

a(b+ c) = ab+ ac.

For example, let φ : {T2, T3} and ψ : {T1, T2} be two factors.
Say we wish to summarize their combination to {T2, T3}:M

{T2,T3}

φ⊗ ψ =
X
t1

φ(t2, t3)× ψ(t1, t2) (10)

= φ(t2, t3)×
X
t1

ψ(t1, t2) = φ⊗
M

{T2,T3}

ψ

(11)

If T1, T2, and T3 each take k values, then π(t2, t3) is a table
of k2 entries. If we used (10) to compute it, we would require
O(k3) time and space to form the combination φ⊗ψ, which
is a table with k3 entries. Using (11) instead avoids forming
this table, and requires only O(k2) time and space.

Our control problem similarly exploits the distributivity of
addition over maximization:

a+ max(b, c) = max(a+ b, a+ c).

In regression, this property translates into the distributivity
of matrix addition over Gaussian elimination steps. In the
relational algebra, distributivity allows us to “push” projec-
tions and selections past joins to optimize query process-
ing.

Understood procedurally, the inference problem (8) can be
interpreted as a directive to combine together all sources
of knowledge into a single factor, and then summarize the
result to a set of query variables. But this method of solv-
ing the inference problem forces us to compute a factor over
all of the variables, which can be expensive or intractable.
For example: in the regression problem each factor is repre-
sented by a matrix and vector that requires space quadratic

1

32 4

U, V, W ψ
1
:{U, V, W}

ψ
2
:{V, X} ψ

3
:{V, Y} ψ

4
:{V, W, Z}

V, X V, W, Y V, W, Z

V, W

V
V

W

Figure 3: An example junction tree. The nodes are num-

bered 1–4, and are labelled with their cliques; e.g., C4 =

{V,W,Z}. Next to each node i is its factor ψi : Di. Each

edge (i, j) is labelled with a box containing the separator

Sij = Ci ∩Cj.

in the size of the domain; in the probabilistic inference and
optimization problems, the factors may be tables of numbers
whose sizes scale exponentially with the domain size.

When the factors of an inference problem have significant
locality structure, i.e., the factors’ domains are small, the
algebraic properties of combination and summary can lead
to efficient algorithms for solving the inference problem (8).
In particular, the distributivity property (9) allows us to
perform summarizations early, instead of forming the un-
weildy combination of all of the factors. We now present
the junction tree algorithm, which uses this property to its
full potential to minimize the cost of inference.

1.2.3 Junction trees
To take full advantage of this locality structure, we require
a data structure called a junction tree.

Definition 1 (junction tree). A junction tree is an
undirected tree where each node i has

• a factor ψi : Di (called the local factor at i) and

• a set of variables Ci ⊇ Di that contains the domain
of ψi (called the clique at i)

and the running intersection property holds:

If a variable X is in two cliques Ci and Cj in the
junction tree, then it must also be in all cliques
on the (unique) path between Cj and Cj .

For each edge (i, j), the separator Sij
4
= Ci ∩Cj contains

the variables shared by the cliques at its endpoints.

Example 7 (junction trees). Figure 3 shows an example
junction tree with its cliques, factors, and separators. Notice
that for each node i, the clique Ci contains the domain
Di of its factor ψi; e.g., C3 = {V,W, Y } ⊇ {V, Y } = D3.
Notice also that the running intersection property holds: for
example, because V ∈ C4 and V ∈ C1, it must be (and is)
in C3, which is on the path between them.



Below we present an inference algorithm which achieves global
consistency by ensuring local consistency between neighbors
in the junction tree. The running intersection property is
required because if two nodes i and j must agree on their
knowledge regarding a variable X, then the nodes on the
path between them must be willing to “carry information”
about X.

1.2.4 Message passing
The junction tree representation forms the basis of an ef-
ficient algorithm for solving the inference problem. In this
algorithm each node of the junction tree passes a single mes-
sage (which is a factor) to each of its neighbors. By com-
bining its local factor ψi with the messages it receives, each
node i can solve an inference problem whose the query vari-
ables are its associated clique Ci. The messages are given
by:

Definition 2 (message). Let j and k be neighbors in the
junction tree. The message from j to k is the factor

µjk
4
=
M
Sjk

24ψj ⊗
O

i∈n(j)\k

µij

35 (12)

where n(j) is the set of neighbors of j in the junction tree.

Node j computes the message by combining its local factor
with the messages it receives from its other neighbors, and
then summarizing the result to the separator Sjk; this sum-
marizes away all variables that are not in Ck, the clique of
the destination node. Definition 2 is recursive, as messages
depend upon other messages; the recursion “bottoms out”
at the leaves of the junction tree: the message a leaf node
sends to its neighbor does not depend on any other messages.
Because the junction tree is a tree, there are schedules for
computing the messages in which no message is computed
more than once [1, 4].

By combining its local factor with its incoming messages,
each node obtains a factor which we call its “result”:

Definition 3 (result). The result at j is the factor

ρj
4
= ψj ⊗

O
i∈n(j)

µij (13)

As we have alluded to above, the result at j is exactly the
solution to the inference problem whose query variables are
given by the clique at j:1

Theorem 1. The result at j satisfies

ρj =
M
Cj

kO
i=1

φi (14)

This means that after all of the messages have been passed in
the junction tree, every node becomes an “expert” about its

1See [1] for a proof; the key idea is that the messages use
distributivity to “push” summaries past combinations, and
the running intersection property prevents the summaries
from being “pushed in” too far.

clique of variables, in that it has the solution to the inference
problem where the query variables are given by its clique.
Moreover, since each message is used to compute the results
at several nodes, the simultaneous solution of these inference
problems is extremely efficient.

Example 8 (results). When a junction tree is used to solve
a probabilistic inference problem, each node i has immediate
access to the posterior distribution of its variables Ci given
all of the observed measurements. In kernel regression, it
has the optimal weights of all basis functions necessary to
predict the sensor field in its local region. In control, each
node obtains information that enables it to locally compute
the optimal setting for its control variables.

It is also possible to use asynchronous message passing to
solve the inference problem. In this scheme, each node ini-
tializes its incoming messages to the null factor 1 and then
sending a message to each of its neighbors. Whenever a node
j receives a new (version of a) message from a neighbor i,
it recomputes and retransmits its message to all neighbors
but i. Eventually each node receives correct versions of all
of its incoming messages, and the nodes stop sending mes-
sages. This scheme is less efficient because messages are
recomputed many times, but as we will see, it is more useful
in distributed settings.

