
Fast and Memory-Efficient Multi-Agent Pathfinding

Ko-Hsin Cindy Wang and Adi Botea

NICTA and the Australian National University
{cindy.wang|adi.botea}@nicta.com.au

Abstract

Multi-agent path planning has been shown to be a PSPACE-
hard problem. Running a complete search such as A* at the
global level is often intractable in practice, since both the
number of states and the branching factor grow exponentially
as the number of mobile units increases. In addition to the
inherent difficulty of the problem, in many real-life applica-
tions such as computer games, solutions have to be computed
in real time, using limited CPU and memory resources.

In this paper we introduce FAR (Flow Annotation Replan-
ning), a method for multi-agent path planning on grid maps.
When building a search graph from a grid map, FAR imple-
ments a flow restriction idea inspired by road networks. The
movement along a given row (or column) is restricted to only
one direction, avoiding head-to-head collisions. The move-
ment direction alternates from one row (or column) to the
next. Additional rules ensure that two locations reachable
from each other on the original map remain connected (in
both directions) in the graph. After building the search graph,
an A* search is independently run for each mobile unit. Dur-
ing plan execution, deadlocks are detected as cycles of units
that wait for each other to move. A heuristic procedure for
deadlock breaking attempts to repair plans locally, instead of
running a larger scale, more expensive replanning step.

Experiments are run on a collection of maps extracted from
BALDUR ’ S GATE1, a popular commercial computer game.
We compare FAR with WHCA*, a recent successful algo-
rithm for multi-agent path planning on grid maps. FAR is
shown to run significantly faster, use much less memory, and
scale up to problems with more mobile units.

Introduction
Multi-agent path planning involves navigating units from
their starting positions to their respective goals, whilstgo-
ing around any static obstacles and other moving units along
the way. The problem is important in many real-life appli-
cations, including motion planning in robotics (Bennewitz,
Burgard, & Thrun 2002), air traffic control (Pallottinoet
al. 2007; Tomlin, Pappas, & Sastry 1998), vehicle routing
(Sharmaet al. 2007), disaster rescue (Kitanoet al. 1999),
and computer games (Silver 2006; Buro & Furtak 2004).
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Multi-agent pathfinding is much more challenging than
the single agent case (Pearl 1984), being a PSPACE-hard
problem (Hopcroft, Schwartz, & Sharir 1984; Reif 1979).
The number of states and the branching factor grow expo-
nentially with the number of mobile units on a map, as units
move simultaneously. Often, a global search is intractable
even for a small number of mobile units. Approaches to ad-
dress this include manually abstracting a search space, when
the actual topology allows it (Ryan 2008), and decomposing
a problem into smaller searches (Silver 2006). Replanning
is often used to handle undesired events such as collisions
or deadlocks between mobile agents. Trading the method
completeness and the solution optimality for improved per-
formance is a typical feature of decentralised approaches,
including the method described in this paper.

In many applications such as computer games, path plan-
ning problems have to be solved in real time (Bulitkoet al.
2007). Often, a search algorithm gets limited access to the
CPU and memory resources, which are allocated with higher
priority to other game modules such as the graphics engine.
A path planning algorithm able to scale up to many agents
while using reasonably small resources can make a signifi-
cant contribution to the overall quality of a game.

Contributions
In this paper we introduce FAR (Flow Annotation Replan-
ning), a new method for multi-agent path planning on grid
maps. To avoid head-to-head collisions and to reduce the
branching factor in search, FAR builds aflow-annotated
search graphinspired by two-way roads. The movement
along a row (or column) is restricted to only one direction.
Two adjacent rows (or columns) have different directions,
similarly to the lanes on a two-way road. The idea is applied
to all rows and columns, covering the entire map with vir-
tual criss-crossing roads. Additional rules are implemented
to guarantee that any two locations connected through a path
on the original grid map are still connected in both direc-
tions in the flow-annotated graph. An A* search is inde-
pendently run in the flow-annotated graph for each mobile
unit. As soon as a search is completed, the computed path is
cached and the memory used by the open and the closed list
is released. During the execution of the planned paths, dead-
locks are detected as cycles of agents that wait for each other
to move. A heuristic method attempts to solve deadlocks



locally instead of resorting to a more expensive replanning
step.

