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ABSTRACT
Relevance, diversity and personalization are key issues when
presenting content which is apt to pique a user’s interest.
This is particularly true when presenting an engaging set
of news stories. In this paper we propose an efficient algo-
rithm for selecting a small subset of relevant articles from a
streaming news corpus. It offers three key pieces of improve-
ment over past work: 1) It is based on a detailed model of a
user’s viewing behavior which does not require explicit feed-
back. 2) We use the notion of submodularity to estimate
the propensity of interacting with content. This improves
over the classical context independent relevance ranking al-
gorithms. Unlike existing methods, we learn the submodu-
lar function from the data. 3) We present an efficient online
algorithm which can be adapted for personalization, story
adaptation, and factorization models. Experiments show
that our system yields a significant improvement over a re-
trieval system deployed in production.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Algorithms, Experimentation

Keywords
Submodularity, Personalization, Online Learning, Graphical
Models

1. INTRODUCTION
As global events unfold (e.g. the debt crisis, the BP oil

spill, or the Japan earthquake) a large number of newspa-
pers, blogs and other online news sources report develop-
ments. Selecting a personalized subset of articles from this
large, ever-changing corpus of news articles is vital for deal-
ing with information overload. In this context, the goal is to
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provide a comprehensive yet personalized subset of articles
which cover all relevant aspects of the events of any given
day. Moreover, the selection algorithm we develop should be
able to adapt to the users’ tastes. For instance, a user may
have specific interest in news that relates to a certain topic
(e.g. politics, sports) or might favor a specific news source
(e.g. Fox news, New York Times). Building such a system
entails addressing the following challenges:

Relevance: Clearly we want to ensure that we retrieve the
articles that have the highest quality score, i.e. which are
obtained from high quality sources, attract a large number
of clicks, that are relevant for a given user, and which satisfy
other commercial motives (e.g. traffic shaping).

Coverage: We also would like to ensure that information
is not only relevant but also complete in the sense that it
covers all aspects of the event, e.g. in terms of content, time
and with regard to the sources of information.

Key Events: When displaying news with respect to a time-
line it is desirable to detect the key events in the thread.
This means that we generally want to get the article which
describes the outbreak of an earthquake rather than the
summary recap written one month later (unless the latter
is extremely well written and the article occurred a long
time ago). In other words, we want summaries which are
attached to key events but whose temporal attachment to
events decreases with the age of the event.

Recency: Users are generally more interested in the present
rather than the past. This means that when displaying con-
tent we should focus preferably on recent events more than
events that occurred a long time in the past (unless they are
very important). This is also relevant when invoking the
system in an online fashion. In this case we would like to
obtain novel articles as part of an ongoing news stream.

Personalization: Given that users’ preferences may vary
widely we need to adjust any relevance scores by the source,
topical, and page quality interests of a user. In particular,
we want to learn which results are preferred by which user,
and which pages on a site are of most interest to the visitors
of that site.

Storyline Adjustment: A complementary aspect to per-
sonalization is the ability to adjust to coverage of stories.
That is, we want to be able to learn from user interactions



which aspects of a story are relevant. For instance, some
users might be more interested in the political aspects of
the debt crisis while the others might be more interested in
its economic implications.

Deduplication: While implicit in the above discussion,
deduplication is absolutely necessary since duplicates cre-
ate a rather unpleasant user experience. It is desirable to
deal with this problem in an integrated fashion.

Of course, the above desiderata are not just limited to pre-
senting news stories. More generally, one can consider the
scenario of a user interacting with a source of information.
This may be a search results page where users where users
would like to obtain relevant and diverse answers. Likewise
it might be a set of articles related to a security on a finance
page, or we might consider aggregating feeds from various
social networks. Selecting a personalized subset of docu-
ments from such corpora remains an important problem.

Contributions
We argue in this paper that all the above aspects of the
problem can be addressed by a model that

1. takes implicit user feedback into account,
2. uses a submodular rather than modular objective for

estimating item relevance, and
3. uses a composite model for personalization.

Specifically, we build a detailed and adaptive user interac-
tion model that accurately captures the way a user traverses
a list of items. Towards this end we use a graphical model
to describe both the click and viewing behavior of a user
in a fully adaptive fashion through a latent variable model,
thereby extending the work of [5].

Secondly, we propose an information gain score for esti-
mating the click propensity of a user. This is a departure
from two lines of research: the classical relevance ranking
approach, which views relevance as an aggregate of the rel-
evance of individual objects [17] and a combinatorial op-
timization driven approach, which tries to approximate the
problem of selecting a relevant and diverse subset by crafting
a suitable submodular objective function, possibly subject
to side constraints [9, 1]. That is, we first and foremost
attempt to model the problem accurately rather than ap-
proximating it by a mathematically simpler object.

Finally, we discuss effective optimization algorithms and
parametrizations of user interest and article relevance which
are well suited to composite weights (e.g. for personalization,
storyline adjustment, categorical preferences, etc.). They
arise naturally from the information-gain objective used to
characterize user interest. A side-effect of the proposed
model is that it provides effective cold-start customization
for new stories and new users alike. Moreover, this yields an
algorithm which is capable of selecting from a parametric set
of submodular objectives. This is different from prior work
[1, 9, 15] who posit the existence of a particular submodu-
lar gain function which is supposed to describe user interest
accurately. Instead, our framework can learn the degree of
submodularity for each attribute individually.

