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ABSTRACT
There are often discrepancies between the learning sample
and the evaluation environment, be it natural or adversarial.
It is therefore desirable that classifiers are robust, i.e., not
very sensitive to changes in data distribution. In this pa-
per, we introduce a new methodology to measure the lower
bound of classifier robustness under adversarial attack and
show that simple averaged classifiers can improve classifier
robustness significantly. In addition, we propose a new fea-
ture reweighting technique that ameliorates the performance
and robustness of standard classifiers at at most twice the
computational cost. We verify our claims in content based
email spam classification experiments on some public and
private datasets.

1. INTRODUCTION
In many practical applications of machine learning, there

will be some discrepancy of between the nature of the data
used to build a classification model and the nature of the
data the model is evaluated on. This may cause the learned
models underperform, sometimes very dramatically so [10].
Depending on the circumstances and causes of this discrep-
ancy, as well as its magnitude, researchers have been ad-
dressing this problem under different guises. And so classi-
fiers are desired to be robust to small changes of the data
and they should not be overfitting the particulars of the
training set.

Often the data distribution changes occur naturally over
time. For example, the topicality of Web news stories or blog
posts evolves as new/seasonal events come into play. Simi-
larly, emails or Instant Messages will reflect various seasonal
trends and reflect current events. Importantly, changes in
content distribution may also exhibit an adversarial angle,
whereby attackers seek to compromise the effectiveness of a
classifier (e.g., as in filtering email spam). While it is desired
that classifiers continually adjust to such changes in content
distribution, this is not always possible, e.g., due to delays
in feedback or other practical system concerns. It is there-
fore desired that classifiers created with the initial training
data degrade gracefully as the distribution of the evaluation
data diverges from the distribution of the original training
data.

One of the reasons behind the lack of robustness is fea-
ture under or overtraining. Thus a learner may overempha-
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size the apparently highly relevant features while ignoring
ones that are less informative, even if the latter ones collec-
tively carry equivalent information about the classification
problem. In this work we explore an alternative method
based of feature weighting. Motivated by the success of term
weighting techniques in text classification (where they tend
to outperform feature selection [9]) we investigate to what
an extent document representation has an impact on classi-
fication accuracy in email filtering domain.

In section 2 we review common document representation
techniques. We then describe our feature weighting ap-
proach in Section 3 and the related approaches in Section 4.
The experimental results and analyses are presented in Sec-
tion 5. Finally, we conclude our work and describe some
potential future works in Section 6.

2. DOCUMENT REPRESENTATION IN TEXT
CLASSIFICATION

2.1 Supervised and Unsupervised Term Weight-
ing

In text classification problems, a document is commonly
represented by a finite high dimensional feature vector where
the features can be, for example, the frequencies of all pos-
sible n-grams, words, and phrases observed in the docu-
ment. Due to the nature of natural language, sensible doc-
uments usually result in feature vectors with high sparsity,
i.e., any single document contains only a very small frac-
tion of all possible words. For small learning samples, large
dimensionality of feature space may lead to overfitting and
traditionally researchers have been applying some form of
feature selection prior to building a model. Recent results
indicate, however, that hard removal of features caused by
feature selection is sometimes undesirable and better results
can be obtained by simply downweghting the less impor-
tant features [13, 9]. Feature weighting has a long history
in Information Retrieval, where various forms of TFxIDF
schemes have been proposed to better capture the relevance
of a document to a search query. In such formulations, for
each unique feature occurring in a document, its weight is
proportional to a function of the frequency of the term in the
current document and inversely proportional to the overall
frequency of that term in the training corpus, e.g.,

TFxIDFi = tfi · ln
„

N

dfi

«
(1)

where tfi is the number of occurrences of term i in the
current document, dfi is the number of documents con-



taining term i and N is the total number of training doc-
uments. Eqn. (1) represents just one of many different vari-
ants of TFxIDF weighting. IR-inspired weighting schemes
have been widely adopted in text classification. They can
be thought of as unsupervised, since the weight for a term
depends only on the current document and the overall statis-
tics of the training collection. The supervised schemes, on
the other hand, take advantage of the fact that in classifi-
cation problems, the class label can provide additional in-
formation regarding the usefulness of a term to the problem
at hand [9]. Nevertheless, so far no single “best” weighting
scheme emerged, although several good choices for super-
vised and unsupervised methods have been suggested.