FAR is evaluated empirically on a set of maps extracted
from BALDUR ’ S GATE, a popular commercial computer
game. We compare FAR with WHCA*, an algorithm
for multi-agent path-planning on grid maps. The original
WHCA* (Silver 2006) has recently been enhanced with spa-
tial abstraction (Sturtevant & Buro 2006). We use the en-
hanced version as a benchmark. In experiments, FAR is
significantly faster, requires less memory, and scales up to
problems with more mobile units.

The rest of this paper is structured as follows. First we
review related work. Next we introduce the problem ad-
dressed in this work. A detailed description of FAR follows,
after which we present the experimental work. Finally we
conclude and outline future work.

Related Work
There is a rich body of literature on multi-agent path plan-
ning and great variety in the exact problem that each algo-
rithm is designed to solve. Multi-agent pathfinding work
can be grouped into two types of methods. A centralised ap-
proach (Barraquand & Latombe 1991; LaValle & Hutchin-
son 1998) has a single global decision maker for all agents,
is theoretically optimal but, as discussed before, it does
not scale up to many agents due to a prohibitive complex-
ity. A decoupled (decentralized) approach decomposes the
problem into several subproblems. The latter approach is
faster but yields suboptimal solutions and loses the com-
pleteness. One such example is prioritised planning (Erd-
mann & Lozano-Perez 1986), which uses prioritisation to
assign an order in which the objects move.

The direct application of A* to multiple agent planning
is a game industry standard procedure called Local Repair
A*, which performs an expensive full A* for every replan,
outlined in (Silver 2006). It has drawbacks such as an in-
tensive CPU usage (Pottinger 1999), bottlenecks and cycles
(Alexander 1992; Stout 1996).

In Silver’s work on Cooperative Pathfinding (2006), units
perform windowedplanning from start to goal in a grid-
based world. A backwards A* search is initially run for
each agent. The results of these searches (i.e., full open
and closed lists) are cached and used as a heuristic guidance
in subsequent windowed planning steps, so that each unit
knows fully the routes planned by other units. Silver’s al-
gorithmWindowed Hierarchical Cooperative A*(WHCA*)
was later enhanced by Sturtevant and Buro, by combining it
with spatial abstraction to improve on WHCA*’s significant
memory usage (Sturtevant & Buro 2006).

Ryan 2008 introduces a method for multi-agent path plan-
ning. His method is complete but restricted to specific search
graphs, which can be decomposed into structures such as
chains or rings. A problem is hierarchically decomposed
into a global level and a collection of local problems, one
for each subgraph such as a chain or a ring.

Automated spatial abstraction has demonstrated its suc-
cess in path-finding. As map sizes scale up, searching in a
reduced space, as opposed to the large, ground-level space,

shows much more effective results. Techniques for ab-
straction include HPA* (Botea, Müller, & Schaeffer 2004),
PRA* (Sturtevant & Buro 2005). Such methods build ab-
stracted search graphs from a grid map with the goal of
speeding up the search in single-agent search. In contrast,
our method of abstracting a grid map with flow annotation
aims at reducing collisions in multi-agent search.

Besides grid maps, many other types of methods have
been proposed to convert a map into a search graph. An-
other commonly used representation of the environment is
the roadmap, which is a connectivity graph of the map space,
as is used for example in (Ryan 2008). First and second or-
der Voronoi graphs can be combined to compute a Multi-
agent Navigation Graph (MaNG) for global path planning,
applied to crowd simulation in computer graphics (Sudet
al. 2008). In robotics, motion planning can be modelled
in a 2D plane of objects (Lumelsky & Harinarayan 1997).
Bounding boxes are used in multi-robot path coordination
(Leroy, Laumond, & Siméon 1999). Other geometric ap-
proaches can model the world as a collection of objects such
as polygons (Arikan, Chenney, & Forsyth 2001).

