Outline

1. Introduction
2. Association Rule Mining
3. Decision Trees
4. Summary
News

- Last Lecture!
- All assignments online
- Assignments due Fri Nov 12. Email me if you have a good reason for an extension.
- Tute at RSISE, tomorrow 3pm
Large Data Sets

- All the algorithms we’ve seen to date are $O(O(n^2))$ [sic]
- Normally getting enough data is the hard part!
- What if we have trillions of records?
 - Every sale at McDonalds
 - Every set of products (items) sold by Coles-Myer group
 - Every tax return ever submitted
- Each record draws maybe 1 to 200 items from a set of 100,000
- Holy overflowing RAM batman!
- Can we do useful things in close to linear time?
Suppose we have the following data...

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A B D</td>
</tr>
<tr>
<td>2</td>
<td>A B C D E</td>
</tr>
<tr>
<td>3</td>
<td>A C D</td>
</tr>
<tr>
<td>4</td>
<td>B D</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>B C D</td>
</tr>
</tbody>
</table>
Association Rule Mining

- Extremely simple, therefore fast
- $O(n)$ in the amount of data
- One full pass through the data
- Reading from slow media is the main expense
- Easy for executives to understand and trust
A-Priori Algorithm

- Based on idea of frequent itemsets
- Itemsets S are sets of items
- Frequent itemset if it appears in $> s\%$ of transactions, i.e.,

$$\text{support}(S) = \frac{\text{occurrences of } S}{\#\text{transactions}}$$

A-Priori Trick

- If a set of items is frequent, all subsets of that set are also frequent
- Candidates for larger frequent itemsets are constructed from frequent subset
A-Priori Algorithm: \(s = \) support threshold

1. \(k = 1 \)
2. Candidate set = all single items
3. For each transaction, count instance of a candidate set
4. For each candidate set...
5. \(\text{Divide candidate count by } \# \text{ transactions} \)
6. If result is \(> s \), candidate is a frequent itemset
7. End For
8. Generate new \(k = k + 1 \) candidates from \(k \) frequent itemsets
9. \(k = k + 1 \)
10. If no candidates, end
11. Goto 3
What To Do With Frequent Itemsets

- A frequent item set by itself might be meaningful
- We can infer rules such as $A, B \leftarrow B$
- S is a frequent itemset X is a single item
- Compute all possible rules $\{S\} \rightarrow X$ from frequent itemsets
- If $\frac{support(S)}{support(X)} > c$, we are confident this rule means something
Example

- 6 Transactions. 50% minimum support
- First pass..k=1

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Count</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>67%</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>17%</td>
</tr>
</tbody>
</table>

- \(k = 2 \) candidates: AB AC AD BC BD CD
Example

- 6 Transactions. 50% minimum support
- Second pass..k=2

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Count</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>2</td>
<td>33%</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>33%</td>
</tr>
<tr>
<td>AD</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>BC</td>
<td>2</td>
<td>33%</td>
</tr>
<tr>
<td>BD</td>
<td>4</td>
<td>67%</td>
</tr>
<tr>
<td>CD</td>
<td>3</td>
<td>50%</td>
</tr>
</tbody>
</table>

- $k = 3$ candidates: ABD ACD BCD
- ABC cannot be a candidate (AB BC AC not frequent)
Example

- 6 Transactions. 50% minimum support
- Second pass..k=2

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Count</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>2</td>
<td>33%</td>
</tr>
<tr>
<td>ACD</td>
<td>1</td>
<td>17%</td>
</tr>
<tr>
<td>BCD</td>
<td>2</td>
<td>33%</td>
</tr>
</tbody>
</table>

no $k = 4$ candidates. Stop

Should have observed AB, BC, AC not frequent
Confident Rules

- Confidence of $B \rightarrow D = \frac{\text{support}(BD)}{\text{support}(D)} = 100\%$
- Confidence of $D \rightarrow B = \frac{\text{support}(BD)}{\text{support}(B)} = 67\%$
- Many more possible rules to test
Beer and Nappies

- Data Mining Urban Myth
- Men on Friday night buy beer and nappies
- Doing so on request from partners
- Put beer and nappies together, voila! $$$
- Seems to be due to an IBM sales pitch?
A Real Example

- HIC commissioned DM project
- Associations on episode database for pathology services
- 6.8 million records X 120 attributes (3.5GB)
- 15 months preprocessing then 2 weeks data mining
- Goal: find associations between tests
- cmin = 50% and smin = 1%, 0.5%, 0.25% (1% of 6.8 million = 68,000)
- Unexpected/unnecessary combination of services
- Refuse cover saves $550,000 per year
Decision Tree for *PlayTennis*
Content modified from Tom Mitchell
A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

\[
[833+,167-] \ .83+ \ .17-
\]

Fetal_Presentation = 1: [822+,116-] \ .88+ \ .12-
 | Previous_Csection = 0: [767+,81-] \ .90+ \ .10-
 | Primiparous = 0: [399+,13-] \ .97+ \ .03-
 | Primiparous = 1: [368+,68-] \ .84+ \ .16-
 | Fetal_Distress = 0: [334+,47-] \ .88+ \ .12-
 | Birth_Weight < 3349: [201+,10.6-] \ .95+ \ .05-
 | Birth_Weight >= 3349: [133+,36.4-] \ .78+ \ .22
 | Fetal_Distress = 1: [34+,21-] \ .62+ \ .38-
 | Previous_Csection = 1: [55+,35-] \ .61+ \ .39-
Fetal_Presentation = 2: [3+,29-] \ .11+ \ .89-
Fetal_Presentation = 3: [8+,22-] \ .27+ \ .73-
Decision Trees

Decision tree representation:
- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification
When to Consider Decision Trees

- Instances describable by attribute–value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:
- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences
Top-Down Induction of Decision Trees

Main loop:
1. $A \leftarrow$ the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Entropy

![Entropy Graph]
Entropy Cont.