We show that our system improves the quality of esti-
mates considerably. In aggregate, we find that our system
shows a lift of over 20% over the currently deployed system
in Yahoo!. Furthermore, it outperforms a number of recent

related work including Turning down the Noise (TDN) al-
gorithm of [9], the Session Utility Model (SUM) of [7], and
the Cascade Click Model (CCM) of [6] significantly.

2. MODEL DESCRIPTION
In what follows, we assume that we have access to an

algorithm which aggregates articles into storylines, such as
described by [2] or a low-level search engine to find articles
relevant for a query. This yields sets of articles which are
largely coherent in accordance. Given that, we describe our
model by tackling each of the following aspects: building a
detailed user interaction model by using implicit user feed-
back (Section 2.1), modeling article relevance (Section 2.2),
personalization by using a composite set of weights (Section
2.3), online optimization of the model parameters (Section
2.4) and finally article recommendation (Section 2.5).

2.1 Sequential View Click Model
Our Sequential View Click Model (SVCM) for user inter-

action draws on the view-click model of [5]. That is, we
assume that a user traverses a list of results (URLs) from
top to bottom in sequential order. At any given point a user
can perform one of four possible actions:

1. follow a link and leave,
2. follow a link and return to examine the remainder of

the results afterwards,
3. skip forward to the next result,
4. abandon the task.

Unfortunately, by using click data we have no way of know-
ing whether the user continued examining the list of results
or whether he simply abandoned inspection, unless we ob-
serve further clicks by the user. In other words, we are deal-
ing with a model in which some of the variables are latent.
This can be addressed by a proper probabilistic description.

The above conditions of state transition provide us with
a rather nice grammar which restricts which observations
are admissible. In particular, they imply that the user will
abandon examining the presented results at some point in
time (this could be anywhere between the first and the last
position) and after he does so, there is no chance of any fur-
ther interaction with the result list. Note that this model
makes a rather drastic approximation, namely that users
always examine results in order rather than in some other
(possibly nondeterministic) scheme. While not quite true
in practice, we found by inspecting click logs that the ap-
proximation is fairly accurate.1 Our model extends [5] in a
number of ways:

• We allow for different transition and baseline click prob-
abilities per position rather than assuming that these
coefficients are identical.

• We assume that the click propensity depends on

– the number of previous clicks, and

– the set of previously displayed articles.

• We allow for the user to potentially not examine the
displayed results at all.

This additional set of parameters is acceptable since it is
minuscule relative to the total set of parameters used in

1We are unable to provide specific figures since this is com-
mercially sensitive data.



modeling user behavior, hence we can assume that the es-
timates are statistically reliable. In order to make matters
more specific we now describe the probabilistic model associ-
ated with the above assumptions. We use vt := (v1, . . . , vt)
as a shorthand to denote vectors of length t consisting of the
first t elements in an array.

In the following we denote by vi ∈ {0, 1} a variable which
indicates whether a user examined result i and by ci ∈ {0, 1}
whether he clicked on result i. We use standard directed
graphical models syntax, that is, arrows indicate statisti-
cal dependencies from parent to child. Shaded vertices are
considered observed, blank ones are considered latent. Ex-
tending [5] we obtain the following model. Note that we
omitted some edges not pertaining to vertex ci for readabil-
ity. Furthermore, we define v0 = 1 and c0 = 0 as auxiliary
constants to keep the notation simple.

views v0 v1 v2 v3 . . . vi . . .

clicks c0 c1 c2 c3 . . . ci . . .

docs d1 d2 d3 . . . di . . .

Note that here ci is determined by a multitude of random
variables, in particular all previously shown articles di−1

and the current article di. The equivalent joint probability
distribution of p(v, c|d) is given by

p(v, c|d) =

nY
i=1

h
p(vi|vi−1, ci−1)p(ci|vi, c

i−1, di)
i

(1)

We use a logistic transfer function to model the binary condi-
tional probabilities, and defer specifying the functional form
of the scores until Section 2.2 because it requires us to in-
troduce submodular gains first.
Examination probability: We distinguish two cases: the
examination probability whenever a user clicked on a previ-
ous item and the examination probability when the previous
item was not clicked.

p(vi = 1|vi−1 = 0) = 0 (2)

p(vi = 1|vi−1 = 1, ci−1 = 0) =
1

1 + e−αi
(3)

p(vi = 1|vi−1 = 1, ci−1 = 1) =
1

1 + e−βi
(4)

In other words, provided that the user examined the pre-
vious link, we allow for a logistic dependence which differs
according to whether the user returns after having clicked
a link or whether he is already on the page. Choosing dif-
ferent coefficients αi, βi makes sense since the propensity to
click on a result varies in accordance to the location on the
results page (e.g. whether a user will be required to scroll).