Problem Definition
This work assumes that the problem topology is represented
as a grid map. Arguably, grid maps are the most popular ap-
proach to abstract a real-world navigation map into a search
space. The map is discretized into a grid of atomic locations
called tiles. Adjacency relationships are defined in eight di-
rections, four cardinal and four diagonal. Tiles with eight
movement directions are also called octiles. Each tile is ei-
theraccessible(traversable) orblockedby a permanent ob-
stacle.

Each mobile agent occupies exactly one accessible tile at
a time. A tile cannot host more than one agent at a time.
An accessible tile isfreeat a given time if no agent occupies
it. Agents move between two adjacent positions instanta-
neously, from one discrete time step to the next. A move-
ment can be performed only if (1) the destination is free at
the current time, and (2) no other agent plans to occupy it
at the next time step. There is one additional constraint for
diagonal moves. They are allowed only if at least one of the
two tiles that separate the starting tile from the target is free
at the current time (Figure 1a). Otherwise, it would be phys-
ically impossible to squeeze the agent through two diagonal
locations that are each occupied either by an obstacle or by
an agent (Figures 1b and 1c). The distance travelled is

√

(2)
for a diagonal move, and1 for a cardinal move.

The standard way to build a search graph from an octile
grid map is to define one node for each accessible tile. Undi-
rected edges are defined between adjacent nodes, except for
two diagonal tiles separated by two blocked tiles. (See the
next section for a search graph enhanced with flow annota-
tion.) In a problem instance, each agent is associated with
exactly one start and one target node (tile). A node location
cannot host more than one starting position (or more than
one target). We assume homogenous agents and uniform
speed. After an agent reaches its target, it does not disappear
from the map. When an agent sitting on its target interferes
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Figure 1: (a) To move diagonally,u checks the2 directly
adjacent neighbouring tiles, labelledadjA andadjB, are not
both blocking. The cases (b) and (c) are examples whereu
cannot make the diagonal move.

with other mobile units, they need to collaborate to solve the
interference. A problem is solved when all mobile units sit
on their target locations.

The FAR Method
Our goal is to achieve a scalable algorithm while keep-
ing CPU and memory requirements low. FAR starts with
a preprocessing step where a grid map is abstracted into
a flow-annotated search graph, a structure enhanced with
flow restrictions to avoid head-on collisions and to reduce
the branching factor in search. Next, a complete A* search
is run for each unit independently, computing a path that
ignores the other agents on the map. Plan execution starts
as soon as a path is computed for each agent. A strategy
based onwaiting and reservationattempts to avoid dead-
locks. A deadlock contains two or more agents that wait for
each other in a cycle. When deadlocks cannot be avoided,
a deadlock breaking procedure attempts to repair plans lo-
cally instead of a larger-scale replanning step. The rest of
this section contains details on the method’s main steps.

Flow-Annotated Search Graph
As outlined in the previous section, grid maps are typically
converted into undirected search graphs, where moving be-
tween two adjacent locations is allowed in both directions.
In contrast, we build a directed graph where the navigation
flow is better controlled. First, a flow annotation is imposed
on the map. Then additional rules are applied to preserve
the mapconnectivityin the new graph. The connectivity
is preserved if two locations reachable from each other on
the original map are still reachable in both directions in the
annotated search graph. Initially no diagonal moves are con-
sidered. Relatively few diagonal edges might need to be
added later, as will be explained.

The flow annotation limits the traffic on each row (col-
umn) to only one direction. The idea is expanded to cover
the entire grid such that nodes in alternating rows have the
same horizontal flow, and alternating columns flow in the
same vertical direction, as illustrated in Figure 2. This can
be thought of as an extension of a road system, where we
cover the entire grid with crisscrossing virtual roads. The
path to a target is likely to involve a longer route with more
turns to account for the imposed flow, just like how a driver
navigating to her destination in a city has to obey the local
traffic flow by following the roads, driving on the correct
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Figure 2: A classical map at the left and an annotated map
at the right. For clarity, diagonal moves are not shown.

side of the road, and making turns along the way. In par-
ticular, going to a neighbour that used to be adjacent in the
undirected graph, but is located at the nodeagainst the flow
in the flow restricted setting, is now done in at least3 steps
instead of1.

