
A Novel Approach to Improve the Training Time of
Convolutional Networks for Object Recognition

Choon Hui TEO
Faculty of Information and

Communication Technology,
Universiti Tunku Abdul Rahman,

46200 Petaling Jaya
Selangor, MALAYSIA

email : teochoonhui@gmail.com

Yong Haur TAY
Faculty of Information and

Communication Technology,
Universiti Tunku Abdul Rahman,

46200 Petaling Jaya
Selangor, MALAYSIA

email : tayyh@mail.utar.edu.my

Weng Kin LAI
Advanced Informatics Lab.

MIMOS Bhd.,
Technology Park Malaysia,

57000 Kuala Lumpur,
MALAYSIA

email : lai@mimos.my

Abstract — Convolutional neural network is a kind of
multi-layered neural network which facilitates the feature
extraction and input-output mapping together with a global
learning algorithm. The built-in trainable feature extractor of
convolutional networks makes it a good candidate for end-
to-end object recognition problem. In addition, the trainable
feature extractor is adaptable to different problem domain.
Even though the recognition accuracy is good, the lengthy
training time involved can be a major set back. However, in
some applications of object recognition, the computational
accuracy of the network is not as important as its
computational speed.

In this paper we describe how a new approach that
combines a convolutional network with circular pairwise
classification can significantly shorten the network’s training
time. In addition, we compare the training time as well as the
proposed new approach’s ability to expand the list of objects
of interest with that of a common monolithic neural network.
We will also show the results of recognition accuracy for
both networks.

1.0 INTRODUCTION
A typical convolutional network for shape-based

generic object recognition with invariance to pose, lighting
and surrounding clutter, LeNet7 [4], has been shown to be
superior, in terms of recognition accuracy, to other learning
methods such as linear classifier, Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN) [1]. The invariance
properties of LeNet7 in the end-to-end (i.e., from image
pixels to class label) object recognition problem is achieved
by training with a large number of samples per class under
different aspect view, lighting, geometrical distortion, and
superimposed background images. Naturally, the dataset is
huge in size and caused a long training time for
convolutional network which is known to be computation
intensive. Although the stochastic Levenberg-Marquardt
learning algorithm used to train LeNet7 is fast, the
computation steps required per weight update are still large.

Instead of developing fast learning algorithm, we
tackle the long training time problem by adopting a divide
and conquer approach. The large dataset is divided into a set
of sub-datasets with each consisting of the samples from
two classes. The samples of each class exist exactly in two
different sub-datasets so that the data can now be processed
by the minimal pairwise classification framework that we
propose in this paper – Circular Pairwise Classification
(CPC).

In this paper we describe how convolutional
network and circular pairwise classification can be
combined to shorten the network’s training time. In
addition, we contrast the training time and the capability to
expand the list of objects of interest between LeNet7 and
Circular Pairwise Convolutional Networks (CPCNs). We
also carried out an experiment that addresses the recognition
accuracy of CPCNs and compare it with that of LeNet7.

2.0 CONVOLUTIONAL NETWORKS
Convolutional network is a kind of multi-layered

neural network which facilitates the feature extraction and
input-output mapping together with a global learning
algorithm. The built-in trainable feature extractor of
convolutional networks makes it a good candidate for end-
to-end object recognition problem. In addition, the trainable
feature extractor is adaptable to different problem domain.
In a recognition problem from raw input (e.g. image pixels),
convolutional networks usually perform better than the
Multi-Layered Perceptron (MLP) because the former takes
the topology of inputs into consideration while the latter
does not. Furthermore, convolutional networks combine
three important architectural ideas, namely local receptive
fields, shared weights, and spatial sub-sampling, that ensure
some degree of invariance to shift, scale and distortion.

Local receptive field is defined as a small two
dimensional neighborhood on the input image. Each
neighborhood on the input is connected by a unit on a
feature map (i.e., a two dimensional plane of units) using a
vector of weights that is the same size as its neighborhood.

The feature maps which store elementary visual features
(e.g. edges, corners) extracted from those small
neighborhoods in the input image will then be the input of
the feature maps in the next layer etc., to compose more
complex features – a process known as spatial convolution.
Features are extracted locally from the input image because
spatially nearby inputs are highly correlated [2], and these
nearby input variables are normally elementary features of
an object such as edges and corners which differentiate one
object from another. For example, a circle has no corners
but a rectangle has four. Due to the fact that the exact
locations of those features are less important compared to
their relative positions to each others, any slight distortion in
the input image would then be further alleviated when it is
transformed into feature maps.