Another important property of the junction tree data struc-
ture is that from the clique and separator sizes we can easily
determine the computational complexity of the inference al-
gorithm. Each message µij is a factor over the corresponding
separator Sij and each result ρi is a factor over the corre-
sponding clique Ci. Thus, the sizes of the messages and the
local storage required at each node depend upon the sizes of
the cliques and the separators. The computational complex-
ity required to compute messages and results also scales with
the clique sizes (in a problem-specific way). Thus, finding
a junction tree with small cliques and separators important
for efficient inference.

1.3 Overview of the architecture
In the inference problems described above, our knowledge
is represented by a collection of factors Φ = {φ1, . . . , φk}.
These factors typically represent two types of knowledge
about the variables: knowledge that derives from observa-
tions, and prior knowledge (which may come from experts
or from observations made in the past). Both sorts of knowl-
edge are represented by factors. Clearly, those factors that
derive from measurements are produced by—and are most
naturally stored at—the nodes that make the measurements.
The remaining factors, which represent prior information,
are partitioned across the nodes; they may be stored on
the nodes before deployment, or “downloaded” to the nodes
after deployment using dissemination techniques such as di-
rected diffusion [12].2

For notational simplicity, we use ψn : Dn to represent the

2In more sophisticated implementations, we may choose to
store replicates of each “prior knowledge” factor on several
nodes, so that if a small number of nodes fail, the sensor
network still has access to all of the factors; see [17] for a
technique for redundant distribution of factors in probabilis-
tic inference.



combination of all factors that are stored at node n. Since
the factors are partitioned across the nodes we have

NO
n=1

ψn =

kO
i=1

φi (15)

which guarantees that this is an equivalent representation of
our knowledge. If we were to now organize the nodes of the
sensor network into an undirected tree, then we would have
a distributed data structure that is almost a junction tree:
a tree where each node n has a factor ψn—all that would
be missing are the cliques associated with each node. This
hints at a three-layer architecture for distributed inference:

1. The spanning tree layer (§2) allows each node to se-
lect a set of neighbors with good communication links
such that the nodes are organized in a spanning tree.

2. The junction tree layer (§3) allows the nodes com-
pute cliques and separators so that Definition 1 is sat-
isfied. This completes the description of a junction
tree that is “embedded” in the network.

3. The inference layer (§4) allows the nodes to asyn-
chronously pass the inference messages (12) over the
edges of the junction tree, each node eventually con-
verging to the correct result of inference for its clique.

Each of these layers is implemented as a distributed algo-
rithm that runs on every node of the sensor network. Rather
than running in sequence, the three layers run concurrently,
responding to changes in each others’ states. For exam-
ple, if communication along an edge of the spanning tree
suddenly becomes unreliable, the spanning tree must be
changed, which causes the junction tree layer to recompute
the cliques, which in turn causes the inference layer to re-
compute new messages.

It can be helpful to view this three-layer architecture in
terms of a programming metaphor. We start with a problem
we would like to solve (the inference problem) and a physi-
cal architecture for computation (the sensor network). The
spanning tree layer is responsible for defining a logical archi-
tecture on which to solve this problem, in that it determines
the communication pattern: only neighbors in the tree will
communicate with each other. The junction tree layer then
uses this logical architecture to determine where summary
operators should be placed in the network; it is, in effect,
compiling the inference program to the logical architecture.
The message passing layer then executes the inference pro-
gram on the architecture. The next three sections examine
these layers in detail.

2. SPANNING TREE FORMATION
As described above, the first step towards distributed infer-
ence is to organize the nodes of the sensor network into a
spanning tree so that adjacent nodes have high-quality com-
munication links. While this sounds simple, it is actually one
of the more difficult problems to be solved. The nodes of a
sensor network observe only local information, but spanning
trees have three non-local properties: they are connected;
they are acyclic; and they are undirected, in that neighbors
both agree that they are adjacent. When the connectivity is

static and each node knows its neighbors and link qualities,
efficient distributed minimum cost spanning tree algorithms
are possible [6]. Unfortunately, none of these properties hold
in sensor networks: link qualities are asymmetric and change
over time (see Figure 4); nodes must discover new neighbors
and estimate their associated link qualities; and, nodes must
detect when neighbors disappear.

Spanning trees are a basic component of many distributed
algorithms because they are a simple communication struc-
ture that permit global coordination among a set of dis-
tributed processors. For example, spanning trees are often
used for multi-hop routing in ad hoc networks and sensor
networks [19, 10]. Our application has different require-
ments than routing, and as a result, we found it necessary
to develop a distributed spanning tree algorithm specifically
for our architecture. In addition to being correct and ro-
bust to failure, we require a spanning tree algorithm with
two properties:

• it must be stable, in that its topology remains fixed
whenever possible; and

• it must be flexible, in that it can choose between a
wide variety of different topologies.

While these properties are important for spanning tree algo-
rithms used in routing, they are not crucial: the main goal
is to move packets through the network. In our setting, the
spanning tree defines a “logical architecture” for our appli-
cation, and in this capacity it determines the computation
and communication required to solve the inference problem.
Thus, our spanning tree algorithm must be as stable as pos-
sible so that the inference algorithm can make progress; and,
the spanning tree algorithm must be able to flexibly choose
between different spanning trees, so that we can minimize
the cost of inference.

There is another important difference between our setting
and that of multi-hop routing. In routing, the spanning
tree algorithm is privy to useful information that is not eas-
ily available in our application. For example, the spanning
tree algorithm described in [19] detects cycles by inspecting
the originator of each packet; if a node receives a packet
that it originated, the node knows it is part of a cycle and
takes steps to break it. Our application does not naturally
generate information of this sort, and so our spanning tree
algorithm must employ other methods to avoid cycles.

2.1 Overview of the algorithm
Our spanning tree algorithm based upon ideas from a few
different protocols. The basic structure of our algorithm is
inspired by the ieee 802.1d protocol. The nodes collaborate
to identify the node with the lowest identifier (e.g., mac
address); this node is elected the root of the network. In
addition, each node i selects a parent node, which has a
high quality connection with i and which has a path to the
root via its parent. When all nodes agree on the root and
each has found a valid parent, the network has formed a
correct directed spanning tree; children notify their parents
to make the tree undirected.



Each node starts by selecting itself as the root (and also as
its parent). To coordinate with the other nodes, each node
i periodically broadcasts a configuration message, which
conveys its current choice of root ri and parent pi (as well
as other information). The interval between these periodic
broadcasts is called an epoch, and it is the same for all
nodes. Nodes use the configuration messages they receive
to update their own choice of root and parent. For example,
if node i with root ri receives a configuration message from
node j with root rj < ri, then node i selects node j as its
parent and updates its root to rj ; this is the basic mechanism
by which the nodes elect the node with the lowest identifier
as the root. Nodes also use configuration information to
learn about their children: if node i receives a configuration
message from node j that designates i as its parent, i learns
that j is its child.