2.2 Document Length Normalization
In IR it has also been common to normalize document

feature vectors to unit L2 norm. Since documents can vary
significantly in length, unnormalized similarity-based rank-
ing would give preference to longer documents. Under the
L2 normalization scheme, the cosine-similarity measure used
vector space models is equivalent to a dot product between
feature vectors. This type of transformation has also been
adopted in text classification as it tends to improve the per-
formance measures. Other types of length normalization
have also been considered for text classifiers, since learners
are not necessarily tied to the cosine similarity. For ex-
ample, length normalization according to the L1 norm has
shown to be improve over the L2 scheme for some learn-
ers [13]. The combination of term weighting and document
length normalization can make a prominent difference for
some classifiers, such as Naive Bayes [14, 13].

2.3 Document Representation and Classifica-
tion Robustness

Feature weighting is typically expected to assign higher
weights to more important/informative features, as estimated
from the training set. But, in principle, it could be arbitrary
and reflect, for example, some form of prior knowledge. In
this work we consider the question to what an extent in-
verse importance weighting makes sense in the context of
improving classifier robustness. Our intuition is as follows:
the weights assigned to features by a learning algorithm cor-
respond to the importance of these features from that clas-
sifier’s perspective. In a supervised term-weighting scheme,
the model weights assigned by a classifier using no term
weighting can provide term weights for another classifier of
the same type. Thus to the extent that the classifier is un-
der or overemphasizing some features, this is reflected in how
the weights are distributed. If we assume that features with
higher weight magnitudes could be hampering robustness,
downweighting them in favor of features with lower weights
appears to be a natural countermeasure. Conversely, in-
creasing the weights of features de-emphasized by a classifier
might force it to use them more often. All in all, one can
envision a two-stage classifier induction process where the
initial classifier is used to derive feature weights, which are
then transformed and the final model is induced over the
transformed feature weighting.

3. PROBLEM STATEMENT
We assume that a given training set D = {(xi, yi)}m

i=1 ⊂
Rd × {±1} is drawn from an unknown distribution, where
x is a feature vector and y the corresponding class label.

As motivated by the discussion in Section 2.2, we further
assume that x be normalized to unit length in L2 norm.
The classifier of interest is a linear decision function

f(x) = sign(wT x + b) (2)

parameterized by a weight vector w ∈ Rd and a bias term
b ∈ R obtained via standard modeling techniques such as
the Support Vector Machines (SVM) or regularized logistic
regression (LR).1

Our goal is to train a robust classifier such that its evalua-
tion performance (e.g., area under ROC curve), while main-
tained at reasonable level, degrades at a lower rate than
a standard classifier as the underlying distribution of the
evaluation data gradually diverges away from that of train-
ing data. In our problem setting, the changes in the dis-
tribution of evaluation data can be characterized by the in-
crement/decrement of feature values. When binary feature
values are used, this boils down to addition/deletion of fea-
tures. It is then natural to expect that the weight vector of a
robust classifier should be distributed as evenly as possible.

3.1 Feature Reweighting
Our approach to overcoming feature under and overtrain-

ing is by reweighting the features inversely proportional to
their corresponding importances. These importances are de-
rived from the weight vector w of an initial classifier trained
on the training set D. For example, we may rescale i-th
training feature vector xi into another x̄i as follows:

x̄ij := xij/s(wj), j = 1, . . . , d (3)

where w is the weight vector, s : R 7→ (0,∞) is some positive
monotonically increasing function (e.g. s(u) = log(e + |u|)),
and xij is the j-th feature of xi. Clearly, the length of the
rescaled feature vectors x̄ may be arbitrary long, which is not
desireable. To remedy this side effect of feature reweighting,
one could either renomalize x̄ or the inverse of scaling vector
s(w) (such that ‖1/s(w)‖ = 1). The latter renormalization
scheme guarantees that ‖x̄‖ ≤ 1 by the Cauchy-Schwarz
inequality provided the original feature vector x is already
normalized. With the rescaled training set D̄ = {(x̄i, yi)}m

i=1

we train a final classifier and obtain the model weight vector
w̄.