Flow annotation replaces undirected (i.e., bi-directional)
edges with directed ones. To preserve the map connectiv-
ity, we use additional rules to ensure that each two adjacent
nodes remain connected in both directions via a path of one
or more steps. It can be easily proven that if any two adjacent
nodes are connected in both ways (local connectivity) then
any two locations connected on the undirected map remain
connected in the flow-annotated graph (global connectiv-
ity). We prefer to keep adjacent locations connected through
short paths. Otherwise, the quality (length) of paths com-
puted on a flow-annotated map might suffer significantly.

B

A

Figure 3: Local connectivity.

Consider the nodes A and B in Figure 3. The flow defines
a direct transition from B to A. If at least one of the two
paths from A to B, shown in the figure, is obstacle free, then
the local connectivity between A and B is established and no
additional measures are required. On the other hand, if both
paths are blocked by obstacles, we repair the local connec-
tivity between A and B, even if another longer path might
connect A to B outside this neighbourhood. As mentioned
before, shorter paths are better.

Figure 4: A single-width tunnel.

When restoring the connectivity, a measure as simple as
making the edge between A and B bi-directional again will
do. For a uniform treatment of nodes on the map edge and
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Figure 5: Sources (a) and sinks (b).
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Figure 6: In (a), A and C are sinks. They are fixed by making
four edges bidirectional as shown in (b). In (c), B and D are
sources.

internal nodes, we assume that the map is bordered by a
layer of blocked cells. A (single-width) tunnel on a map is
a chain of nodes (locations) such that each internal node is
connected to exactly two neighbours in cardinal directions.
A tunnel can be open to both ends (Figure 4) or only to
one end. Edges between the nodes of a tunnel are made
bi-directional so that every two nodes along the tunnel are
reachable from each other.

On certain patterns of blocked cells, such as thesource
and sink nodes shown in Figure 5, we are able to restore
the connectivity by adding new diagonal edges. A source
is a corner node with two outgoing edges and no incoming
edges. To allow mobile units to visit such nodes, we add an
incoming diagonal edge. A sink is a corner node with two
incoming edges but no outgoing edges. A new outgoing di-
agonal edge allows units that visit a sink not to get trapped.
The diagonal in each case is added when it does not come
from another source, or lead into another sink. Figure 6a
presents a pattern that creates two sink nodes, A and C. The
two sinks will not be fixed by having diagonals leading into
each other. Instead, making a pair of orthogonal edges bidi-
rectional at either diagonal end, as shown in Figure 6b, does
the trick. Figure 6c shows a pattern with two source nodes.
It is handled in a similar manner.

The intention is to always add new edges in resolving spe-
cial cases where some default incoming or outgoing flows
are blocked off, either by inserting additional diagonals or
reverting back to bidirectional edges. We never delete edges
from the default flow assignment. Once local connectivity is
maintained, global connectivity follows directly.

The limitation of using only the local configuration of ob-
stacles to revise the annotation is that we can not exploit the
overall topology. A “twisted ladder” of trajectories results
from the slanted narrow passageway, as shown in Figure 7.
It would have been better to enable unidirectional diagonal
edges in such cases, following the same annotation idea. We
revisit problems produced from such closely interwoven col-
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Figure 7: The “twisted ladder” trajectory.

lision points at the end of the deadlock section.

Executing Plans
Just as the roads in real life are designed to preventhead-
on car crashes, imposing flow restrictions as outlined in the
previous section achieves the same effect. Again, similarly
to roads, at junctions, where our “virtual roads” intersect,
side-on collisionscould still happen quite easily unless our
mobile units communicate their intended moves beforehand.
Our strategy for achieving such collaborative behaviour is
founded on two main ideas. Firstly, we try to avoid situ-
ations that lead to replanning. Secondly, when replanning
has to be done, we try a local, cheap computation instead of
an expensive, large-scale search.

A simple approach that turned out to be effective in reduc-
ing potential collisions is to keep paths as straight as possi-
ble, since fewer turns reduce the chance for side-on colli-
sions. To favor straighter paths, the A* search that computes
a path for a mobile unit has an additional criterion to order
the nodes in the open queue. As in standard A*, the main
ordering criterion is thef = g + h value. Ties are broken
by favoring the successors which continue the current path
prefix in a straight line.