The local state at node i consists of a cache of node infor-
mation records. Each such record corresponds to another
node j in the network that node i has learned about, and
includes the configuration most recently received from node
j, link quality information about node j, and other informa-
tion. New records are inserted into the cache when nodes are
first discovered, and they are flushed from the cache when
the corresponding node is believed to have failed.3

To prevent stale configuration information, each configura-
tion message has another field called the root pulse. This
is an integer that each node copies to its configuration mes-
sage from that of its parent. The only node in the network
that changes the root pulse is the root itself; in each suc-
cessive epoch the root increments its pulse. Thus, if the
root is functioning and a node has a valid path to the root,
that node will see the root pulse (as conveyed by its parent’s
configuration) increasing. If the root has failed or node i’s
path is invalid, the root pulse will stop, and node i knows
to choose another parent.

More specifically, the root pulse is used to detect stale infor-
mation as follows. In node i’s cache, the node information
record for node j includes the configuration most recently
received from node j, and also its associated configura-
tion age, which is the number of epochs in which the con-
figuration’s root pulse has not changed. A configuration is
viewed as stale if its age exceeds a prespecified constant,
MAX-CFG-AGE. When a configuration is first received from
node j (or when the root rj of j’s configuration changes),
the age is set to 1 + MAX-CFG-AGE; this ensures that a con-
figuration is initially viewed as stale until a “live pulse” is
observed (to prevent stale information from being propa-
gated around the network indefinitely). Node i increments
this configuration age once each epoch, and resets it to zero
if it receives from j a new configuration message with the
same root but a higher root pulse.

2.2 Link quality estimation
In addition to coordinating the nodes’ decisions regarding
the tree topology, the configuration messages form the basis

3In practice a node may hear infrequently from many distant
nodes; this can cause its node information cache to grow
unmanageably large. To maintain a fixed size on the cache,
it is important to choose a cache management strategy that
adds new records conservatively[19].
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Figure 4: Link qualities in the sensor network deployment.

The upper left plot shows the asymmetry of link qualities:

each point corresponds to a pair of nodes, and gives the

fraction of successfully sent and received transmissions. The

upper right plot shows how in-bound link quality varies with

distance. Note that link quality has large variance even at

short distances. The lower left plot shows how the in-bound

link quality from two transmitters change over a month’s

time, and the lower right plot shows the difference in received

link quality between two parents; because it is both positive

and negative, the best choice of parent can change over time.

of our link quality estimation technique. The configuration
messages are issued with a known period, and so once node i
learns of node j’s existence, it can interpret an epoch with-
out an error-free configuration message from j as a failed
transmission. We use an exponentially-weighted moving av-
erage of the fraction of successfully received configuration
messages as an estimate of the in-bound link quality on a
link [19]; this is a dynamic estimate p̃j→i of the probability
pj→i that a packet transmitted by node j will be received
by node i.4

By listening to other nodes, a node i can learn about its
in-bound link qualities, but not about its out-bound link
qualities; i.e., node i cannot learn the success rate of its
transmissions. Because link qualities can be (and often are)
asymmetric (see Figure 4), we need a technique for nodes
to learn about their out-bound link qualities. We accom-
plish this by augmenting each configuration message with
in-bound link quality information; i.e., when node i broad-
casts its configuration message, it includes information on
the nodes that it can hear, and their associated in-bound
link quality estimates. To keep the size of the configura-
tion message small, each configuration message can report
quantized link qualities for a small number of nodes; a node
can cycle through the link qualities it reports in successive
configuration messages. The net effect is that if node i can
hear node j, it will eventually obtain an estimate p̃i→j of

4These estimates are reliable only after the transmitter has
been observed for a reasonable period of time. For this rea-
son, each node information record stores the (exponentially-
weighted) counts of received and lost configuration messages
and also the record age, which is the amount of time the
record has been in the cache. The link quality is assumed to
be zero until the record age exceeds a predefined threshold.



pi→j , the probability that its transmissions are received by
node j; if no estimate is received it is assumed to be zero.

Once a node i has trustworthy estimates of its in-bound link
quality p̃j→i from node j and its out-bound link quality p̃i→j

to node j, it can compute the reliable transmission cost
between itself and node j as

c̃ij
4
=

1

p̃i→j × p̃j→i
(16)

Under the assumption that the success of the transmissions
are independent events, c̃ij is an estimate of the expected to-
tal number of packet transmissions node i and node j would
have to perform in order to successfully transmit a packet
and then successfully acknowledge its receipt. Each node
uses these costs to optimize its choice of parent, as described
in §2.3.

We also rely upon configuration messages to detect node
loss. If node i experiences an extended period in which no
configuration messages arrive from node j, this can indicate
that node j has died. Given the wide variety of link qualities
(even within a single sensor network deployment—see Figure
4), it is undesirable to use a predefined silence period to di-
agnose node loss: five consecutively lost messages is a strong
indication of a dead node if the link is of excellent quality,
but it says little about a node with a low-quality link. In-
stead, in our algorithm, node i assumes node j has died if
it has been silent for n consecutive epochs and (1− p̃j→i)

n,
the probability n successive configuration messages would
be lost given the link quality is p̃j→i, is less than a small
threshold (e.g., 1× 10−7).

2.3 Parent selection
To complete the description of the algorithm, we must de-
scribe how nodes select their parents. Each node i period-
ically scans its node information cache to find the node j
that has the lowest reliable transmission cost c̃ij such that
the following constraints are satisfied.

1. Node j must have selected the lowest root of all po-
tential parents; this ensures the nodes all agree on the
root.

2. The age of node j’s configuration must not exceed the
maximum permitted configuration age; this ensures
stale information is not used to make parent decisions.

3. If i currently has a parent k that offers a path to the
same root as node j, then node j’s configuration must
have a larger pulse value than node k’s configuration
does; this prevents node i from selecting one of its
descendants as a parent, which would create a cycle.

Given these rules for parent selection, the algorithm is guar-
anteed to converge to a correct spanning tree if the network
is not partitioned, and if link qualities remain stable for a
long enough period of time. (It is not guaranteed to con-
verge to the minimum cost spanning tree, however, because
the nodes make independent parent decisions.)

2.4 Descendant testing
We have found experimentally that the algorithm described
above yields stable spanning trees, but that it is limited in
the spanning trees it will select—i.e., it is not flexible. The
reason is that condition (3) above is a very conservative
method for avoiding cycles; in practice it means that a node
will almost never select a parent that is further than itself
from the root, even if it would greatly reduce the cost.