In fact, the feature reweighting scheme can be seen as a
particular case of regularized risk minimization (RRM) [18]
with a quadratic form regularizer characterized by the scal-
ing s(w): Let S be a diagonal matrix with entries Sii = s(wi)
and Sij = 0 for i 6= j. We can rewrite the feature weight-
ing stated in Eqn. (3) as S−1x. The two-stage training cast
under the RRM framework is then a convex optimization
problem:

min
w

λ

2
wT w +

1

m

mX
i=1

l(wT (S−1x), y) (4)

≡min
w̄

λ

2
w̄T SSw̄ +

1

m

mX
i=1

l(w̄T SS−1x, y) (5)

where λ > 0 is regularization constant, and l is a convex loss
function such as the hinge loss

l(f, y) = max(0, 1− yf) (6)

1In practice, the weight vector w is optimized while the bias
term b is tuned on validation set.



Method Complexity References

FB O(Kmd) [15]
PLR O(Kmd) [3]
CWL O(md) [7]
FDROP O(md log d) [10, 16]
FMICO O(md) [6]
Feature Reweighting O(md) Section 3.1

Table 1: Per iteration time complexities of various
iterative robust classifier training algorithms; note
that these methods can be run in an online fashion.
m is the size of training data, d is the number of
features, and K is the number of base models.

for SVMs or the logistic loss

l(f, y) = log(1 + exp(−yf)) (7)

for regularized logistic regression. Since S is strictly positive
its inverse S−1 exists and hence SS−1 is an identity matrix.
This implies that the original feature vectors need not be
reweighted under this framework.

4. RELATED WORK
The potential of machine learning algorithms to overfit

certain features has been known for a long time, even in
anecdotal form. One of the tasks of data preparation and
cleaning, for example, is to prevent “perfect” artifact fea-
tures (e.g., inventory tags correlated with the class label)
entering the data used for training. Apart from such human
errors, however, it is fairly common that the data used to
induce a classifier does not truly reflect the statistics of the
domain being modeled. As a result, the apparent high use-
fulness of certain features or combinations thereof may not
be reflected in practice. In the sequel, we describe some of
the state of the art classifier training algorithms which aim
at improving classifier robustness or overcoming the differ-
ences in training and evaluation data.

4.1 Feature Bagging
In [15] this problem was described as feature undertrain-

ing. I.e., certain features are ignored or receive relatively
low importance in favor of other more informative features.
Given this high reliance on the highly informative features,
the classifier is going to perform poorly if these features
are not present during testing or if their prevalence is much
lower than expected. The authors proposed feature bagging
(FB), i.e., building a probabilistic model as an arithmetic
or geometric mean of several base models with each focus-
ing on a possibly overlapping subset of the original feature
set. One possible reason behind the success of this method
is that by prior knowledge or chance (due to randomness)
in feature subset selection, highly indicative features are as-
signed to bags different from that of the less indicative fea-
tures. Therefore, weights of the less indicative features will
not be overwhelmed by the highly indicative ones during the
modelling process.

This method is computationally disadvantageous compared
to conventional training algorithm as it involves training of
multiple base classifiers. Furthermore, the optimal number-
sof base classifiers and feature subset size are not known in
advance, hence one may need to spend extra for tuning such
hyper-parameters.

4.2 Partitioned Logistic Regression
The authors of [3] introduced the partitioned logistic re-

gression (PLR) which can be seen as a specialization of the
feature bagging approach with stronger assumptions that
feature bags are independent conditioned on the class la-
bel and are non-overlapping. The base models are trained
independently similar to the feature bagging. Unlike fea-
ture bagging, the trained model parameters are concate-
nated into one as a result of the non-overlapping feature
bags assumption.

4.3 Confidence-Weighted Learning
Arguably, the problem of feature undertraining has also

motivated the development of confidence-weighted learning
(CWL) in [7]. The authors observed that rare features in
the training data are bound to be undertrained. So this
learning algorithm updates the weights for those features
more aggressively than the frequent features. In particular,
this approach models the uncertainty of feature weights by
maintaining a normal distribution over the weight vector
of a linear classifier. The mean represents the “average”
weight vector, whereas the standard deviation captures the
“uncertainty” and correlation of the feature weights. It is
this uncertainty measure that determines how aggressively
the weight for each feature should be updated.