- S is a sample of training examples
- $p\oplus$ is the proportion of positive examples in S
- $p\ominus$ is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p\oplus \log_2 p\oplus - p\ominus \log_2 p\ominus$$
Entropy Cont

\[\text{Entropy}(S) = \text{expected number of bits needed to encode class } (\oplus \text{ or } \ominus) \text{ of randomly drawn member of } S \text{ (under the optimal, shortest-length code)} \]

Why?

Information theory: optimal length code assigns \(-\log_2 p\) bits to message having probability \(p\).

So, expected number of bits to encode \(\oplus\) or \(\ominus\) of random member of \(S\):

\[p_\oplus(\neg \log_2 p_\oplus) + p_\ominus(\neg \log_2 p_\ominus) \]

\[\text{Entropy}(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus \]
Information Gain

$Gain(S, A) = \text{expected reduction in entropy due to sorting on } A$

$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot Entropy(S_v)$
Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the Next Attribute

Which attribute is the best classifier?

Gain \((S, \text{ Humidity }) \)
\[
= .940 - (7/14) .985 - (7/14) .592 \\
= .151
\]

Gain \((S, \text{ Wind }) \)
\[
= .940 - (8/14) .811 - (6/14) 1.0 \\
= .048
\]
Hypothesis Space Search by ID3
Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can’t play 20 questions...
- No back tracking
 - Local minima...
- Statistically-based search choices
 - Robust to noisy data...
- Inductive bias: approx “prefer shortest tree”
Inductive Bias in ID3

Note H is the power set of instances X

→ Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a *restriction* of hypothesis space H
- Occam’s razor: prefer the shortest hypothesis that fits the data
Occam’s Razor

Why prefer short hypotheses?

Argument in favor:
- Fewer short hyps. than long hyps.
 → a short hyp that fits data unlikely to be coincidence
 → a long hyp that fits data might be coincidence

Argument opposed:
- There are many ways to define small sets of hyps
 e.g., all trees with a prime number of nodes that use attributes beginning with “Z”
- What’s so special about small sets based on size of hypothesis??
Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?
Consider error of hypothesis h over

- training data: $error_{train}(h)$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$
Overfitting in Decision Tree Learning

![Graph showing accuracy vs. size of tree (number of nodes) on training and test data](image)

- On training data
- On test data
Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select “best” tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize $\text{size}(\text{tree}) + \text{size}(\text{misclassifications}(\text{tree}))$
Reduced-Error Pruning

Split data into *training* and *validation* set

Do until further pruning is harmful:

1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves *validation* set accuracy

- produces smallest version of most accurate subtree
- What if data is limited?
Effect of Reduced-Error Pruning
Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others
3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)
Converting A Tree to Rules

\[
\text{IF } (\text{Outlook} = \text{Sunny}) \wedge (\text{Humidity} = \text{High}) \\
\text{THEN } \text{PlayTennis} = \text{No}
\]

\[
\text{IF } (\text{Outlook} = \text{Sunny}) \wedge (\text{Humidity} = \text{Normal}) \\
\text{THEN } \text{PlayTennis} = \text{Yes}
\]

\ldots
Continuous Valued Attributes

Create a discrete attribute to test continuous

- $Temperature = 82.5$
- $(Temperature > 72.3) = t, f$

<table>
<thead>
<tr>
<th>Temperature:</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis:</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Unknown Attribute Values

What if some examples missing values of A?
Use training example anyway, sort through tree

- If node \(n \) tests \(A \), assign most common value of \(A \) among other examples sorted to node \(n \)
- assign most common value of \(A \) among other examples with same target value
- assign probability \(p_i \) to each possible value \(v_i \) of \(A \)
 - assign fraction \(p_i \) of example to each descendant in tree

Classify new examples in same fashion
We Covered

- Review of some matrix stuff
- Evolutionary Algorithms, Gradient Methods, EM, Convex Optimisation
- Optimal Bayes, Naive Bayes, MAP vs ML,
- Aggregation Clustering, MST, kd-trees, k-means, KNN
- Perceptron, Multi-Layer NN, SOFM
- Hebbian learning, PCA, ICA
- Kernel perceptron, SVMs
- Graphical models (HMMs, Bayes Nets, Kalman Filter)
- Dynamic Programming, Temporal Difference Learning
- Association Rule Mining, Decision Trees
We Did NOT Cover

- Deductive methods: forward chaining, backward chaining, planning
- Inductive logic programming
- Learning Theory (mistake bounds, sample bounds)
- Radial basis functions
- Gaussian Processes
- Exponential families
- Boosting methods