We address this problem by adding a second root pulse
called the descendant test pulse. Like the root pulse,
this is an integer that is periodically incremented by the
root and is propagated from parent to child throughout the
spanning tree. Unlike the root pulse, any node may choose
to temporarily halt the progression of the descendant test
pulse to perform a descendant test. When a node i fixes the
descendant test pulse that it broadcasts, then the descen-
dant test pulse observed (and broadcast) by its descendants
will also halt. If node i then observes another node j with a
descendant test pulse that is higher than the one it is broad-
casting, then i knows that j is not a descendant, and could
possibly serve as a parent. In this way, node i learns of a
larger set of possible parents, and can make better decisions
about how to minimize its cost.

One shortcoming of this scheme is that a descendant test is
less useful if nearby nodes are performing descendant tests—
especially when an ancestor is performing a descendant test
(in which case the descendant test pulse has already been
halted). This makes the timing the tests important. Nodes
can make intelligent decisions about when to perform de-
scendant tests by snooping on the descendant test pulses
broadcast by nearby nodes and by performing them only
when they could possibly lead to the discovery of a better
parent.

3. JUNCTION TREE FORMATION
Recall that each node i in the sensor network starts with a
factor ψi : Di. Once a spanning tree has been constructed,
the nodes have formed a distributed data structure similar
to a junction tree: a tree where each node has a factor (see
Figure 5). To make this into a junction tree, we must also
specify the clique Ci for each node i of the network. Accord-
ing to Definition 1, these cliques must satisfy two properties:
each node’s clique must include the domain of its factor (i.e.,
Ci ⊇ Di for all nodes i); and, we must have the running in-
tersection property: if two cliques Ci and Cj have the same
variable X, then all nodes on the unique path between them
must also carry X.

In this section, we present a robust, distributed algorithm
which passes messages between neighbors in the spanning
tree in order to compute the unique set of minimal cliques
that satisfy these two properties. Because the spanning tree
topology determines the cliques of the junction tree, we also
present a robust, distributed algorithm for optimizing the
spanning tree to minimize the clique sizes; this minimizes
the communication and computation required by inference.

3.1 Ensuring the running intersection
We will begin by presenting the algorithm under the as-
sumption that there is a stable, valid spanning tree and that
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Each node i is now labelled with its clique Ci. The reach-

able variables message R32 = {T2, T3, T6} is obtained by the

union of R63 = {T3, T6} with the local variables for node 3,

D3 = {T2, T3}. The circled variables were added to satisfy

the running intersection property, e.g., T5 is included in C2

because it appears in R12 and R52, as shown by the under-

lined variables in the messages.

communication between neighbors is reliable. We then de-
scribe its generalization to the case where the spanning tree
is changing and communication is not reliable. Finally, we
describe techniques for minimizing communication.

3.1.1 Message passing algorithm
Each node learns its cliques and separators using a message
passing algorithm in which it sends a message to and receives
a message from each neighbor. Let i be a node and j be a
neighbor of i; the variables reachable to j from i are:

Rij
4
= Di ∪

[
k∈n(i)

k 6=j

Rki, (17)

where n(i) are i’s neighbors in the spanning tree. These
messages are defined recursively, just like the messages of
junction tree inference (§1.2). Node i computes Rij by col-
lecting the variables that can be reached through each neigh-
bor but j and adding the domain Di of its local factor; then
it sends Rij as a message to j. Figure 6 shows the reachable
variables messages for the example of Figure 5.

If a node receives two reachable variable messages that both
include some variable X, then it knows that it must also
carry X to satisfy the running intersection property. For-

mally, node i computes its clique using

Ci
4
= Di ∪

[
j,k∈n(i)

j 6=k

Rji ∩Rki. (18)

For example, in Figure 6, node 2 receives two reachable vari-
ables messages that contain T5, and so its clique must in-
clude T5, as shown. These messages also allow each node
i to locally compute its separator with a neighbor j via
Sij = Ci ∩Rji.

Just like the message passing algorithm used for inference
(§1.2), this message passing algorithm can easily be made
asynchronous. Each node initializes its incoming reachable
variables messages to be empty. Each time node i receives
a new reachable variables message from a neighbor j, it re-
computes its reachable variables messages to all neighbors
but j, and transmits them if they have changed from their
previous values; in addition, it recomputes its clique and
separators. This algorithm is guaranteed to converge to the
unique, minimal set of cliques that preserve the running in-
tersection property for the underlying spanning tree.

3.1.2 Robust, distributed implementation
In our presentation above, we made two simplifying assump-
tions. First, we assumed reliable communication between
neighbors in the spanning tree. While this is not true at the
physical network layer, it can be implemented at the trans-
port layer using message acknowledgements; by hypothesis,
the spanning tree consists of high-quality wireless links. Sec-
ond, we assumed that the reachable variables messages were
transmitted after the spanning tree algorithm had run to
completion. The algorithm cannot be implemented in this
way, however, because in a sensor network, there is no way
to determine when a distributed algorithm has completed:
a node can never rule out the possibility that a previously
unknown node will later join the network, for example.

Our algorithms therefore run concurrently on each node, re-
sponding to changes in each others’ states. When the span-
ning tree algorithm on a node adds or removes a neighbor,
the junction tree algorithm is informed and reacts by up-
dating its reachable variables messages. If node i obtains a
new neighbor j, then Rij is computed and sent to j; if j is
removed from i’s neighbor set then for all other neighbors
k, Rik is recomputed and retransmitted (if it has changed
from its previous value). This tight interaction between the
algorithms permits the junction tree to reorganize quickly
when changing link qualities, interference, or node failures
cause the spanning tree to change.

3.1.3 Minimizing communication
This junction tree algorithm is the only part of our architec-
ture where nodes must reason about “global” aspects of the
model. In general, the reachable variables messages require
space linear in the total number of variables in the model;
for example, if j is a leaf in the spanning tree, then Rij

must include V − Dj , which is typically the majority the
model’s variables. For large models, then, it is important to
choose a compact encoding of these messages to minimize
communication cost. For example, if the variables are rep-
resented by integer identifiers, the we can compactly encode
large reachable variables messages using a set of intervals.