The algorithm is initialized with user-provided parame-
ters (i.e., the mean and the covariance matrix). In an on-
line fashion, a new training instance is presented and the
parameters are updated such that the Kullback-Leibler di-
vergence between the current (Gaussian) distribution and
the new distribution is minimized, while having a probabil-
ity of correctly classifying the training instance larger than a
user-speficied threshold. The algorithm requires only O(md)
operations for one epoch of training when the covariance ma-
trix is restricted to a diagonal matrix; the setting has been
proven to be very efficient and effective in the NLP tasks
presented in [7]. In addition, this approach can be paral-
lelized by splitting the original training data set into several
non-overlapping data sets and the final weight vector can be
taken as the average of those trained in parallel in a princi-
pled way.

4.4 Feature Noise Injection
Feature noise injection is an approach to alleviate the

problem of feature overtraining by introducing artificial fea-
ture noise during model induction. The types of feature
noise varies according to the nature of the problem domains.
For example, in the cases where features are measurements
from a sensor networks, failure in sensor nodes would re-
sults in come feature values being zero. In other cases, it
may be that the feature values are corrupted e.g., imprecise
measurements due to environmental conditions.

In [10] the authors proposed to account for model sensi-
tivity to feature deletion during model induction in a worst
case fashion. In the proposed algorithm (FDROP), every
training feature vector is subject to at most N feature dele-
tions such that the training loss entailed by the resulting
SVM model is as high as possible. The original algorithm
involves a quadratic programming problem with O(md) vari-
ables, which hinders the applicability of the algorithm to
high dimensional problems such as spam filtering or text
classification. [16] extended this algorithm to a more general
feature noise setting and introduced an iterative algorithm



which solves the same problem in O(ε−1md log d) time and
requires only O(ε−1d) additional space, where ε (usually in
the order of 10−3) is the difference between the optimal and
the final objective values.

We also note that in [6], the authors proposed a similar
method (FMICO) which allows one to assign importance to
features a priori to countermeasure feature over or under-
training. In addition, the authors suggested the use of L∞
norm regularization to produce a denser weight vector such
that the classifier could withstand feature deletion or cor-
ruption better at evaluation time. The authors introduced a
linear programming based algorithm, which has O(m) vari-
ables and does not scale to large training sets, and an online
algorithm which is much more efficient and was shown to be
performing equally well.

4.5 Sample Selection Bias Correction
Another line of related work is sample selection bias cor-

rection whereby a correcting weight is assigned to each train-
ing instance such that the reweighted training data resem-
bles those drawn from the underlying distribution of eval-
uation data. The state of the art methods such as those
proposed in [11, 2] infer the correcting weight without the
need of explicit density estimation. Note that this approach
is different from the previously discussed approaches as the
evaluation data is assume to be present and accessible during
the model induction. In this sense, sample bias correction
is positioned closer to domain adaptation.

5. EXPERIMENTS
Spam filtering is an important application where classifier

robustness is of particular importance. The content of le-
gitimate email messages (i.e., ham) naturally changes over
time, following seasonality patterns, recent events, etc.. Ad-
ditionally, spammers constantly adjust the content of their
unsolicited messages so as to avoid detection. As a result,
it is difficult to obtain a large labeled sample of emails that
will reflect the true distribution of ham and spam, which a
deployed filter will actually encounter. Also, due the adver-
sarial nature of spam, spammers will attack the weaknesses
of the particular deployed filter, which are not fully appar-
ent until the filter becomes active. One cannot therefore
perform a fully realistic lab experiment, although useful ap-
proximations are possible.

Commonly, researchers use a time split sample of emails
captured from the same source (e.g., user of a particular in-
stitutions, an ISP, etc.). The earlier part of the data is used
for training, while the later one is used for evaluation. This
type of a setup allows one to measure the robustness against
the natural variability of email. It may, however, lead to an
overestimation of the spam detection performance, since any
adversarial changes in the spam distribution was in response
to filters active in the system where the data was collected
and not in response to the filters being considered as part of
the experimental procedure. This experimental setup should
therefore be seen as providing an upper bound estimate of
the actual filter performance.

