
Scalable Multi-Agent Pathfinding on Grid Maps with
Tractability and Completeness Guarantees

Ko-Hsin Cindy Wang and Adi Botea1

1 Introduction

Navigating multiple mobile units on grid maps is an NP-complete
problem [4, 1] with many real-life applications. Centralized search
in the combined state space of all units scales very poorly. Previ-
ous approaches that decompose the initial problem into a series of
smaller searches, such as FAR [5] and WHCA* [2], can significantly
improve scalability and speed. However, such methods are incom-
plete. They provide no guarantees with respect to the total running
time, and are unable to apriori tell whether they would succeed in
finding a solution to a given instance.

More recent algorithms, such as MAPP [6] and BIBOX [3], are
complete on well-specified subclasses of problems. They also pro-
vide low-polynomial upper bounds for the running time, the solution
length and the memory requirements. However, their empirical speed
and scalability, compared to incomplete methods, has been an open
question.

In this paper we take steps towards bridging the gap between the
two categories of algorithms, combining strengths specific to each
of them. We extended MAPP to improve its completeness range,
solution quality, and total runtime, addressing main bottlenecks of
the original algorithm. We performed the first empirical analysis of
MAPP, showing that the enhanced MAPP has better success ratio and
scalability than state-of-the-art incomplete algorithms, and is com-
petitive in running times, with at most 92% longer solutions, while
maintaining the theoretical properties of the original MAPP.

2 Original and Extended MAPP

Following previous work [6, 5, 2] we use grid maps with fixed ob-
stacles. A tile of the grid is either traversable and can be accessed by
up to one unit at a time, or permanently blocked off to units. In our
4-connect grids, only straight cardinal moves are allowed. We pro-
vide an intuitive description of MAPP and our extensions, skipping
important details due to lack of space; a full description will be pro-
vided in a longer report. For more formal details of the basic MAPP

algorithm, we guide the reader to the original publication [6].
For each mobile unit in a problem instance, MAPP attempts to

compute a path π from the start to the target satisfying three proper-
ties. First, blank availability requires that, in the initial state, all units
have a blank (i.e., empty location) at the first step of their precom-
puted π paths, ensuring there is room for the first moves. Second, ev-
ery three consecutive locations along a path π have an alternate path,
called Ω, connecting the two end locations without passing through

1 NICTA & The Australian National University, email: {cindy.wang,
adi.botea}@nicta.com.au; NICTA is funded by the Australian Govern-
ment’s Backing Australia’s Ability initiative.

the middle location. This property is called alternate connectivity,
allowing a blocked unit to try to slide the blocking unit(s) along Ω,
to bring a blank to its front again (similarly to how the blank travels
in sliding tile puzzles). Lastly, target isolation requires that a target
belongs to no other unit’s π or Ω paths; so that once a unit gets on its
target, it is out of the way, reducing the problem by one.

If all units are SLIDEABLE (satisfying the three stated condi-
tions), the instance belongs to the SLIDEABLE class, which MAPP is
guaranteed to solve. Otherwise, our implementation of MAPP com-
putes a partial solution for solving the SLIDEABLE units, while non-
SLIDEABLE units are still kept on the map.

An initial experimental evaluation indicated that the last two con-
ditions are the most restrictive on our test data, limiting MAPP’s abil-
ity to handle tunnels and to scale up to more units. To extend the
completeness of MAPP beyond the SLIDEABLE class, we refined the
suggestion in [6] regarding target isolation, and designed a new ex-
tension for alternate connectivity. We also improved MAPP’s perfor-
mance in terms of plan length and runtime. Our contributions are:

1. When targets are close together, target isolation, forbidding π and
Ω paths to pass through targets, can create a “virtual wall”, dis-
connecting the map. Our extension allows a unit to plan a path
through other targets, when it can still be guaranteed that all units
involved will reach their targets.

2. Single-width tunnels present another bottleneck. When a tunnel
bridges two disjoint regions, basic MAPP fails to find a SLIDE-
ABLE path since alternate connectivity is unsatisfiable for triples
inside the tunnel. We introduce a technique that allows paths to
cross tunnels. Using the blank positions ahead, along the remain-
ing pre-computed path, a tunnel-crossing unit pushes its blocking
units forward. A buffer area ensures it has enough room to clear
each tunnel along its path.

3. In MAPP, to avoid replanning, units pushed off-track by other
units undo some of their moves to get back on their π-paths. Af-
ter observing that the original undo strategy leads to many useless
undo moves, we designed a new strategy that reduces the number
of moves and maintains the guarantee of converging to a solution.

4. A detailed empirical analysis of MAPP is presented in Section 3.

Each added enhancement maintains MAPP’s solid theoretical proper-
ties of guaranteeing to solve every unit within its completeness range
in low-polynomial time, unlike heuristic approaches which provide
no such guarantees.