As we have described the algorithm above, Rjk is retrans-
mitted whenever it changes, which can happen when j re-
ceives a new reachable variables message from another neigh-
bor. A great deal of communication can be saved if instead
of sending the new value of Rjk, node j sends a “patch”
which allows node k to compute the new value from the old
one. Say that R′

jk is the new value, and that Rjk is the old
value that node k currently has. Instead of sending R′

jk to
node k, node j can send an add set and a drop set:

Ajk
4
= R′

jk −Rjk

Djk
4
= Rjk −R′

jk

Then node k can compute

R′
jk = (Rjk −Djk) ∪Ajk

Sending Ajk and Djk is much more efficient than sending
R′

jk, especially because retransmissions are often required
to ensure k successfully received the message. However,
the correctness of this optimization hinges on nodes j and
k agreeing upon the previous reachable variables message,
Rjk. If previous patches from node j have not been re-
ceived by node k, then node k’s view of Rjk will be out of
sync with node j’s. To prevent this from happening, node
j may not send a new patch until node k has acknowledged
the previous patch.

This rule ensures that once nodes j and k agree on the cur-
rent value of Rjk that changes are propagated correctly;
however, extra work is needed to ensure the initial condition:
when nodes j and k become aware that they are neighbors,
they must come to agreement on the value of Rjk. In the
simplest case, this is easy: both nodes start with Rjk being
empty. But the asymmetry of neighbor relations can cause
tricky situations. For example, assume j and k know that
they are neighbors in the spanning tree. Due to changing
link qualities, it can happen that k chooses to drop its link
to j in favor of another node, and then reverses this decision,
choosing j again as its neighbor. If during this period k’s
configuration messages are not received by j, it will appear
to j that k never stopped being its neighbor. In this case,
j’s view of Rjk will not have changed, but k has reinitialized
it to be empty.

To ensure correctness even under these circumstances, it is
necessary to have neighbors signal to each other when their
shared state must be reinitialized. This is accomplished with
a simple handshake protocol. When node k adds j as a
neighbor, it sends Rkj to node j with a RESET flag. This
signals to node j that Rkj is the current reachable variables
from k and that k’s view of Rjk is invalid. Node j responds
with Rjk, and the flag REACHABLE, which provides k with a
current view of its reachable variables. Once this exchange
is successfully completed (using acknowledgements for reli-
ability), all following messages are patches, consisting of an
add set and a drop set.

When the model is very large and communication is very
expensive, even the techniques described above may not be
sufficient to satisfy application cost constraints. In this case,
problem-specific structure may also be used to reduce the
size of the reachable variables messages. For example, if it
can be guaranteed that two nodes which have a variable in

common are no more than k hops away in the spanning tree,
then each variable in a reachable variables message can be
given a “time to live”, which is decremented each time it is
propagated across an edge. When the time to live reaches
zero, the variable does not need to be propagated further.

3.2 Optimizing the junction tree
The algorithm above transforms the spanning tree into a
junction tree by computing the unique set of minimal cliques
that satisfy Definition 1. Note that different spanning trees
can give rise to junction trees with different clique and sep-
arator sizes; for example, if in Figure 5 node 5 had cho-
sen to connect to node 1 instead of node 2, the node 2’s
clique would not need to include the variable T5. The size
of a node’s clique determines the amount of computation it
must perform, and the separator sizes determine the amount
of communication required by neighbors in the tree. These
facts motivate a tree optimization algorithm which chooses
a spanning tree that gives rise to a junction tree with small
cliques and separators.

The input to this algorithm is a cost function that can be
computed by the nodes of the network. If our objective is to
minimize the communication required to solve the inference
problem, we may choose the cost of a junction tree to be

NX
i=1

X
j∈n(i)

c̃i→j × num packets(Sij) (19)

where c̃i→j is the reliable transmission cost of transmitting
a packet from node i to node j (as estimated by the span-
ning tree algorithm—see (16)) and num packets(Sij) is the
number of packets required to serialize the inference message
that would be sent from node i to node j. This cost function
takes into account the link quality between neighbors and
the size of the message that would be sent. We could also
use each node’s processor power and clique size to take into
account the computational cost of computing the messages.

Finding the spanning tree that minimizes this cost function
is NP-hard (by a simple reduction from centralized junction
tree optimization [4]), but we can define an efficient dis-
tributed algorithm for greedy local search through the space
of spanning trees. The local move we use to move through
tree space is (legal) edge swaps; for example, in Figure 5
node 5 can swap its edge to 1 for an edge to 2 or an edge
to 6. Thus, we rely upon the spanning tree algorithm in §2
to build up a good spanning tree using link quality informa-
tion only; then the tree optimization algorithm repeatedly
improves the current tree by performing edge swaps when
it would reduce the communication and/or computation re-
quired to solve the inference problem.

Nodes learn about a legal edge swap, and the change to
the global cost function (19) that would occur if it was im-
plemented, using a distributed dynamic programming algo-
rithm. By starting an evaluation broadcast along one
of its spanning tree edges, a node can learn about alter-
natives for the edge and their relative costs. For example,
in Figure 5, suppose node 5 initiates an evaluation broad-
cast by sending to its neighbor in the spanning tree, node
2, a message EVAL(5, 2), meaning “find legal alternatives for
the edge 5 ↔ 2.” Node 2 then propagates EVAL(5, 2) to its



neighbors, nodes 1 and 3. When node 1 receives the mes-
sage, it sees that the originator, 5, is a potential neighbor,
and propagates the message to 5 outside the spanning tree.
When node 5 receives the EVAL(5, 2) message from node 1,
it learns of a legal swap: it can trade its edge to 2 for an
edge to 1. Similarly, when node 3 receives the evaluation
request from node 2, node 3 propagates it to node 6, which
then propagates it to node 5 outside of the spanning tree;
in this way node 5 learns that 5 ↔ 6 is another alternative
for the edge 5 ↔ 2.

In general, swapping spanning tree edges has non-local ef-
fects on the cliques and separators of the induced junction
tree, so a node cannot assess the relative cost of an edge
swap locally. However, the relative cost can be assessed effi-
ciently by an extension of the evaluation broadcast scheme
described above. The key idea is that if the edge 5 ↔ 2
were swapped for the edge 5 ↔ 1, only the reachable vari-
ables messages on the cycle 5 ↔ 2 ↔ 1 ↔ 5 would change.
This is a direct consequence of the definition of the reachable
variables messages (17). Similarly, if the edge 5 ↔ 2 were
swapped for the edge 5 ↔ 6, only the reachable variables
messages on the cycle 5 ↔ 2 ↔ 3 ↔ 6 ↔ 5 would change.
Therefore, to evaluate the relative cost of an edge swap,
only the nodes on the swap cycle, i.e., the cycle closed by
the new edge, must be involved in the computation. If the
swap cycle is small, then the relative cost of a swap can be
computed by a small number of nodes.