Click probability: The key aim of our user interaction
model is to obtain good estimate of the click probability.
As described in the graphical model above, it depends on
ci|vi, c

i−1, di. In this context we stratify by the value of vi

by setting

p(ci = 1|vi = 0) = 0,

that is, if a user did not examine a result then he will not
click on it. Furthermore, we assume that the click proba-
bility for a given article is characterized by 1) the number
of previous clicks, as denoted by |ci−1| and 2) by the rele-
vance of the current article di given the previously displayed
articles di−1 where the particular order of the latter is irrel-
evant. These simplifying assumptions lead to the following
functional form:

p(ci = 1|vi = 1, ci−1, di) =
1

1 + e−f(|ci−1|,di,di−1)

The specific functional form of f will be described as part
of the relevance model next.

2.2 Relevance Model
A key component in our model is a score to capture notion

of information gain based on a set of articles presented to the
user. The intuition behind our approach is that two articles
which might be equally relevant might attract considerably
different number of clicks depending on which of them is
displayed above the other. We model this effect via a sub-
modular coverage function. There is plenty of evidence that
submodular functions capture the effects of diversity fairly
accurately both in terms of user satisfaction and in terms
of their mathematical properties (see e.g. [9] and references
therein).

Here we present key results about submodular functions
necessary for the development of our relevance models, for
more details, please see Appendix A. In a nutshell, submod-
ularity is characterized by its diminishing returns property.
That is, for a set S, a subset A ⊆ S, elements x, y ∈ S, and
a submodular function f : {0, 1}S → R we have

f(A ∪ {x})− f(A) ≥ f(A ∪ {x, y})− f(A ∪ {y}) (5)

and the improvement decreases as we add more elements to
the set A. Moreover, the set of submodular functions forms
a convex cone. One of the main reasons for the popularity of
submodular functions is the fact that constrained submod-
ular maximization can be carried out efficiently through a
greedy procedure, as described in the celebrated paper of
[16] which can be accelerated even further by a lazy evalua-
tion procedure as described in [14].

Consider two sets of articles: a set S of “source” articles
to be covered and a set D of articles chosen to represent the
content described in S. Given those sets we may define a
coverage score via

ρ(S, D) :=
X
s∈S

X
j

[s]jρj(D), (6)

where [s]j is a real value describing the extent to which
feature j is present in s, and ρj(D) a monotonically non-
decreasing submodular function capturing how well the fea-
ture j of article collection D covers the same feature in arti-
cle s. We assume that S is generated, e.g. by a set of search
results or a storyline clustering module (e.g. articles about
the debt crisis).

Next we need to define the properties of ρ. For this we
introduce the notion of a generating function to deal with a
large family of submodular functions abstractly.

Definition 1 A monotonic, concave and nonnegative func-
tion σ : [0,∞) → [0, 1] is a cover generator.



Lemma 2 Given a domain X and coefficients cx ≥ 0 for
all x ∈ X, and A ⊆ X, the function ρ(A) := σ(

P
x∈A cx) is

submodular whenever σ is a cover generator.

Proof. Clearly ρ is monotonic with respect to addition
to A. The diminishing returns property follows immediately
from concavity in σ and the fact that cx ≥ 0 for all x ∈ X.
Hence ρ is submodular.

Our definition covers a number of popular submodular cov-
erage scores as special case:

σ(z) =

(
0 if z = 0

1 if z > 0
(set cover) (7)

Here we simply assume that once we discussed a subject
even once it is considered covered.

σ(z) = 1− e−θz for θ > 0 (probabilistic cover) (8)

This equation can be seen, e.g. from [9], where one chooses
the probability of not finding what is required, i.e. 1 −Q

x∈A(1−πx) to be the coverage score, where πx is the prob-
ability of the features in x. By setting cx := − log(1 − πx)
and θ = 1 we obtain this case.

σ(z) = log(θz + 1) for θ > 0 (logarithmic cover) (9)

Recall that modular function is a special case of submodular
function and that submodular functions form a convex cone.
Hence, a

P
d∈D[d]j + bρj(D) is submodular for a, b ≥ 0. By

plugging this generalization into (6), it leads to a powerful
parametrization of ρ(S, D) as follows:

ρ(S, D|a, b) :=
X
s∈S

X
j

[s]j
“
aj

X
d∈D

[d]j + bjρj(D)
”
. (10)

The significance of the expansion is that it combines both
modular and submodular scores into a unified formula and
allows us to learn the weights of the modularity aj and sub-
modularity bj of a each feature j. Covering a modular fea-
ture always increases the coverage score, but covering a sub-
modular feature has a diminishing return effect.

Given this definition of coverage, we now convert it into
a relevance score to be used in the model of Section 2.1 by
defining:

f(|ci−1|, di, d
i−1) (11)

:=ρ(S, di|a, b)− ρ(S, di−1|a, b) + γ|ci−1| + δi

:=
X
s∈S

X
j

[s]j

 
aj

X
d∈di

[d]j + bj

“
ρj(d

i)− ρj(d
i−1)

”!
+ γ|ci−1| + δi

Here γ|ci−1| is a correction coefficient which captures the ef-

fect of having visited |ci−1| links previously. δi captures the
position specific effect, i.e. how clickable different positions
in the result set are. Furthermore note that for b = 0 we are
back to a modular relevance ranking model where each arti-
cle is considered regardless of previously shown content. In
other words, we recover the vector space model as a special
case [18]. Moreover, setting a = 0, we recover the submod-
ular score in [9] as another special case.