3 Experimental Results
We compared our enhanced MAPP with basic MAPP and with exist-
ing state-of-the-art decoupled, potentially fast but incomplete meth-
ods, FAR [5] and WHCA* [2]. We implemented MAPP on top of

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000
Total number of agents

Basic MAPP

700
414
400
500
300
204
602
411
603
307

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000
Total number of agents

TI MAPP

414
400
204
500
411
300
700
602
603
307

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000
Total number of agents

TI + AC MAPP

700
300
500
414
400
602
204
603
411
307

Figure 1. The number of SLIDEABLE units for each instance of each map is plotted on the left (the top straight diagonal line being the total number of units),
followed by improvements after each extension. For brevity, only the 3-digit unique ID for each map is listed in the legend.

Hierarchical Open Graph (HOG)2. The input data, a set of randomly
generated instances, was also used in previously published work [5].
The input maps3 are 10 of the largest from the game BALDUR’S

GATE, 13765 to 51586 traversable tiles in size, each with different
configurations of rooms, corridors, and narrow tunnels. We test each
map with 100 to 2000 mobile units. All experiments were run on a
2.8 GHz Intel Core 2 Duo iMac with 2GB RAM.

We use the success ratio, i.e. the percentage of solved units, to
evaluate the usefulness of MAPP’s (partial) completeness in practice.
The success ratio is a direct measure of MAPP’s completeness range
because MAPP solves a unit iff it can a priori guarantee to solve it. We
compared 3 versions of MAPP: Basic MAPP; TI MAPP with the target
isolation extension; and TI+AC MAPP with both TI and alternate
connectivity extensions. Figure 1 shows the improved success ratio
from often below 50% to at least 92%, and most of the times close to
100%. The success ratios of FAR and WHCA* suffer greatly on the
harder instances, solving as low as only around 12.5% of units.

The third enhancement in Section 2 eliminates many unnecessary
undo moves, reducing MAPP’s travelled distance by half or even
more. Evaluating the solution quality of enhanced MAPP, FAR and
WHCA* on the subset of instances that FAR and WHCA* can com-
plete, MAPP’s distance can be at best 20% shorter than WHCA*
without diagonal moves, and 24% worse on average. Compared to
WHCA* with diagonals, MAPP’s total distance is from comparable to
at most 92% longer; on average 53% worse. Comparing with FAR’s
travel distance, MAPP has between 20–76% longer distance; on av-
erage 47% worse. A typical hard case, where MAPP’s total distance
increases at a faster rate than the rest, is a direct result of an in-
creasingly larger number of undo moves. A closer inspection reveals
that even with enhancement (3), MAPP still makes many unneces-
sary moves. Each useless undo counts double in the final solution
length, as it has to be matched by a new forward move. Improving
the solution length further is a promising direction for future work.

MAPP’s total running time grows at a smaller rate than WHCA*
(Figure 2). In most cases, MAPP’s curve is below WHCA* with di-
agonal moves, and often below WHCA* no diagonals. With the over-
head of computing the Ω paths, MAPP is slower than FAR. The Ω
computation takes up the majority of MAPP’s search, and stays con-
stant to an increasing number of agents on each map. This strongly
supports that MAPP’s total runtime can be significantly reduced by
taking the Ω computations offline into a map pre-processing step,
re-using Ω paths between instances on the same map.

2 http://webdocs.cs.ualberta.ca/˜nathanst/hog.html
3 http://users.cecs.anu.edu.au/˜cwang/

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Ti

m
e

in
 se

co
nd

s
Number of agents

Total Running Times on Map 414

WHCA* w D
WHCA* no D

MAPP
FAR

Figure 2. An average case of total running times.

4 Conclusion
In this work, we bridged a missing link between having formal com-
pleteness guarantees with scalable, efficient performance for multi-
agent pathfinding in practice. We extended MAPP, a recent tractable
algorithm that is complete on a subclass of problems, called SLIDE-
ABLE, significantly improving its completeness range to 92–99.7%
even in challenging scenarios with 2000 mobile units. Addressing
MAPP’s key bottleneck in distance and running time, our new undo
strategy can reduce the travel distance by 50% and even more. We
presented the first experimental evaluation of MAPP with these en-
hancements, showing its empirical performance has better success
ratio and scalability than state-of-the-art decentralised algorithms,
which are fast but incomplete. MAPP is also competitive in running
time, with at most 92% longer solutions as reported in Section 3,
while offering completeness guarantees.

REFERENCES
[1] D. Ratner and M. Warmuth, ‘Finding a shortest solution for the N ×N

extension of the 15-puzzle is intractable’, in AAAI, pp. 168–172, (1986).
[2] D. Silver, ‘Cooperative pathfinding’, AI Programming Wisdom, 3, 99–

111, (2006).
[3] P. Surynek, ‘An Application of Pebble Motion on Graphs to Abstract

Multi-robot Path Planning’, in ICTAI, pp. 151–158, (2009).
[4] Pavel Surynek, ‘An Optimization Variant of Multi-Robot Path Planning

is Intractable’, in AAAI, (2010).
[5] K.-H. C. Wang and A. Botea, ‘Fast and Memory-Efficient Multi-Agent

Pathfinding’, in ICAPS, pp. 380–387, (2008).
[6] K.-H. C. Wang and A. Botea, ‘Tractable Multi-Agent Path Planning on

Grid Maps’, in IJCAI, (2009).