Moreover, by augmenting the evaluation messages with some
compact reachable variables information, the nodes along
the swap cycle can assess the change in cost even without
knowing for what edge the 5 ↔ 2 edge will be swapped. This
allows the nodes on the swap cycle to add in their local
contributions to the relative cost as the evaluation broad-
cast messages are propagated. Once node 5 has received its
evaluation message from 1 it learns of the legal swap and
its effect on the global cost. If the swap reduces the cost,
this information is provided to the spanning tree algorithm,
which effects the change.

To accomplish this, each EVAL message has five fields:

originator the node that is considering swapping
an edge to one of its neighbors

neighbor the neighbor of originator for which
an alternative is sought

running-cost the change in cost accumulated around
the swap cycle up to the EVAL recipient

add-set the set of additional variables that
would be reachable to the EVAL recipi-
ent from its successor on the swap cycle
if the swap were performed

drop-set the set of variables that would no
longer be reachable to the EVAL recip-
ient from its predecessor on the swap
cycle if the swap were performed

Say a node i wishes to search for an alternative to a current
neighbor j. Then node i sends to node j the message

EVAL (i, j,−(c̃i→j × num packets(Sij)),Rij ,Rij)

The running cost is started at −(c̃i→j × num packets(Sij)),
because if node j were no longer a neighbor of node i, then
node i would no longer incur the communication cost of
sending an inference message to node j. The add and drop
sets are initialized to Rij , because if the swap were to take
place, the nodes on the swap cycle would no longer receive
node i’s reachable variables via node j, but instead by node
i’s new neighbor.5

Now suppose a node k has received from node h an evalua-
tion message EVAL(i, j, c,A,D) that indicates i is searching
for a replacement for its neighbor j. Node k will propagate
the broadcast to all neighbors but the sender h, so that the
evaluation broadcast will traverse all possible swap cycles.
When computing the evaluation message to a neighbor `, k
is assuming that ` is its next hop on a swap cycle. Because
the cost of a swap depends upon the swap cycle traversed,
the evaluation message that node k sends to ` is different
than the one it sends to the other neighbors. In particular,
node k computes its message to ` as follows:

1. Node k computes the clique and separators it would
have if the reachable variables messages from the pre-
vious and next nodes on the swap cycle were

R′
hk

4
= Rhk −D (20)

R′
`k

4
= R`k ∪A (21)

2. Node k computes the change in its cost as

∆ck
4
=

X
m∈n(k)

c̃k→m × num packets(S′km)

−
X

m∈n(k)

c̃k→m × num packets(Skm)

where S′km is the separator computed with (20) and
(21).

3. Using (20) and (21), node k uses (17) to compute R′
k`,

the reachable variables message k would send to h if
the swap occurred.

4. Node k sends the following message to node `:

EVAL
`
i, j, c+ ∆ck,A,Rk` −R′

k`

´
If node k has a wireless link to the request originator i, then
k is the last node on a swap cycle. In this case, node k
follows the same procedure as above to send an evaluation
message to node i. When node i receives this message, the
cost computation is almost complete; all that remains is for
node i to perform step (1) above and then add

c̃i→k × num packets(S′ik)

5In fact, node i could equivalently send to j the message

EVAL (i, j,−(c̃i→j × num packets(Sij)),Sij ,Sij)

This message is more compact because Sij is typically far
smaller than Rij . And, it is equally correct because Sij is
the set of variables that are on both sides of the edge i↔ j;
if a variable in Rij is not in Sij then it has no effect on the
result of the cost computation.



to the running cost it received from k; this is the extra cost
that node i would incur from the swap because it would have
to send an inference message to node k.

After a node starts an evaluation broadcast, it should wait
to receive all (or most) of the responses. If the node were
to implement the first swap it heard about, then the cliques
and separators along the swap cycle would change, render-
ing any subsequent responses stale. Therefore, after issuing
an evaluation broadcast, the node waits for a fixed period
to collect responses. Each time a response is received, the
collection period is incremented. When the collection period
ends, the swaps and their costs are reported to the spanning
tree algorithm, which implements the best swap possible.

As explained above, the effects an edge swap has on the
junction tree exhibit only partial locality. If two nodes were
to undertake edge swaps at the same time and their swap cy-
cles overlap, then the resulting change in cost may be differ-
ent than the individual cost estimates would indicate. This
makes timing the swap evaluations important. To avoid si-
multaneous evaluations and swaps, we use a simple heuristic
based on snooping on the broadcast channel. A node will
only start an evaluation broadcast if it has not heard reach-
able variables messages or another evaluation broadcast for
a period of time. If one is heard, the node will back off
and wait longer before it starts its evaluation. When there
are no conflicting edge swaps, this distributed algorithm will
converge to a junction tree that is a local minimum of the
cost function.

As we have described it, the communication pattern of the
tree optimization algorithm makes evaluating the cost of
swaps expensive: when node i starts an evaluation broadcast
via a neighbor j, the evaluation messages are propagated to
all nodes on the j side of the i↔ j edge. In large networks,
this can be very expensive. Fortunately, it is possible to
prove that once the running cost becomes positive, it can
never decrease as the evaluation messages propagate around
a swap cycle. Because we are not interested in swaps that
increase the tree cost, we can halt propagation of the evalu-
ation messages whenever the running cost becomes positive.
Another sensible method to reduce the communication cost
is to use a hop count limit to limit the local search.

4. ASYNCHRONOUS MESSAGE PASSING
To solve the inference problem using asynchronous message
passing, we must make some simple changes to the algo-
rithm in §1.2. First, messages must be transmitted reliably,
which is accomplished using acknowledgments. The remain-
ing changes are required because we cannot assume the junc-
tion tree is fixed and correct: just as with the spanning tree
algorithm, nodes do not (and could not) ever receive an in-
dication that the junction tree assembly is complete. There-
fore, the inference algorithm must react to changes in the
junction tree as follows:

• When node i gets a new neighbor j, the inference al-
gorithm initializes the incoming message µji = 1, and
computes and transmits the outgoing message µij .

• When node i loses a neighbor j, the inference algo-
rithm discards the incoming message µji, recomputes

the messages to the remaining neighbors, and then re-
transmits them.

• When node i learns that its separator with a neighbor j
has changed to S′ij , the inference algorithm recomputes
the outgoing message to j using (12) with the new
separator and transmits it to j.6

In addition, the inference algorithm reacts to inference mes-
sages as described in §1.2: whenever a node j receives a
new (version of a) message from a neighbor i, it recomputes
and retransmits its message to all neighbors but i. If the
spanning tree eventually stabilizes, then the junction tree
will also stabilize; in this case these rules guarantee that
the inference messages will eventually converge to the cor-
rect values, and that after this point nodes will stop passing
inference messages.