To provide inter-unit cooperation during plan execution,
we adopted the temporal reservation idea from (Silver 2006)
such that each unit is able to make its next intended moves
known to all other units. Our approach differs however from
Silver’s: instead of integrating reservation in an expensive
online search down to a fixed depth, our units reserve a
number of steps ahead on their independently pre-computed
paths. The basic idea is that all units must reserve a node
prior to moving there. All units make reservations fork steps
ahead (wherek is a parameter). At the completion of those
k moves, the nextk steps have to be reserved to continue
the execution of the path. A unit can start moving only if it
has successfully reserved the next bunch ofk steps - unless
it is less thank steps away from its target. The node at step
i ≤ k in the current sub-sequence can be reserved only if
the unit can make the move to the previous location at step
i − 1. In an area of high density, where multiple paths in-
tersect the same, “busy” node, neighbouring units coming
from orthogonal directions could compete for the same next
node. When such conflicts occur, we first allow horizontal
movements to have priority, then verticals, alternating inthe
ensuing time steps. In this way, we impose a temporal flow
regulation on top of the spatial one that is annotated on the
map. This measure achieves a similar effect as having traffic
lights at road intersections.



Once a unit arrives to its target it stays there by returning
the wait action in all subsequent time steps unless it blocks
another unit’s path. In the latter case, our method forces
the blocking unit to take a step away from its target. The
blocking unit then uses A* to path-plan back to its original
blocking location, always following the annotated flow.

Another case where the need for replanning arises is when
a unit is found to be critical in breaking adeadlock. To break
a deadlock, the critical unit inserts a few detour moves into
its plan. This is described in detail in the following section.

Deadlocks

Figure 8: Deadlock: a cycle of 4 units.

The deadlocks we consider are thecircular wait situations
described in (Coffman, Elphick, & Shoshani 1971). Figure
8 shows an example where four units wait for each other
to move in a cycle. Assume they have reached the shown
configuration after arriving at the end of their respectivek-
step reservations. Recall from the restriction stated in our
problem definition that a move is not allowed if the target
is occupied at the current time, even if the occupying agent
plans to leave the position. Since the next locations of the
four agents are occupied at the current time step, they are
unsuccessful in making new reservations, so each of them
waits for one time step before trying again to reserve a new
sub-path ofk steps. The units are waiting for one another,
and no one is able to make further progress. With many
units placed on a map, deadlocks can happen quite easily,
and propagate quickly as the units in a deadlock could block
more units behind them.

When addressing deadlocks, the first step is to identify
whether a deadlock has occurred. The condition that trig-
gers the deadlock detection algorithm is that a unitu can-
not move at the current step because the next node on its
planned path is blocked by a unit who is not on its target. In
this case, the deadlock detection needs to be launched. The
procedure recursively builds a chain of agents, each waiting
for the next one to move, starting from unitu. The check ter-
minates either when it comes across a unit wanting to move
to an unoccupied node, in which case no deadlock was de-
tected, or when a unit that is already seen is re-encountered.
In the later case a deadlock is discovered. Launching the
deadlock detection procedure every time a unitu satisfies
the triggering condition is a good trade-off. In most cases,
if there is no deadlock then the procedure should terminate
quickly, as the detection reaches an unoccupied node. When
there is a deadlock, it is better to identify it sooner and deal
with it before it propagates into a massive gridlock.

After identifying all the units in a deadlock, we force a
unit called acritical unit to diverge temporarily off its pre-
planned trajectory, as explained later. The desired effectis
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Figure 9: Five units in a deadlock with the node densities la-
belled at each location. The coloured unit sits on the highest
density node.

that a number of units close to the critical unit are now able
to pass through given the freedom from the operated change,
ideally leading to more units being free to pass through. Af-
ter each deadlock breaking maneuver, we call the detection
procedure again. If no deadlock is found, then the job is
done satisfactorily. Otherwise the original deadlock might
have been reduced, rather than eliminated completely, so we
repeat the process by selecting a new critical unit.