2.3 Composite Weights
Let Ψ = (α, β, a, b, γ, δ) denotes the parameter set of our

model. This parameter set is shared across all stories and
users. A significant advantage of our parametrization is that
the expected negative log-likelihood of the model is convex
in the Ψ. This allows us to perform the following personal-
ization extensions rather easily:

User Personalization: Different users have different pref-
erences. It is therefore desirable that we learn from such
interactions and personalize the results. We resort to an
additive model along the lines of [20], i.e. we assume that
the parameters Ψ are given by Ψ0 +Ψu where the latter are
user-specific terms and the former are common parameters
which ensure that we obtain a generally relevant set of arti-
cles. In other words, the latter pair allows us to personalize
results to a user’s preferences whereas the former pair en-
sures good coldstart behavior.

Storyline Adjustment: It is unlikely that all stories would
be characterized by the same set of attributes. Hence, it is
equally desirable to learn how to adjust the summaries to
the stories at hand. Based on the amount of interaction
with users we hope to improve the estimates after recording
sufficient amounts of user feedback. Our model is flexible,
for instance, one can have a weight for each storyline (Ψs)
and also group stories based on their category and learn
corresponding category weights (Ψc). We can address all of
this by an additive decomposition. In conjunction with user
personalization this leads to

Ψ = Ψ0 + Ψu + Ψs + Ψc. (12)

Our experiments show that personalization and storyline ad-
justment can significantly improve retrieval quality.

2.4 Online Learning
Our goal of learning is to find a weigh vector Ψ∗ that fits

our proposed probabilistic click models (1) on an observed
data set of presumably independent examples. We formulate
this learning process as a (regularized) maximum likelihood
estimation problem which can be written as the following
convex minimization problem:

Ψ∗ = λΩ(Ψ) + argmin
Ψ

X
(c,d)

− log p(c|Ψ, d). (13)

Here, − log p(c|Ψ, d) is the marginal log-likelihood of the ob-
served click behavior i.e., (1)). Ω(Ψ) is a regularizer defined
as:

Ω(Ψ) = ‖Ψ0‖2
2 +

X
u

‖Ψu‖2
2 +

X
s

‖Ψs‖2
2 +

X
c

‖Ψc‖2
2 . (14)

The regularizer helps prevent overfitting and the regular-
ization constant λ determines the extent to which we prefer
smooth solutions to solutions which maximize the likelihood.

The key challenge in solving the problem (13) lies in the
facts that p(c|Ψ, d) is the marginal of (1) with respect to v
and that v’s after the last clicked position are unobserved
(without the use of more advanced tracking mechanism for
user browsing behavior). Thus we resort to an Expectation
Maximization (EM) algorithm and use an variational upper
bound on the negative log likelihood on observed data as



follows:

− log p(c) ≤ − log p(c) + D(q(v)‖p(v|c))
= Ev∼q(v) [− log p(c) + log q(v)− log p(v|c)]
= Ev∼q(v) [− log p(c, v)]−H(q(v)).

Here q(v) is a distribution over the latent variables, H(q) is
the entropy of the distribution q, and D(p‖q) is the Kullback-
Leibler divergence between p and q. Putting everything to-
gether, we have the following optimization problem:

min
q(v),Ψ

λΩ(Ψ) +
X
(c,d)

Ev∼q(v) [− log p(c, v|d, Ψ)]−H(q(v)).

(15)

The standard EM algorithm that runs in batch mode and
require all data to be available at hand is not appropriate in
our case as a successful and efficient deployment of our sys-
tem must process data in near real-time as we observe them
in a streaming fashion. To meet the system requirement,
we employ an online EM [4] that performs an approximate
yet complete EM step on a example-by-example basis. We
describe these two steps in more details below.

E-step: Expected Log-Likelihood
In the E-step, we need to compute q(v), however, we note
that the bound on the marginal log-likelihood is tight when
q = p(v|c, d), which is the minimizer of Eq (15). In this Sec-
tion we show how to compute p(v|c, d), i.e. the probability
distribution over views, given the observed clicks c and the
presented set of articles d.

While the graphical model in Section 2.1 suggests that dy-
namic programming might be needed, computing p(v|c, d) is,
in fact, considerably simpler as we may exploit the fact that
vi is a monotonically decreasing sequence, that is, it is fully
specified by counting how many views there are. In other
words, since p(vi = 1|vi−1 = 0) = 0 and p(vi = 0|vi−1 =
0) = 1, the only admissible values for v are those which con-
sists of a sequence of 1s followed by a sequence of zeros and
as such v is completely defined by counting the number of
1s in v. Hence we denote by v̄ := |v| the view count. Next
denote by πl the unnormalized likelihood scores for the user
viewing l results.

πl :=p(v̄ = l, c, d) (16)

=

lY
i=1

h
p(vi = 1|vi−1 = 1, ci−1)p(ci|vi = 1, ci−1, di)

i
·

p(vl+1 = 0|vl = 1, cl) ·

(
1 if cj = 0 for j > l

0 otherwise

It is easy to see that (16) can be computed for all values of
l in linear time. This yields

ql := p(v̄ = l|c, d) =
πlP
i πi

and rl := p(v̄ ≥ l|c, d) =

nX
i=l

qi

(17)

Here ql, rl are the coefficients of the variational distribution
to be used in the M-step as described below.

