Choon Hui Teo

Senior Data Scientist
Enlitic
1355 Market St, Suite 488
San Francisco, CA 94103, USA

emails: (replace 0 with o)
ch00nhui@enlitic.c0m

Publications and working papers

17 A. Ahmed, C. H. Teo, S.V.N. Vishwanathan, and A. J. Smola
Fair and Balanced: Learning to Present News Stories,
5th ACM International Conference on Web Search and Data Mining (WSDM'12), 2012.
[pdf]
16 A. Ahmed, Q. Ho, C. H. Teo, J. Eisenstein, A. J. Smola, and E. P. Xing
Online Inference for the Infinite Cluster-topic Model: Storylines from Streaming Text,
14th International Conference on Artificial Intelligence and Statistics (AISTATS'11), 2011.
[pdf, supplementary material][link]
15 A. Ahmed, Q. Ho, J. Eisenstein, E. P. Xing, A. J. Smola, and C. H. Teo
Unified Analysis of Streaming News,
20th International World Wide Web Conference (WWW'11), 2011.
[pdf][link]
14 S. Vadrevu, C. H. Teo, S. Rajan, K. Punera, B. Dom, A. J. Smola, Y. Chang, and Z. Zheng
Scalable Clustering of News Search Results,
4th ACM International Conference on Web Search and Data Mining (WSDM'11), 2011.
[pdf]
13 C. H. Teo
Bundle Methods for Regularized Risk Minimization with Applications to Robust Learning,
Ph.D. thesis, The Australian National University, 2010.
[pdf]
12 C. H. Teo, S. V. N. Viswanathan, A. J. Smola, and Q. Le
Bundle Methods for Regularized Risk Minimization,
Journal of Machine Learning Research (JMLR), 11(Jan):311-365, 2010.
[pdf][link][code]
11 A. Kolcz, and C. H. Teo
Feature Weighting for Improved Classifier Robustness,
6th Conference on Email and Anti-Spam (CEAS'09), 2009.
[pdf][link]
10 Q. Le, A. J. Smola, O. Chapelle, and C. H. Teo
Optimization of Ranking Measures,
Journal of Machine Learning Research (JMLR), submitted in January 2009.
[pdf]
9 A. J. Smola, L. Song, and C. H. Teo
Relative Novelty Detection,
12th International Conference on Artificial Intelligence and Statistics (AISTATS'09), 2009.
[pdf]
8 A. Globerson, C. H. Teo, A. J. Smola, and S. Roweis
An Adversarial View of Covariate Shift and A Minimax Approach,
In J. Q. Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, eds, Dataset Shift in Machine Learning, MIT Press, 2009.
[link]
7 O. Chapelle, C. B. Do, Q. Le, A. J. Smola, and C. H. Teo
Tighter Bounds for Structured Estimation,
Advances in Neural Information Processing Systems 21 (NIPS'08), 281-288, 2009.
[pdf]
6 C. H. Teo, A. Globerson, S. Roweis, and A. J. Smola
Convex Learning with Invariances,
Advances in Neural Information Processing Systems 20 (NIPS'07), 1489-1496, 2008.
[pdf]
5 A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schoelkopf, and A. J. Smola
A Kernel Statistical Test of Independence,
Advances in Neural Information Processing Systems 20 (NIPS'07), 585-592, 2008.
[pdf]
4 C. H. Teo, Q. Le, A. J. Smola, and S. V. N. Vishwanathan
A Scalable Modular Convex Solver for Regularized Risk Minimization,
13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'07), 2007.
[pdf] [code]
3 C. H. Teo and S. V. N. Vishwanathan
Fast and Space Efficient String Kernels using Suffix Arrays,
International Conference on Machine Learning (ICML'06), 2006.
[pdf] [code]
2 C. H. Teo and Y. H. Tay
Invariant Object Recognition using Circular Pairwise Convolutional Networks,
9th Pacific Rim Intl. Conf. on Artificial Intelligence (PRICAI'06), 2006.
[pdf]
1 C. H. Teo, Y. H. Tay, and W. K. Lai
A Novel Approach to Improve the Traning Time of Convolutional Networks for Object Recognition
12th Intl. Conf. on Neural Information Processing (ICONIP'05), 2005.
[pdf]

Software

  1. Suffix Arrays based String Kernel (SASK)
  2. Bundle Methods for Regularized Risks Minimization (BMRM)