To better assess the classifier robustness when faced with
an adversarial attack, we also consider an alternative evalu-
ation setup, one where the test instances are modified such
as to make them more difficult to be classified correctly by
a particular model. When restricted to the case of linear
classifiers this is accomplished by removing the K most in-

formative features of spam class for each spam instance or
by injecting each spam instance with K less informative fea-
tures of the ham class not observed in the instance.2 When
performed for each spam instance of the evaluation set, this
leads to an estimate of the worst possible degradation of
classifier performance when a spammer is restricted to K
feature additions/deletions per instance. Given that spam-
mers have only limited knowledge of the underlying filter
and not all spam received by a system is adversarial, this
is likely to underestimate the filter effectiveness, but it pro-
vides a lower bound estimate of the practical performance.

In addition to adversarial attacks, we will also evaluate
the classifier robustness on time split evaluation sets. In this
realistic setting, the robustness of a classifier refers to the
ability to withstand the (slight) changes in the evaluation
environment over time.

5.1 Datasets
In the experiments, we used the spam datasets from TREC

2005 [5], TREC 2006 (English set) [4], ECML/PKDD 2006
Discovery Challenge (Task A evaluation set), and Hotmail.
The first three datasets are publicly available while the last
one is proprietary. Details of the datasets are summarized
in Table 2.

Dataset d #tr #va #ev Ref
TREC05 208,844 24,582 6,145 61,455 [5]
TREC06 133,495 10,086 2,521 25,241 [4]
ECML06 206,908 3,200 800 7,500 [1]
Hotmail 2,644,921 688,500 76,500 150,000 [13]

Table 2: Details of datasets used in experiments.
Second column indicates the number of features.
Third through fifth columns indicate the numbers
of training, validation, and evaluation instances, re-
spectively. The last column indicates the references
for the datasets.

5.2 Methods
In training content based spam classifier, one normally re-

sort to linear classifier induction methods such as LR and
SVM. These methods will serve as the baselines in our ex-
periments. In addition, we used the following ‘robustness-
oriented’ methods:

• reweight. This is our proposed methods described in
Section 3.1. It involves two training phases and a
reweighting operation on the dataset. The procedure
is easily implemented on top of existing linear classi-
fier training software such as the LIBLINEAR [8]. See
Algorithm 1 for pseudo code.

• avg. This is a variant of feature bagging (Section 4.1)
whereby the final classifier is an average of K base
classifiers, each trained on (possibly overlapping) ran-
domly selected feature subsets. In the experiments of
this paper, we set K to 10, and the subset size to 50%
of the full set size. See Algorithm 2 for pseudo code.

• fscale. This is a variant of worst case feature noise
injection algorithm (Section 4.4) that relaxes the con-
straint on the maximum number of features subject

2In reality, spammers have more knowledge about spam fea-
tures but little about the ham features. Therefore, this ad-
versarial attack simulation is more realistic.



to noise injection. The training algorithm scales the
features of each feature vector optionally in order to
maximize the loss function value (cf. (6) and (7)). See
Algorithm 3 for pseudo code.

The three abovementioned methods can be further spe-
cialized to the cases of LR and SVM. Therefore, we denote
the specializations of these methods with suffixes ‘-LR’ and
‘-SVM’ for LR and SVM, respectively.

Algorithm 1 Training of reweight-LR or reweight-SVM

1: input: Training set D = {(xi, yi)}m
i=1 ⊂ Rd ×{±1}

2: Get initial weight vector w by training a LR/SVM on D
3: Compute scaling vector sj = log(e + |wj |), j = 1, . . . , d
4: Let D̄ := {(x̄i, ȳi)}m

i=1 be a new dataset such that:

x̄ij = xij/sj , j = 1, . . . , d and ȳi = yi (8)