M-step: Stochastic Gradient Descent
In the M-step we optimize over Ψ. First, we plug q(v) de-
rived in Section 2.4 and specified in (17) into the negative

log-likelihood of the click and view probability in (15) (ig-
noring the last term H(q(v)) as it does not depend on Ψ).
We have that Ev̄∼q [log p(v, c|d, Ψ)] is given by:

nX
i=1

Ev̄∼q [log p(vi|vi−1, ci−1, Ψ)] + Ev̄∼q

h
log p(ci|vi, c

i−1, di, Ψ)
i

=

nX
i=1

ri log p(vi = 1|vi−1 = 1, ci−1, Ψ)+

nX
i=1

qi−1 log p(vi = 1|vi−1 = 0, ci−1, Ψ)+

nX
i=1

qi log p(ci|vi = 1, ci−1, di, Ψ). (18)

The remaining terms all vanish from the above expansion.
For instance, log p(vi = 0|vi−1 = 0) = 0. The regularized
expected log-likelihood is now amenable to convex optimiza-
tion with respect to the parameters Ψ. Since our goal is to
learn the weight vector Ψ online, we use the SVMSGD2 al-
gorithm described in [3] to update Ψ. The update procedure
at example t + 1 is as follows:

g :=
∂

∂Ψ
Ev̄∼q

ˆ
log p(v, c|d, Ψt)

˜
(19)

Ψt+1 := Ψt − 1

λ(t + t0)
g (20)

Ψt+1 := Ψt+1 − skip

t + t0
Ψt+1 [if (skip mod t) = 0] (21)

where t0 and skip are predefined hyperparameters. To main-
tain submodularity, we project (i.e. truncate) the a, b part
of Ψ so that they remain nonnegative. The average regret
(with respect to the best parameters learned in hindsight if
we observe all the clicks at once, i.e. as in batch settings)

vanishes at rate O(t−
1
2 ) for the above projected gradient

algorithm, where t is the number of examples seen [22].

Online Model Selection
The hyper-parameters in our model that we need to spec-
ify are the scale theta in the cover function (8), regular-
ization constant λ, and SGD parameters t0 and skip. In
batch setting one can select these hyper-parameters using
cross-validation, however this is not feasible in our online
setting. We adopt an online approach to tune these hyper-
parameters as learning progresses by learning a set of K
candidate models, each of which corresponds to a specific
value of these hyper-parameters. After we receive an exam-
ple, we ask each model to first predict which documents the
user clicked on, and we keep track of the accuracy of each
model. The best model is determined periodically based on
its accumulated accuracy. Recommendation of articles (see
Section 2.5) will be made using the best model until the
next model selection. We note that the user’s interaction is
used to update all candidate models and this setup is simi-
lar is spirit to the mixture of expert framework, where each
model is treated as an expert. Experimentally, we found
that this strategy works well. In our experiments we start
with K = 48 and we then shrink K to 5 after observing the
first 10000 sessions for efficiency.

2.5 Recommendation
An important aspect to be addressed is the issue of display

optimization. That is, we are not learning the user and rel-



evance model for its own sake. Instead, this is done in order
to increase the amount of engagement a user displays with
respect to the website. It follows from our model (1) that
the amount of interaction is maximized whenever the score
functions f(|ci−1|, di, d

i−1) are as large as possible. While it
is difficult to find an optimal strategy, we may at least strive
to achieve two goals:

• Find a set of articles such that
Pm

i=1 f(|ci−1|, di, d
i−1)

is maximized. This goal is identical to maximizing a
submodular objective as can be seen easily from the
fact that f is given by the difference between two sub-
modular functions and from the fact that the sum tele-
scopes. Hence the greedy procedure at least guaran-
tees that we will obtain a near optimal solution of this
problem, as stated in Theorem 4.

• Choose articles with the largest contributions in f at
the beginning of the list. Due to the diminishing re-
turns property of submodular functions we are guar-
anteed that the value of the score function is monoton-
ically decreasing, the more articles have already been
selected. Combining this with a greedy selection pro-
cedure guarantees that the values f(|ci−1|, di, d

i−1) are
monotonically decreasing in i.

We use the second strategy in selecting and ordering articles
in our experiments.

3. RELATED WORK
Probably closest to the present work is the Turning Down

the Noise (TDN) algorithm of [9]. It uses a submodular score
function to estimate the relevance of a retrieved set. This
allows the use of a greedy algorithm for obtaining a summary
of the current set of events. To deal with user interaction
data it requires users to respond explicitly with a preference
rating for articles. The latter is then used to ensure that
the articles preferred by a user are retrieved in the order of
preference — it treats each stage of the greedy procedure
as a classification problem where the preferred articles are
to be selected over the ones a user dislikes. Optimization
is carried out by means of an exponentiated gradient (EG)
algorithm.