Weight sharing is a technique of using a set of
weight vector for each unit in a feature map to extract
similar features across all possible local receptive fields on
the input image [2]. Therefore, we could have many feature
maps to extract many different features from the input
image. Moreover, weight sharing also keeps the complexity
of the convolutional network small; hence the problem of
overfitting can be reduced.

In a complete convolutional network, each
convolutional layer is followed by a sub-sampling layer to
reduce the feature map resolution because the feature map
outputs are sensitive to the translation in the input image
[2]. By decreasing the feature map resolution, the amount of
translation as well as the variance with respect to the
translation would be reduced.

Figure 1: Convolutional network for generic object
recognition.

Figure 1 shows a typical convolutional network for
generic object recognition. The network consists of a series
of alternating convolutional layers and sub-sampling layers.
These layers are the core of the automatic feature extraction
mechanism which extracts elementary visual features in
lower layers and combine them at subsequent layers. The
following are layers of perceptron units which act exactly
the same as the Multi-Layer Perceptron (MLP), mapping a
vector of features extracted by previous convolutional/sub-
sampling layers to its desired output. The two major
operations of convolutional networks that realize the three

architectural ideas mentioned above are spatial convolution
and spatial sub-sampling.

2.1 SPATIAL CONVOLUTION
In the convolutional network, the spatial

convolution process works as such: A trainable two
dimensional kernel (or weights) is overlaid on a small
neighborhood or local receptive field (same size with the
kernel) on the top right hand corner of an input image, and
the pixels and their corresponding kernel cell values are
multiplied. The summation of those products together with a
trainable bias term is then passed on to a nonlinear
activation function such as the hyperbolic tangent to get a
feature value for that particular neighborhood with respect
to the kernel. This continues by shifting the kernel 1 pixel to
the left for each convolution until the horizontal end of the
image, then, repeats the same process again from the start of
second row and so on until the kernel covers the bottom left
pixel. Figure 2 shows an input image of size 8x8 pixels is
subjected to convolution by three feature maps in the first
convolutional layer, each with a kernel of size 4x4 pixels.
Three 5x5 feature maps in the first convolutional layer then
form the input for the six 2x2 feature maps in the second
convolutional layer. The output layer is fully connected to
all feature maps in the second convolutional layer. Note that
each feature map uses a different kernel or weights vector
for different inputs (or preceding feature maps).

Figure 2: Spatial Convolution.

2.2 SPATIAL SUB-SAMPLING

Spatial Subsampling is a technique of reducing the
input or feature map resolution. Since feature maps are
sensitive to translation in the input; down-sampling the
resolution will help reduce the precision of the translation
effect. Spatial sub-sampling is done by averaging a small

neighborhood of the image window and then multiplying
the average values with a trainable weight. The product is
then passed on to a nonlinear activation function together
with a trainable bias. The output values generated from the
neighborhoods of the image window are organized in the
same order and position as in the input. In figure 3, an 8x8
input image is down-sampled into a 4x4 image (or feature
map) using a trainable weight and a bias term.

Figure 3: Example of spatial sub-sampling.

3.0 CIRCULAR PAIRWISE CLASSIFICATION

We proposed a novel pairwise classification
framework, Circular Pairwise Classification, in which a k-
class classification problem is decomposed into k two-class
classification sub-problems. Each of the classes lies in
exactly two different sub-problems, with each sub-problem
being handled by a pairwise classifier. One can imagine that
the k classes are arranged in a circle whereby each class is
only paired with its adjacent left and right neighboring
classes. This is illustrated in figure 4.

Figure 4: Classes pairing in Circular Pairwise
Classification. Each small circle here represents a class.
This 5-class classification example is decomposed into 5
sub-problems represented by 5 ordered pairs, namely (A, B),
(B, C), (C, D), (D, E), and (E, A).