Selecting a critical unit is based on anode densityheuris-
tic. The density of a node is the number of computed paths
that pass through the node. It is continuously updated such
that each time a unit moves to its next location, the den-
sity count of the previous node is decremented by1. With
each local replan, the count in nodes involved in detours or
step-aside trajectories are incremented accordingly. Since
the unit in the deadlock who is sitting on the highest density
node is likely to be blocking the largest number of units,
moving it away might produce the greatest effect on the
deadlock (Figure 9). Thus, among the units that are able
to move aside, the one whose position has the largest node
density is selected as the critical one.

The deadlock breaking procedure works as follows. First,
the critical unit takes one step away from the deadlock. In
most cases (e.g., when no diagonal edges have been added),
there are2 outgoing flows at where the critical unit sits. One
direction is that unit’s intended move, which goes towards
the deadlock (otherwise, the agent wouldn’t be part of a
deadlock), and hence there is only one other location to step
aside to. At the next time step, the critical unit will replanits
way back to the previous position. The journey back takes at
least three time steps in general. Meanwhile, units blocked
by the critical unit have a chance to pass through.

The procedure outlined above has shown to be quite effec-
tive in practice. Only in cases of narrow passageways that
become too congested (Figure 7b), a single change made by
the critical unit might produce a very limited effect due to the
restrictive space and repeated collision points that prevent
units from moving along quickly. Then the deadlock break-
ing works slowly. Fortunately, the modularity of FAR’s ap-
proach allows different sub-procedures to be implemented
in the future for improvement.



Experimental Results
Our experiments were run on a2GHz Intel Core Duo Mac-
Book laptop with1GB of RAM. We used the10 largest maps
(the size of traversable terrain range from 13765 to 51586
tiles) from the BALDUR ’ S GATE map collection, a standard
data set used in several previous studies (e.g., Botea, Müller,
& Schaeffer 2004). These grid maps are available athttp:
//users.rsise.anu.edu.au/ ˜ cwang/ . For each
map, we grow the number of mobile unitsN by 100 at a
time. For eachN , we generate10 problems with the start
and target locations randomly placed on the map. The time
limit is set to10 minutes per problem. For each problem, the
measured performance parameters are the total search time,
the total distance travelled by all units, the maximum size of
the open and closed lists in A* search, and the total number
of nodes expanded. For eachN , we count how many out of
the10 problems are solved successfully.

We compared FAR with two variations of WHCA*(w, a)
(Sturtevant & Buro 2006), one with diagonals and the other
without (note that Silver’s original WHCA* considered car-
dinal movements only). The parameters arew = 8, a = 1, a
combination that seems to work best in the authors’ experi-
ments. Currently, parameterk in FAR is set independently
from the grid map at hand. A good value that was empir-
ically found is k = 3. For a better understanding of the
results, a brief explanation of WHCA*’s main steps is nec-
essary. WHCA* starts with a backwards search from the
target to the starting position for each agent. As a result,
the perfect distance from each visited node to the target is
computed. These distances will be used as a heuristic guid-
ance in subsequent fixed-horizon (i.e., windowed) searches
(theh score in A*). The closed and open lists of all initial
backward searches have to be kept in memory such that the
search can be extended to compute the distance to target for
more nodes as required. Every new unit added to the map in-
troduces a new pair of an open and a closed list to be stored
in memory.

Detailed results for one map, selected to be representative
for the results on all other maps, are shown in Figure 10. A
summary of the results on all maps is contained in Table 1.
Consider Figure 10 first. In terms of memory usage, the re-
quirements of both WHCA* variants grow linearly with the
number of agents, whereas FAR stays about constant since it
throws away its open and closed lists each time a unit com-
pletes its initial A* search. The space requirements for FAR
are bounded by the size of the map, just as in a single agent
problem. The memory requirements of WHCA* grow lin-
early in the number of agents.

In terms of total search time and total nodes expanded,
WHCA* faces an exponential growth. In addition to the
original backwards searches, WHCA* continuously per-
forms windowed searches to find the next steps in each
agent’s path. The total search effort in FAR, dominated by
its initial A* searches, grows linearly with the number of
agents. Replanning is done locally and only when it is neces-
sary to resolve deadlocks. A useful outcome from flow reg-
ulation, in addition to reducing collisions, is that the branch-
ing factor in search is also reduced.