In some problems, it is possible to make intelligent decisions
about when retransmitting a message is not worth the com-
munication cost. For example, if node j has transmitted
µjk to node k and it then receives a new message µij from
another neighbor, it often happens that the new message it
would send to k, µ′jk, is not that different from the previous
value. In probabilistic inference, it is possible to obtain er-
ror bounds by computing the Kullback–Liebler divergence
between the two messages [13]; in linear regression, one can
analyze the differences between the linear constraints to es-
timate how they will propagate [7]. This can be an effective
way to trade communication cost for approximation error.

We conclude the presentation of our inference architecture
by returning to a point that has become a motif of this
paper: in a sensor network, there is no way for a node to
know when a distributed algorithm has terminated, because
the node cannot exclude the possibility that a new node will
later be introduced into the network. This fact motivated us
to design our algorithms so that they can react to changes in
each others’ states. But now we have reached the top of our
algorithm stack, and we must consider how an application
will use the results of inference when it cannot be sure that
the inference algorithm has run to completion.

Certainly the solution to this problem will be application
specific, but it seems clear that in general it is useful for the
inference algorithm to guarantee that at any point during
its execution, each node’s partial result—i.e., the quantity
(13) which is computed when not all of the final versions of
the messages have arrived—is useful. Some inference algo-
rithms naturally have this property. For example, in the
regression problem, each message represents the impact a
subset of the measurements have on the optimal parame-
ters; thus, if a node solves for its optimal weight vector
without final versions of all of the messages, it is simply
failing to account for measurements made at nodes that it
cannot communicate with [8]. Other inference algorithms do
not naturally have this property; for example, the partial re-
sults of the traditional algorithm for probabilistic inference
6If S′ij ⊂ Sij , then the following optimization avoids passing
two messages: then node i updates the incoming message
from j by µ′ji =

L
S′

ij
µji and does not retransmit a new

message to j; when node j learns of the change to Sij , it
does the same thing.



can be arbitrarily far from the correct results. To make
these algorithms useful for inference in sensor networks, ex-
tra work is necessary; for example, see [17] for a new message
passing algorithm for probabilistic inference algorithm that
resolves the problem.

5. EXPERIMENTAL RESULTS
To validate our architecture and algorithms, we deployed
54 Intel–Berkeley motes in our lab (Figure 1) and collected
temperature measurements every 30 seconds for a period of
4 weeks. We also collected link quality statistics and com-
puted the fraction of transmissions each mote heard from
every other mote. Using this link quality information, we de-
signed a sensor network simulator that modeled the actual
deployment. (Designing, testing, and experimenting with
our algorithms would have been far more difficult in the ac-
tual deployment.) This simulator uses an event-based model
to simulate lossy communication between the nodes at the
message level: messages are either received or not, depend-
ing upon samples from the link quality model. The simu-
lator’s programming model is also event-based—algorithms
are coded in terms of responses to message events—and we
expect that our algorithmic implementations can be trans-
ferred to the real sensor network without significant changes.

5.1 Junction tree experiments
To demonstrate the communication pattern of the junction
tree layer, we performed a simple experiment to compute
the total communication used by all reachable variables mes-
sages for a particular inference problem (described in §5.3).
Figure 7(a) shows the total amount of communication re-
quired by the transmitted reachable variables messages in
each epoch (0.1 time units). At the beginning of the simu-
lation there is a prolonged period before the spanning tree
is built; the nodes wait until they have accurate link quality
estimates before they begin building this tree. After a stable
spanning tree has been found, the nodes eventually enforce
the running intersection property, resulting in a valid junc-
tion tree.

After a spanning tree is built, it can be lost; this typically oc-
curs in the delay between a node changing its parent and the
old and new parent learning of the change. Note that the
communication required to rebuild the junction tree after
the spanning tree has changed is significantly less than the
cost required to build the first junction tree; this is because
the majority of the junction tree does not change. Finally,
note that after a correct junction tree is formed, communi-
cation eventually stops; this pattern is also present in the
message passing layer, where after all messages have been
passed, the network quiesces.

We ran another experiment to test the distributed span-
ning tree optimization algorithm. This experiment used the
inference problem described in §5.2. We chose our com-
munication cost function so that the cost of a (directed)
edge is proportional to the expected number of transmitted
bytes necessary to successfully communicate an inference
message, taking into account retransmissions. The piece-
wise constant curve in Figure 7(b) represents the current
cost of the spanning tree when one exists. Offline, we used
a combination of simulated annealing, greedy local search,
and random restarts to find a local minimum of this cost

function7; its cost is plotted as the horizontal line in Figure
7(b). Note that the initial spanning tree, which is selected
using only link quality information, is significantly more ex-
pensive than the hypothesized optimum, but that the dis-
tributed optimization algorithm eventually finds trees whose
cost is less than twice this hypothesized optimum.

5.2 Calibration experiments
The next set of experiments were performed on the dis-
tributed sensor calibration problem described in §1.1.1. Us-
ing the temperature data from the lab, we learned a multi-
variate Gaussian distribution over the temperature variables
that has the Markov graph shown in Figure 1. (Mote 5 failed
shortly after deployment, which explains its absence in the
figure, and also justifies our efforts to develop algorithms ro-
bust to such failures.) The model was augmented with bias
variables for each temperature measurement, which were
distributed i.i.d. from N (0, 1◦C).

To set up our distributed sensor calibration task we sampled
a true, unobserved bias for each node, and created a set of
biased measurements by adding these biases to a held-out
test set of measurements. The inference task is for the nodes
to compute their posterior mean bias estimates, and the
error metric we use is the root mean squared error (RMS)
from their estimates to the (unobserved) biases we sampled.

Our first experiment demonstrates the inference architec-
ture in the simplest setting, where link qualities are stable.
Figure 7(c) visualizes a trace of the inference architecture
when the robust message passing algorithm of [17] is used
to solve the probabilistic inference problem. (In these ex-
periments, the optimization algorithm was turned off for
simplicity.) The main panel of Figure 7(c) plots the RMS
error of three inference algorithms. The line marked global
refers to centralized inference using all of the measurements.
In this case, the posterior mean bias estimates of global in-
ference have 0.61 RMS error; because the bias is additive,
this number also represents the average error in the pos-
terior mean temperature measurements. Thus, by solving
the global inference problem the nodes can automatically
eliminate approximately 39% of the bias. The line marked
local refers to local inference, where each node’s posterior is
computed using only its measurement. Local inference per-
forms about as well as predicting zero bias, achieving a 0.99
RMS error; this is expected, correlated measurements from
different nodes are required for automatic calibration.