Since each pairwise classifier is trained on an
adjacent pair of classes, there is no direct competition
between two non-adjacent classes. Consequently, if an
unknown input, x, is given, we cannot justify that x belongs
to one class but not others. Moreover, due to the fact that a
pairwise classifier can give erroneous output if x does not
belong to the pair of classes the pairwise classifier is trained
on, chances are high that more than one class will get the
maximum votes (i.e., two), especially when the number of
classes is more than three (i.e. k > 3). Obviously, this
conflict can not be solved because there is no direct
competition between the two conflicting classes (i.e. two
adjacent classes will never get maximum votes at the same
time). From the above mentioned difficulties, we believe
that a naïve configuration of CPC would not work well
because of the lack of ‘knowledge’ between the non-
adjacent classes. Hence, we propose that an estimation
technique should be used to compute these missing
‘knowledge’ from the k-classifiers’ probabilistic output
values.

Given a pairwise classifier (say, MLP), Cij, which is
trained on the class pair (i, j) to produce two probabilistic
output, rij and rji (= 1- rij) where rij and rji are the ratios of
probability densities [3], the probability of an unknown
input, x, to belong to class j and class i may be computed as
such, viz.

)|()|(
)|(

xx
x

jPiP
iPrij +

= (1)

)|()|(
)|(

xx
x

jPiP
jPrji +

= (2)

This is based on Cutzu’s vote-against scheme [3]. With
another pairwise classifier, Cjk, and its probabilistic output,
rjk and rkj, we can also estimate rik and rki even though none
of the pairwise classifiers are trained with a class pair (i, k).
The calculation of rik and rki are shown in equations (3) and
(4) on the next page.

jikjjkij

jkij
ik rrrr

rr
r

⋅+⋅

⋅
≈ (3)

jikjjkij

jikj
ki rrrr

rr
r

⋅+⋅

⋅
≈ (4)

Similarly, we can also provide an estimate for rim and rmi if
rkm and rmk are given as such,

kimkkmik

kmik
im rrrr

rrr
⋅+⋅

⋅
≈ (5)

kimkkmik

kimk
mi rrrr

rrr
⋅+⋅

⋅
≈ (6)

The similar estimation steps are applied for all
possible pair of classes. In the estimations shown above, we
normalized those pair of ratios so that their sum is equal to
one; otherwise, the ratios will be very small if the estimation
step is lengthy. As the classes are arranged in a circle, we
may estimate the ratios in a clockwise or anti-clockwise
direction and produce a full set of pairwise ratios. To
combine these pairwise ratios into a final decision for the
multi-class problem, a meta-classifier such as MLP can be
trained to map them into their corresponding desired
outputs.

4.0 EXPERIMENTAL SETUP

4.1 NORB DATASET
In the context of generic object recognition, we

used the NORB (NYU Object Recognition Benchmark)
jittered-clutter dataset as benchmark dataset in order to
compare the performance between circular pairwise
convolutional networks and LeNet7. This was developed by
LeCun et al. at New York University for the same purpose
[4]. The NORB jittered-cluttered dataset consists of stereo
image pairs (captured by two cameras with 7.5cm in
between) of 50 uniform-colored toys under thirty-six angles,
nine different azimuths, and six lighting conditions. These
fifty toys may be classified into 5 generic categories,
namely four-legged animals, human figures, airplanes,
trucks and cars. Each category has ten different instances -
five for training and the remaining five for testing. The toys
are painted with a uniform color to keep the object texture
variance fix. Since the object images are gray-scale, the
object color will not provide any useful information. There
are a total of 291,600 training examples and 58,320 testing
examples from 6 classes (5 object classes and an junk or
background class) (see figure 5). The background class is
used for detecting false-positives when a system is trained

for detection/segmentation/recognition task. The images
were subjected to random perturbation (translation, scaling,
rotation, changes in brightness and contrast), cluttered
background, and surrounding distractor objects [1].

Figure 5: Samples (left camera image) of NORB jittered-
clutter dataset. From the leftmost column to the
rightmost are samples of classes Animal,
Human, Plane, Truck, Car, and Junk.