5: Get final weight vector w̄ by training a LR/SVM on D̄
6: return: w̄

Algorithm 2 Training of avg-LR or avg-SVM

1: input: Training set D = {(xi, yi)}m
i=1 ⊂ Rd ×{±1},

Number of base models K, Feature subset size F
2: for k = 1 to K do
3: Let I be an index set of F randomly selected integers

from the set {1, . . . , d} without replacement
4: Let D̄ := {(x̄i, ȳi)}m

i=1 be a new dataset such that:

x̄ij =

(
xij j ∈ I

0 j /∈ I
, j = 1, . . . , d and ȳi = yi (9)

5: Get weight vector wk by training a LR/SVM on D̄
6: end for
7: Let wavg = 1

K

PK
k=1 wk

8: return: wavg

5.3 Experimental Setup
With the datasets and methods described in previous sec-

tions, we trained each methods with tuning of various hyper-
parameters such as (1) artificial bias feature3, (2) regular-
ization constant, and (3) scaling function s for reweight, and
fscale. The best model for each method was determined by
the highest area under ROC curve (AUC) at 10% false pos-
itive rate [13] on validation set. With the best models, we
carried out classifier performance evaluation in the subse-
quent sections.

5.4 Results and Analysis

5.4.1 Simulated Adversarial Attack
In this section, we assess the robustness of classifiers trained

with abovementioned methods in the setting of adversarial
attack. As mentioned in previous section, our simulated
adversarial attack is a rather realistic lower bound of the
true measure of classifier robustness. The evaluation pro-
ceeds with a given number of adversarial attack K and al-
ternates between feature deletion and feature insertion until

3Artificial bias feature refers to the additional constant ap-
pended to each feature vector. This simplifies the optimiza-
tion procedure considerably [12]

Algorithm 3 Training of fscale-LR or fscale-SVM

1: input: Training set D = {(xi, yi)}m
i=1 ⊂ Rd ×{±1}

2: Get initial weight vector w by training a LR/SVM on D
3: Compute scaling vector si = log(e + |wi|)
4: while not converged do
5: Get current weight vector w̄
6: for each instance (x, y) ∈ D do
7: for i = 1 to d do
8: //Minimize the value of ywT x by scaling each
9: //feature xi of x by 1 or 1/si

10: Let u∗ = arg minu∈{1,si} yiwixi/u
11: Let x̄i = xiu

∗

12: end for
13: end for
14: Let D̄ be a version of D with x replaced by x̄
15: Compute loss function value l and gradient g of

LR/SVM on D̄
16: Pass l and g to iterative convex solver such as BMRM

[17] to complete current iteration
17: end while
18: return: w̄

the number of attacks is reached. For feature deletion, it
models the Bad Word Obfuscation (BWO) trick4 by setting
the most spammy feature (i.e. the one with the largest pos-
itive weight) off. Likewise, the feature insertion part models
the Good Word Insertion (GWI) trick5 by setting a hammy
feature on. Since spammers have less knowledge about the
global feature set, we further restrict the good feature to be
set on in each instance must not be better than the best
feature in the instance. See Algorithm 4 for detailed pseudo
code for this evaluation procedure.

We carried out extensive experiments and found that, al-
most in all cases, the SVM variants of the methods did not
perform as good as their LR counterparts. For ease of inter-
pretation, we present here only the results for LR variants
of the methods.

The right column of Figure 1 shows the AUC evaluated
at 10% false positive rate as a function of number of ad-
versarial steps performed. Since what we are after in this
experiment is the relative trends of classifier performance
degradation among the methods as adversary gets intense,
statistical significance is not a very appropriate criterion in
this case.

In general, avg-LR performs the best on the original evalu-
ation set and exhibits strongest robustness among the meth-
ods as the number of adversarial steps increases except on
the Hotmail dataset where its performance degrades faster
than others. reweight-LR consistently outperforms the base-
line LR, albeit worse than avg-LR in most of the cases. Al-
though the performance of fscale-LR is the worst during the
first few steps of adversarial attack, it has the slowest rate
of performance degradation on all datasets used in this ex-
periment.