As expected, when comparing the total distance travelled

by all units to reach their targets, the only algorithm that
enables diagonal movements entirely computes the shortest
solutions. Compared to this, the overhead in solution quality
observed in FAR is reasonably low. The average solution
length ratio between WHCA* with diagonals and FAR is
86%. On the other hand, FAR computes better solutions
than WHCA* without diagonals. Finally, notice that FAR
scales up to problems with more mobile units.

Table 1 summarizes the results on all maps. The three dif-
ferent algorithms scale up to different number of units. To
enable a direct comparison between the numbers reported
for each algorithm, the data included in all but the last col-
umn correspond to the number of agentsN whereall algo-
rithms solve at least one problem. The last column displays
the actual highest number of units that each algorithm can
scale up to. Each number in columns 3–6 is averaged over all
instances solved for the corresponding number of agentsN .
The results are consistent with the previous analysis. FAR is
much better in terms of memory and CPU requirements. The
differences in total travelled distance are small, with FAR
coming between the two versions of WHCA*. FAR gener-
ally scales up to problems with more units. All methods, be-
ing decentralised and therefore incomplete, occasionallyfail
to solve some instances, especially asN increases. Recall
that the data summarized in the table come from the hardest
problems solved by all3 algorithms, corresponding to the
largestN where each succeeds at least once.

A closer look at FAR’s performance shows that many of
the observed failures are caused by targets placed inside
single-width tunnels. Extending FAR to handle such situ-
ations better is a main direction for future work. Note that
these cases are not always solvable in WHCA* either, if the
window sizew is not big enough.

Conclusion
We have presented a new algorithm, FAR, that uses ap-
proaches such as flow annotation and local plan repair mea-
sures to solve difficult multi-agent pathfinding problems.
Our results have demonstrated that such procedures can be
very effective in many cases. FAR solves problems more
quickly and requires less memory than WHCA*. FAR can
also solve problems with larger number of units in almost all
cases. Like many other approaches in the literature, we trade
the completeness for an improved efficiency. Arguably, this
is an inherent trade-off to be made in large multi-agent path-
finding problems, given the difficulty of the problem.

In future work, in addition to handling the single-width
tunnels as mentioned before, there are a number of ex-
tensions we plan to develop to further improve the perfor-
mance of FAR. It would be worth performing two complete
A* searches in pre-processing. The first would produce a
“global traffic report”, whereas the second would use this
information to avoid potentially congested areas. We plan to
structure the flow annotation information hierarchically,to
better exploit the topological structure of a map. More ideas
on achieving better performance in FAR include enhancing
the deadlock breaking heuristic. For example, allow the unit
that is closest to escaping from a deadlock to push units out
of its way.



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  200  400  600  800  1000 1200 1400 1600

O
pe

n 
+

 C
lo

se
d

Number of agents

Max Memory Usage on AR0411SR

WHCA* no diagonals
WHCA* with diagonals

FAR

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000  1200  1400  1600

T
im

e 
in

 s
ec

on
ds

Number of agents

Total Search Time on AR0411SR

WHCA* with diagonals
WHCA* no diagonals

FAR

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  200  400  600  800  1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Number of agents

Total Nodes Expanded on AR0411SR

WHCA* with diagonals
WHCA* no diagonals

FAR

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  200  400  600  800  1000 1200 1400 1600

D
is

ta
nc

e

Number of agents

Total Distance Travelled, AR0411SR

WHCA* no diagonals
FAR no diagonals

WHCA* with diagonals
 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000  1200  1400  1600

N
um

be
r 

of
 s

uc
ce

ss
es

Number of agents

Success Ratio out of 10 trials, AR0411SR

FAR no diagonals
WHCA* with diagonals

WHCA* no diagonals

Figure 10: Results from experiments on BALDUR ’ S GATE map AR0411SR. Note that, for readability, the legend withineach
graph corresponds to the ordering of the graph lines.
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