4.2 PAIRWISE CONVOLUTIONAL NETWORK
ARCHITECTURE

Each of the pairwise convolutional networks
reported in this paper consist of six layers, namely, C1, S2,
C3, S4, C5, and Output. The letter C indicates a
convolutional layer while letter S a sub-sampling layer. For
ease of presentation, the input image is shown as a layer
named Input. The Input layer holds two stereo (left and right
camera) object images of size 96x96 pixels each .The C1
layer has four feature maps and uses six 5x5 convolution
kernels. The first two feature maps in C1 take their inputs
from the left and right images of the layer Input
respectively. The other two feature maps take their inputs
from both images (see table 2). S2 is a 4x4 sub-sampling
layer which takes its inputs from C1. C3 has nine feature
maps that use twenty-four 6x6 convolution kernels. Each C3
feature map takes a different combination of monocular
inputs and binocular inputs. These connections are shown in
table 3. S4 is a 3x3 sub-sampling layer. C5 consists of one
hundred feature maps that combine all the inputs in S4
through 6x6 kernels. The output layer has two units and is
fully connected to C5.

The networks are trained with a stochastic
backpropagation algorithm with Cross-Entropy criterion to
give probabilistic outputs or ratios. All the CPCNs were
trained in parallel on similar computers for a maximum of
35 iterations. The list of CPCNs trained with different pairs
of classes is shown in table 1. The overall specification of a
pairwise convolutional network including the number of
feature maps, feature map dimension, kernel size, number of
trainable weights and connections are listed in table 4.

For LeNet7, in order to model the six categories (i.e.,
five object classes and one junk/background image class)
well, a certain number of feature maps and trainable weights
are necessary. Logically, we set the capacity of CPCNs
reported in this paper to be smaller than that of LeNet7
because each CPCN handles only a two-class classification
problem whereas LeNet7 handles a six-class problem.
Hence, the CPCNs used here are smaller in terms of the
number of feature maps as well as the number of trainable
weights. An additional benefit from this new architecture is
that there would now be a lesser number of connections that
connect the layers in CPCN together. Effectively this
means that the amount of computation required is now
smaller.

After all the CPCNs were trained, a meta dataset
was constructed based on the original one in two steps.
Firstly, all the CPCNs, regardless of which pair of classes
they were trained on, are fed with all training and testing
samples from all the object classes. Next, the pairwise ratios
produced by all CPCNs were then used to estimate the rest
of the ratios that were not trained to be produced by those
CPCNs. For each input image, there will be twelve ratios
produced by six CPCNs and another eighteen ratios were
estimated using the technique described in section 3. Hence,
each original sample from both training and testing set was
represented by these thirty values in the meta dataset. A
MLP would be trained on this meta dataset to map the ratios
to its desired class label. In this paper, we have used a
configuration of a 2-layer MLP where there would be thirty
input units, two hundred hidden units, and six output units.
In short, the whole recognition process would start by
feeding every CPCN an image of the object of interest. Next
an estimate the remaining ratios is computed, and finally,
the ratios are fed into the meta classifier to get the end
results. This is shown in see figure 6.

Figure 6: CPCNs based object recognizer. The input image
is fed to all CPCNs to produce a pairwise ratio
matrix that, in turn, is fed into a meta classifier to
generate the final output.

Classifier Sub-Training dataset (Pair of classes)

NA,H ‘Animal’ & ‘Human’

NH,P ‘Human’ & ‘Plane’

NP,T ‘Plane’ & ‘Truck’

NT,C ‘Truck’ & ‘Car’

NC,J ‘Car’ & ‘Junk’

NJ,A ‘Junk’ & ‘Animal’

Table 1: Six PCNs trained on different pairs of classes of
NORB jittered-cluttered dataset.

0 1 2 3

0 X X X

1 X X X

Table 2: Connection table between layer Input and layer C1
of PCN trained on NORB jittered-cluttered sub-
dataset.

0 1 2 3 4 5 6 7 8

0 X X X X X X

1 X X X X X X

2 X X X X X X

3 X X X X X X

Table 3: Connection table between layer S2 and layer C3 of
PCN trained on NORB jittered-cluttered sub-
dataset.

Layer Number of
feature
maps or

units

Dim. Kernel
size

Number of
trainable
weights

Number of
connections

In 2 (binocular
images)

96x96 - - -

C1 4 92x92 5x5 154 1320384

S2 4 23x23 4x4 8 35970

C3 9 18x18 6x6 873 287712

S4 9 6x6 3x3 18 3240

C5 100 1x1 6x6 32500 33300

Out 2 1 - 202 202

Total 33,760 1,680,808

Table 4: Specifications of PCN trained on NORB jittered-
cluttered sub-dataset.