The left column of Figure 1 shows the proportion of the

4I.e., known bad words are obfuscated in some way such
that these words do not appear in the feature set.
5I.e., insertion of random words or those with educated guess
to make spam email looks more like a ham.



absolute values of top K feature weights:

proportion =
Sum of K largest absolute values of w

Sum of all absolute values of w
(10)

This essentially illustrates the evenness of the distribution
of weights among the features, i.e., flatter line implies more
evenly distributed weight vector. From the figure, we see
that evenly distributed weight vectors such as those of avg-
LR and reweight-LR are more likely to result in stronger ro-
bustness. (Note that the distributions of feature weight of
avg-LR, reweight-LR, and LR are not much more even than
that of fscale-LR as the difference is only around 0.4%.)

Algorithm 4 Classifier performance evaluation under sim-
ulated adversarial attack
1: input: weight vector w, # of attacks K, test set

D = {(xi, yi)}m
i=1 ⊂ {0, 1}d × {±1} with binary valued

features
2: for k = 1 to K do
3: for each spam instance (x, y) ∈ D do
4: if k is odd then
5: //Delete feature with largest positive weight
6: //(i.e., most spammy feature)
7: Let j = arg maxq{wqxq}
8: Set feature xj to 0 if wjxj > 0
9: else

10: //Insert a non-existing feature which has
11: //negative weight larger than the smallest
12: //negative weight of existing feature
13: Let v = minq{wqxq}
14: Let j = arg minq{wq | 0 > wq ≥ v and xq = 0}
15: Set feature xj to 1 if j 6= ∅
16: end if
17: end for
18: Evaluate performance on L2-normalized D
19: end for

5.5 Non-stationary Evaluation Set
In this section, we aim at measuring the robustness of

classifier from the point of view of concept drift which oc-
curs naturally in the email environment. In other words, we
assess the performance of classifiers on a time split evalu-
ation set provided the training set is fixed and is in close
proximity of the whole evaluation set. This setting is fun-
damentally different from that of online filter evaluation as
in the latter case, classifiers are re-trained very often and
hence less susceptible to concept drift6.

In fact, the concept drift setting we emphasize here is a
very common problems faced by real world content based
email spam classifiers. By studying classifier robustness in
this sense, we are able to characterize the effective lifetime
of a spam classifier before it becomes obsolete (and requires
re-training with newer training set).

The ECML06 dataset was excluded from this experiment
as it does not satisfy the assumption of the performance
evaluation that the training and evaluation sets are ordered
in chronological order. On the remaining three datasets, we
partition each of the corresponding evaluation sets into 10
roughly equal-sized subsets while preserving the time order
of the instances. We evaluated the AUC at 10% false positve

6I.e., the evaluation environment diverges further away from
the training environment.

rate on each subset and plot the results in Figure 2. From
the figure, we see that the performance of the methods avg-
LR and reweight-LR are the best and outdo the baseline LR
and fscale on some subsets by wide margin.

6. CONCLUSIONS & FUTURE WORKS
We have seen in the experiments that the performance and

robustness of simple techniques such as reweight-LR and avg-
LR surpass that of standard method such as LR. The com-
putational overhead for avg-LR is negligible as the training
of K base classifiers can be parallelized over a cluster of
machines. This parallelized training is feasible especially in
large organizations such as email service providers.

Since the simulated adversarial attack performance eval-
uation is computationally cheap and it provides a sequence
of classifier performance measures, it can well be considered
as an alternative criterion for use in the cross validation
phase. I.e., we say classifier A is better than classifier B
when (pA,1, . . . , pA,k) ≥δ (pB,1, . . . , pB,k), where pC,i is some
monotonically decreasing performance measure of classifier
C after i steps, and “s ≥δ t” refers to “s = t” when |s − t|
is less than some small positive value δ, and to “s ≥ t” oth-
erwise. It is important to note that this criterion is more
stable and less sensitive to numerical rounding errors in per-
formance measure values.

In the near future, we plan to study the sensitivity of
the performance of avg and reweight to the number of base
classifiers and feature subset size, and initial training set
size, respectively. It will be interesting and insightful to
study how fscale manages to achieve slow degradation in
the cases of intense adversarial attack.
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Figure 1: Left column: Proportion of top 1 to 10 weights of best classifiers on various datasets. Right column:
Performance of best classifiers under 0 to 10 adversarial attack steps on various datasets.
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Figure 2: AUC at 10% false positive rate of best
classifiers (trained on fixed training sets) on different
evaluation subsets.