While theoretically elegant, the TDN algorithm suffers
from a number of drawbacks. It requires explicit feedback
from the users, that is, a user has to indicate if she is inter-
ested/not interested/indifferent to a presented article. This
is unrealistic in a real-world setting. Instead, we need sys-
tems which are capable of exploiting the implicit feedback
inherent in the interaction of a user with an application. In
particular, we would like to decouple the user model from
the relevance score to some extent. This is desirable since
results can be presented in different modalities (desktop vs.
mobile application, push vs. pull), yet we would like to use
all data to improve our estimates.

Secondly, while the notion of submodularity is desirable
in general for proving approximation guarantees for other-
wise NP hard problems, it somewhat obscures the (more
generally applicable) property of diminishing returns in the
context of relevance ranking. More to the point, while sev-
eral simple problems can be modelled quite conveniently as
submodular maximization problems, this is not necessarily
the case for general user interaction models. For instance,
to deal with the relatively simple addition of position bias

in ranking one needs to add matroid constraints to the op-
timization problem. This, in turn, leads to considerably
weaker approximation guarantees than the greedy approach
of [16], thus negating some benefits of a pure submodular
maximization strategy. In summary, we consider the fixa-
tion to submodular objectives rather harmful, yet the notion
of diminishing returns in user-modeling is valuable.

Thirdly, since the EG algorithm converges rather rapidly
to a sparse solution placing emphasis on a small number of
features, it is prone to focusing on a very small number of
terms [10], thus potentially leading to the ‘filter bubble’ of
many recommendation algorithms (also see our experiments
in Section 4). We conjecture that this effect did not manifest
itself in [9] due to the short length of the feedback sessions
(only up to 5 interactions per user). Moreover, exponenti-
ated gradient algorithms are not quite so easily amenable to
composite weights and bilinear recommendation algorithms,
such as those by [11].

The present paper addresses all these concerns by learning
the submodular score, via a dedicated user model, and by
employing a stochastic gradient descent procedure. The key
differences between TDN and our algorithm can be summa-
rized as follows:

optimization objective usermodel
TDN EG submod. explicit
This paper SGD submod. + mod. sequence

Another relevant work is the Cascade Click Model (CCM)
originally proposed by [6] to explain the effect of position
bias in web search results. This model assumes that users
examine the documents in sequential order and click on one
document and then abandon the session.

Finally, [7] use the metaphor of user satisfaction in their
Session Utility Model (SUM) to capture the effect of diver-
sity and satisfaction in a session. This leads to a (slightly
nonstandard) objective function which characterizes the stop-
ping probability of a user. While exciting, we found it not
to be an ideal fit to our datastream. More to the point,
for news-search drill down clicklogs we observed that often
Pr(c > n + 1|c ≥ n + 1) > Pr(c > n|c ≥ n) holds. Here c
denotes the number of clicks and n ∈ N. In other words, the
user is often more likely to click at least one more time given
that he already clicked once than clicking at least once. This
is contrary to what the model of [7] describes. This insight
is matched in our experiments.

4. EXPERIMENTS
We perform extensive experimental evaluation to compare

our method with existing algorithms, and to answer the fol-
lowing natural questions:

• What is the effect of the user interaction model on the
overall performance of the system?

• Does the coverage function (10) which combines mod-
ular and submodular coverage scores work better than
the submodular only score proposed in [9]?

• How does changing the optimizer impact the overall
performance of the system?

• What is the effect of the composite weights on the
performance of the model, especially in the context of
personalization.

• Does our system personalize to a user and therefore
lead to improved user satisfaction?



In order to answer these questions we collected data from
logs of user interaction with news content. The user provides
implicit feedback by clicking or skipping over the displayed
articles, and this is used to adjust our model. The goal is to
learn to present articles so as to maximize the positions of
clicked articles (i.e. places more relevant and diverse articles
at the top).

As our performance metrics we use the Precision at One
(Prec@1) and Precision at Full Click (Prec@FC). Prec@1
measures the fraction of times a user clicks on the first dis-
played article. On the other hand, if k denotes the number
of clicks in a session then Prec@FC measures the fraction of
the top k articles that were clicked. For instance, if the user
clicked on positions 1, 3, and 5 then the Prec@FC is 3/5.
All results are relative to the performance of the deployed
system which is computed as follows: 100× a−b

b
where a is

the performance of our system and b is the performance of
the deployed system.

We perform online evaluation. At every iteration, the al-
gorithm receives a set of articles from a given story out of
which it selects 10 articles and presents them to the user.
Feedback is provided by the user in the form of clicks. This
is used to compute the performance metrics and to update
the model. The data set used in the experiments consists
of user sessions collected over a period of 10 weeks between
May and July, 2011. A random subset of around 140K ses-
sions with user feedback was chosen for reporting results.

4.1 Features
We use the following features which adequately capture

the essence of news stories.

Entities and Concepts: We used Yahoo!’s Spectrum named
entity detection and resolution tools to determine key and
relevant tokens in the article [21]. Particular importance was
given to terms in headlines and abstracts of an article and
terms were weighted according to their term frequency. This
ensures that we retrieve articles that are relevant in terms
of their content with respect to the ground set of articles.