5.0 RESULTS AND DISCUSSION
The results of the experiments are shown in table 5.

We can see that the test error rates for (Car, Junk) and
(Plane, Truck) are significantly better than the rest. As may
be observed from figure 5, images related to animal, human,
and plane are generally more complex, with many branches.

Moreover, cars and trucks share many common features and
as a result, separating these two classes have proved to be
challenging. This may explain why the CPCN trained with
pairs of classes such as (Plane, Truck) and (Car, Junk)
achieved lower test error rate compared to the others.

Pair of classes Test error rate (%) Ref.
(Car, Junk) 5.56 -

(Plane, Truck) 6.96 -
(Junk, Animal) 10.61 -
(Human, Plane) 10.85 -

(Animal, Human) 13.77 -
(Truck, Car) 15.92 -

OVERALL (meta
classifier)

36.06 -

LeNet7 (250,000
online updates)

16.70 [1]

LeNet7 (more than
250,000 online

updates)

7.8 [4]

Table 5: Test error rates of individual CPCNs, meta-
classifier of CPCNs and LeNet7.

The overall test error rate of CPCNs when
combined with a meta-classifier as shown here is higher
than those from the monolithic convolutional network,
LeNet7. This poorer performance may be due to insufficient
training applied to those CPCNs as the test error rate of
LeNet7 had also dropped from 16.7% [1] to 7.8% [4]. This
had happened even though it had been further trained with a
different set of learning parameters [5].

Since different learning algorithms were applied in
training both LeNet7 and CPCNs, comparing their training
time in terms of time units may not be fair. Instead, we have
adopted the number of training samples needed to train each
network and the number of multiply-add computations per
full propagation through the network as the performance
metric. Table 6 shows the comparison between LeNet7 and
CPCN based on these two criteria. As the number of
samples per class is the same (i.e., 48600) for all classes [1],
it may be clear that the CPCNs only need to be trained with
one-third the number of training samples as that of LeNet7.
In addition, CPCN takes only about 36% of the total number
of multiply-add computations in LeNet7. Approximately, a
CPCN is at least 8 times faster than LeNet7 for a fixed
number of training iterations. Even though the two-class
problem is easier to learn than a six-class problem, CPCNs
have shown that they can achieve convergence 8 times
faster than LeNet7 on the same learning algorithm. IN
general, as the number of classes in a classification problem
grows, CPCNs will maintain the constant training time
unlike a monolithic convolutional network like LeNet7.

Another advantage of CPCNs is that an object
recognition system built with the proposed CPCN
architecture can easily extend its list of objects of interest by

just training two new CPCNs, unlike a monolithic network
whereby it would need a new session of training on all the
object samples.

Criteria LeNet7 CPCN

Number of classes 6 2

Number of samples per class 48600 48600

Number of multiply-add 4.66 Million 1.68 Million

Reference [4] -

Table 6: Comparisons between LeNet7 and CPCN

6.0 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented how a novel

pairwise convolutional network coupled with a circular
pairwise framework has significantly shortened the training
time when it was used as a generic object recognizer. Even
though there is a drop in the recognition accuracy, however
the accuracy may not be the most important success factor
for a recognizer in most cases. In some real world
applications it is common that the main priority for the
recognizer is to learn quickly. Nevertheless, we would like
to increase the overall recognition rate by improving the
performance of each individual CPCN in the future.

As pairwise classifiers are modular in nature, prior
information or desired behavior such as low false positives
could be explicitly build into a detection/recognition system
by putting more emphasis on the background class. In the
generic object recognition task described above, we can now
train the CPCNs in a way such that each of them learn to
recognise a junk class along with another two classes of
different objects. The feasibility of this idea is left for future
work.

REFRENCES
[1] Y. LeCun, L. Bottou, and F. J. Huang, "Learning

Methods for Generic Object Recognition with
Invariance to Pose and Lighting," in IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, 2004.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” in Proceedings of the IEEE, 1998,
(86)11:2278-2324.

[3] F. Cutzu, “Polychotomous classification with
pairwise classifiers: a new voting principle,” Tech.
Rep. TR573, Indiana University, 2003.

[4] Computational and Biological Learning Lab, New
York University, “NORB: Generic Object
Recognition in Images,” February 2005,
http://cs.nyu.edu/~yann/research/norb/index.html.

[5] Y. LeCun, Personal Communication, 2005.