The third curve, distributed robust, refers to our architec-
ture combined with the robust probabilistic message pass-
ing algorithm. This plot graphically demonstrates the key
properties of the algorithm: before any messages have been
passed, the partial results coincide with the estimates given
by local inference; at convergence, the estimates coincide
with those of centralized global inference; and, before all
messages have been passed, the estimates are informative
approximations. Looking closely, we can see that before the
junction tree is valid, and even before a complete spanning
tree is constructed, the estimates of the robust message pass-

7The local moves used in simulated annealing and local
search were edge swaps that are less restrictive than those
used by the spanning tree layer.
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(c) calibration: convergence
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(d) calibration: coping with interference
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(e) calibration: failing nodes
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(f) regression: convergence

Figure 7: Experimental results. The x-axis of all of these plots is time. The two bars under the graphs are: the bottom

bar is white when a valid spanning tree has been constructed, and black when it has not; the top bar shows when the running

intersection property has been enforced.

ing algorithm quickly approach those of centralized global
inference.

To test the algorithms’ robustness to long-term communica-
tion failure, we ran the same experiment, but this time we
introduced a period where interference causes the network
to be segmented into two parts. At time 60, all messages
between the left half of the network (nodes 1-35) and the
right half (nodes 36-54) are lost; at time 120 the commu-
nication is restored. During the period of interference the
nodes on the left half of the network do not have access to
the measurements made on the right, and vice-versa; there-
fore the global inference error curve in Figure 7(d) changes:
it is computed for each node using the posterior conditioned
on the measurements only on its side of the network.

In Figure 7(d) we can see that, when combined with our
architecture, the robust message passing algorithm achieves
convergence before and after the inference period, but that
the interference prevents a (complete) spanning tree from
being formed. In spite of this, the robust message passing
algorithm converges with an error that is very close to the
optimum. In this period, each half of the network forms
its own junction tree and uses message passing. The reason
robust message passing does not converge to exactly the
same result as global inference is because some prior factors
needed by the left half of the network have been distributed
to right half, and vice versa.

We also tested the architecture’s performance under simu-
lated node failures. The time to failure for each node was
sampled i.i.d. from an exponential distribution. To avoid
losing prior factors when nodes are lost, we distributed each
prior factor redundantly to three nodes. Figure 7(e) shows
the results of this experiment. As each node dies, its mea-

surement is lost, and so the inference problem to be solved is
changing over time; this accounts for the changing error val-
ues for global and local inference. Notice that the network
can form a junction tree and solve the inference problem
exactly past 500 seconds, when only 26 of the original 53
nodes are still functioning.

5.3 Regression experiments
Our next experiment evaluates our architecture on the re-
gression task of §1.1.2. Using the distributed regression for-
mulation and messages described in [8], we defined a regres-
sion problem on the temperature data from our lab deploy-
ment. We defined seven overlapping regions of influence,
each of which has three local basis functions: a constant
term and two linear terms. In addition, we included a basis
function with constant value for the entire lab. The result
of fitting this model to our temperature data is shown in
Figure 2.

In our regression task, each node uses its local estimate of
the optimal model parameters to predict the measurement of
its five nearest neighbors, along with its own measurement.
Figure 7(f) shows the resulting root mean squared error for
this task. As with the calibration case, this graph shows
three curves: the local curve corresponds to each node us-
ing its own measurement to predict its neighbors’ measure-
ments; the global curve corresponds to fitting the regression
parameters offline, and using the resulting model for pre-
diction; the distributed line uses our architecture and the
distributed regression messages so that each node locally
predicts its neighbors’ values using its current estimates of
the basis function coefficients. As with the calibration case,
we see that the results obtained by our distributed algorithm
quickly converge to those obtained by the optimal offline so-
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Figure 8: Results for optimal control problem.

lution to the regression problem.

5.4 Optimal control experiments
Our third inference problem is an instance of the control
problem described in §1.1.3. Based on our lab deployment,
we defined an actuation problem where 16 blinds around the
lab can be moved to change the light conditions; each blind
is controlled by a specific node of the network. We define the
light at each node in the lab as the sum of the lights at the
nearby windows, decayed linearly with distance. The light
values at the nodes are observed, but the light intensities at
the windows are unknown; they were estimated by solving a
sparse regression problem similar to kernel regression. Like
the temperature experiments, this experiment used real light
measurements obtained from our deployment.

Each actuating node has five possible controls, which raise
and lower the blinds by varying amounts. Each node of the
network has a desired light value that is 40 lux greater than
its current value. The goal is to find positions for all the
blinds that minimize the mean squared deviation from the
desired light values. Notice that in this problem each blind
affects many nodes, which means that to choose the optimal
controls, conflicting goals must be resolved.

Our results, shown in Figure 8, again compare three meth-
ods: in the local curve each actuating node chooses the blind
setting that best fits its desires; the global curve corresponds
to the optimal solution obtained offline; the distributed curve
uses our architecture to optimize the setting in a distributed
fashion, where each actuating node chooses the control set-
ting that it currently views as the best global solution. As
with calibration and regression, we see that the control strat-
egy obtained by our distributed algorithm quickly converges
to that obtained by the optimal offline solution.

6. CONCLUSIONS
We presented the first robust and general architecture for
inference in sensor networks which can solve a wide range of
inference problems including probabilistic inference, regres-
sion, and optimization. In particular, we have presented dis-
tributed algorithms which can construct stable, valid junc-
tion trees, even in the presence of communication and node
failures; we have also presented distributed algorithms to op-
timize this junction tree to minimize the cost of inference,
and to solve the inference problem. We demonstrated the
architecture on three applications, using data from a real
sensor network deployment. Our experiments results also
demonstrate that the inference algorithm quickly converges

to the correct answer for all three applications, even in the
presence of communication and node failures.

An important feature of our architecture is that it does
not rely on a network layer that provides multi-hop routing
(which is often difficult or impossible in sensor networks).
This is due in part to the communication pattern of our al-
gorithms: only neighbors in the tree must communicate with
each other. Another reason is that our architecture tightly
couples the application and networking layers so that both
network-related and application-specific information can be
used to minimize communication and computation; for ex-
ample, the tree optimization algorithm uses link quality in-
formation and information about the current junction tree’s
structure to find edge swaps that will reduce the cost of
inference. We expect that this tight coupling between the
application and networking layers will be useful for other
types of in-network data processing.

General architectures that address a range of sensor net-
work applications (as well as the robustness issues of real
systems) will significantly increase the usefulness of sensor
network technology. We believe that the work presented
herein provides a solid step towards this goal.
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