Recency: Another set of attributes is the distribution of
time stamps of articles. To be independent of the absolute
time of the event we use the most recent article in the source
collection of articles S as reference. The count distribution
is then aggregated in a histogram. This approach automat-
ically selects the key events of a set of articles. After all,
we expect that news intensity should correlate with the rel-
evance of an event. If we were to use this in the context
of financial news we could simply reweight events with a
measure of volatility in the price of the security under con-
sideration. A secondary effect is that due to the modular
part of the relevance score we are able to learn the relative
relevance of recent articles with respect to older articles.

Source: Clearly news sources are highly relevant for cus-
tomizing results to the tastes of individual users. Conse-
quently we want to ensure that the identity of a source is
used as a feature. Quite interestingly, its use in the modular
vs. submodular part has different effects: a contribution to
the modular part via aj means that we prefer articles pre-
dominantly originating from a particular news source. On
the other hand, their use in the submodular part ensures

that we faithfully represent the article distribution found in
the source set S.

4.2 Results
User Interaction Models
For a fair comparison we use the same set of features and the
same optimizer (SGD) for each user model. In other words,
everything else is held equal and therefore the difference in
performance observed in Figure 1 is solely due to the use
of different user models. The click aggregation model used
by TDN requires explicit feedback from the user to each
displayed item as either: like, dislike or indifferent. To cast
click feedback into the TDN setting, we assign a like label to
all articles clicked by the user, dislike label to all articles that
appear before the last clicked article but were not clicked,
and indifferent label to remaining articles. We can see that
TDN’s performance is sub-optimal here as it cannot handle
the implicit feedback adequately2. We use enhanced ver-
sions of the Session Utility Model (SUM) and Cascade Click
Model (CCM) which use the submodular selection strategy.
We call them SUM+ and CCM+ in Figure 1.

Even though SUM+ takes into account the sequential na-
ture of the interaction, it is not well suited for our appli-
cation as it was originally proposed for web search with a
different assumption on the way user consume information.
CCM+ does not incorporate articles after the first clicked
article and hence is not able to perform well. In contrast
to all the aforementioned models, our Sequential View Click
Model (SVCM) is able to faithfully capture user interaction
and therefore comprehensively outperforms the other mod-
els including the deployed system.

Coverage Scores
We now shift our focus to comparing the performance of
the combined coverage score (10) to that of the submodu-
lar only scores [9]. The results can be found in Figure 2.
For this experiment we used SVCM for the user interaction
model and SGD as the optimizer. Clearly, the combination
of modular and submodular scores comprehensively outper-
forms the submodular only score in terms of both Prec@1
and Prec@FC. This is because the model with combined
coverage score is more powerful in learning the shape of the
submodular function and is able to compensate the potential
unnecessary penalization due to submodular score with the
gain from the modular score. In other words, this combined
score can learn the degree of modularity and submodularity
for each feature separately.

Optimization Procedure
Next we study the impact of the optimization procedure on
the overall performance. Results for Prec@1 and Prec@FC
are shown in Figure 3. Clearly, stochastic gradient descent
(SGD) outperforms Exponentiated Gradient (EG) in our
setting. To understand this result further we examined the
distribution of the final weights obtained by the two meth-
ods. Because of the multiplicative nature of EG, once a
weight is set to zero (e.g. because it falls below machine pre-
cision) it can never recover. Consequently, the final weight
vector of EG is sparse e.g. the sparsity of the best EG model

2we even obtained worse results if we don’t use negative
feedback at all, i.e. only positive (for clicked articles) and
indifferent feedback for all other articles
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Figure 1: Prec@1
(left) and Prec@FC
(right) of various
user models rela-
tive to the deployed
model. SVCM is
the Sequential View
Click Model, TDN
is the model in [9],
SUM is the Session
Utility Model of [7],
CCM is the Cas-
cade Click Model of
[6]. All models were
trained using SGD
(See Figure 3).
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the deployed model.
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is 85% whereas the best SGD model is 0.5%. However, be-
cause of the temporal nature of news, aggressively switching
off features tends to adversely affect performance.

Composite Weights
Next, in Figure 5 we examine the contribution of each com-
ponent of the composite weight vector. We restrict this fig-
ure to storylines that the user has visited at least twice (i.e.
examining the effect of the model in the story following task
– when the user returns to examine the development of a
given story). We see that more refined composite weights
vectors give higher performance lift. We also observed that
the contribution of the category weight over the story weight
is marginal. There are two reasons for that: 1) the cat-
egories of the stories in this experiment are automatically
generated using a classifier, thus there are some errors and
2) the assumption that each story belongs to a single cate-
gory is restrictive since for instance a story about “Occupy
Wall Street” belongs to both politics and finance categories.
Models like [2] can remedy both of these deficiencies.

In Figure 4 we show how the performance improves as we
observe more interactions with the user and as the number
of times we display a story (possibly to different users) in-
creases. We show the performance improvement over the
deployed system with and without the story and user part
of the weights turned on. The numbers in the figure are
aggregated over all users (left) and stories (right). Two ob-
servations are in order. First, using the composite weighing
scheme improves performance as compared to a Vanilla sys-
tem which does not use composite weights. Second, our
system adapts to each user and story preferences and learns
to present interesting stories at the top of the list. Our com-
posite scheme is worser than the deployed system the first
time a story is displayed. This happens because a new story
brings new features which might not have been seen before.
This problem can be addressed by using an explore-exploit
strategy by first encouraging more exploration about how to
present a new story and then exploiting the learned weights
to present the story. As can be observed, it only takes 1 to
3 visits before the composite weight shows improvement.

5. SUMMARY
In this paper we proposed a new integrated algorithm

for capturing nontrivial interaction effects between articles
when presented to a user. We demonstrated that our method
is significantly better than both Yahoo’s deployed system
and recent algorithms which aim to solve the same problem,
most notably [9, 7]. Nonetheless, there remains a significant
number of problems to be addressed:

• First and foremost we need to combine the user model
with an exploration / exploitation algorithm to make
it well suited for large scale user interaction problems.
Fortunately methods such as Thompson sampling ap-
pear to be well suited to the problem.

• While rather more sophisticated than the average user
model, the SVCM user interaction model still falls
short of the much more detailed representations of user
behavior reported by [13]. It is quite natural to at-
tempt to learn the structure of such a model directly
from users and to supplement this by using parameter
fitting from live traffic.

• We only discussed a pull model in the current context.
However, it is fairly straightfoward to adapt the rele-
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Figure 5: Lift in Prec@FC achieved by SVCM with
various combinations of composite weights. The
data used here are restricted to the sessions where
users have visited a story at least once (we are un-
able to provide the number of session in the X-
axis under this restriction since this is a commer-
cially sensitive data). Here, Ψ0 denotes the global
weights, Ψc denotes category specific weights, Ψs de-
notes story specific weights, and Ψu denotes user
specific weights.

vance score to a push model where the user is provided
with additional information whenever a new event oc-
curs. This can be achieved, e.g. by an adjusted sub-
modular information gain measure relative to messages
previously sent to the user.

• When showing headlines repeatedly to the same user,
it is quite likely that he will experience display fatigue.
That is, even if we were to choose the most relevant
link, displaying it ten times is unlikely to increase the
probability of interaction tenfold. It is common to re-
sort to display rotation to combat this effect. We con-
jecture that the latter could also be captured quite
well through submodularity in a much less heuristic
fashion.

• Diminishing returns effects and result interactions are
also quite likely in the context of advertising (e.g. three
chocolate ads on the same page are probably an unde-
sirable outcome of an auction for the keyword ’sweets’).
This implies that the commonly used Generalized Sec-
ond Price strategy [8] is likely not perfectly adequate
for pricing interacting advertisements.

In summary, we believe that the present paper is but a first
step towards a more realistic user model capable of capturing
the interaction between individual results and we are excited
about the new avenues of research listed above.
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APPENDIX
A. SUBMODULAR FUNCTIONS

In a nutshell submodularity is characterized by its di-
minishing returns property. That is, for a set S, subsets
A, B ⊆ S, and a function f : {0, 1}S → R we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (22)

An equivalent formulation is that f(A ∪ {x}) − f(A) ≥
f(A ∪ {x, y})− f(A ∪ {y}) holds, that is, the improvement
decreases as we obtain more instances. Functions for which
the comparison holds with equality are referred to as modu-
lar. A particularly useful fact is the following:

Theorem 3 The set of submodular functions on some do-
main X forms a convex cone.

This follows immediately from the fact that (22) remains
valid under addition and multiplication with nonnegative
numbers. This means that we may add and rescale such
functions while the result retains submodular properties. It
also makes optimization over the family of such functions
easier. One of the main reasons for the popularity of sub-
modular functions is the fact that constrained submodular
maximization can be carried out efficiently through a greedy
procedure, as described in the celebrated paper of [16].

Theorem 4 Assume that we are given a monotonically in-
creasing submodular function f defined on a domain X. De-
note by A∗

k := argmax
A⊂X and |A|≤k

f(A) the optimal set of size

bounded by k maximizing f . Then the greedy procedure

A0 := ∅ and Ai+1 := Ai ∪


argmax
x∈X

f(Ai ∪ {x})
ff

(23)

achieves a solution that satisfies f(Ak) ≥ (1− e−1)f(A∗
k).

Cost-weighted variants of the greedy algorithm exist [12].
Note also that while invoking the algorithm given in (23) ap-
pears to require O(|X|) operations per iteration, i.e. a total
of O(k|X|) computations, we can accelerate it significantly
by lazy evaluation [14]. The idea is as follows:

We know that the gains achievable by adding elements
to A can only decrease through the addition of further el-
ements. This is, after all, a submodular function. Hence,
after an initial pass which computes

δx := f({x})− f(∅) (24)

for all x ∈ X we can simply exploit the fact that δold
x ≥

δnew
x := f(A ∪ x) − f(A) and select from the list of upper

bounds. Each re-evaluation is then cached. This way we
need not check every time on instances x ∈ X that turned
out to be useless already before. Empirically [14] this al-
gorithm requires only log m operations per search once the
initial scores are computed thus reducing computation to
O(|X|+ k log |X|). This is due to the fact that we are able
to rule out a significant number of objects that are simply
not promising enough after an initial inspection.
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