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Abstract

Record linkage is the process of identifying which
records in different databases refer to the same real-
world entities. When personal details of individu-
als, such as names and addresses, are used to link
databases across different organisations, then privacy
becomes a major concern. Often it is not permissi-
ble to exchange identifying data among organisations.
Linking databases in situations where no private or
confidential information can be revealed is known as
‘privacy-preserving record linkage’ (PPRL). We pro-
pose a novel protocol for scalable and approximate
PPRL based on Bloom filters in a scenario where no
third party is available to conduct a linkage.

While two-party protocols are more secure because
there is no possibility of collusion between one of the
database owners and the third party, these protocols
generally require more complex and expensive tech-
niques to ensure that a database owner cannot infer
any sensitive information about the other party’s data
during the linkage process. Our two-party protocol
uses an efficient privacy technique called Bloom fil-
ters, and conducts an iterative classification of record
pairs into matches and non-matches, as selected bits
of the Bloom filters are revealed. Experiments con-
ducted on real-world databases that contain nearly
two million records, show that our protocol is scalable
to large databases while providing sufficient privacy
characteristics and achieving high linkage quality.

Keywords: Data matching, entity resolution, privacy,
approximate matching, scalability, Bloom filter.

1 Introduction

Privacy-preserving record linkage (PPRL) is the prob-
lem of how to efficiently link different databases to
identify records that correspond to the same real-
world entities without revealing their identities to any
party involved in the process, or to any external party
or adversary. The three main challenges that a PPRL
solution in a real-world context needs to address are
(1) scalability to large databases by efficiently con-
ducting the linkage; (2) achieving high quality of
the linkage results through the use of approximate
(string) matching and effective classification of com-
pared record pairs into matches (two records that are
assumed to correspond to the same entity) and non-
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matches (two records that are assumed to correspond
to two different entities); and (3) provision of suffi-
cient privacy guarantees such that the interested par-
ties only learn the records that were reconciled as re-
ferring to the same real-world entities (Christen 2012,
Clifton et al. 2004, Hall & Fienberg 2010).

One example real-world PPRL application would
be where a research team aims to study the corre-
lations between types of car accidents and result-
ing injuries. Such an analysis requires the linkage
of databases from hospitals, health insurance com-
panies and the police (Christen 2012). Another ex-
ample from the health domain is a health surveil-
lance system that continuously links data from human
health data, animal health data, and drugs data to
monitor outbreaks of contagious diseases that could
lead to epidemics or even pandemics (Clifton et al.
2004). Another application of current interest is
where a national security agency needs to collect and
link records from a diverse set of databases (such as
communication providers, banks, airlines, immigra-
tion, and social security) to identify potential ter-
rorism threats (Christen 2006, 2012, Clifton et al.
2004). These example scenarios illustrate that com-
monly data from different organizations need to be
linked, but privacy and confidentiality issues often
arise which might prevent such record linkage appli-
cations.

Several approaches have been proposed to deal
with PPRL over the past two decades (Trepetin 2008,
Verykios et al. 2009, Karakasidis & Verykios 2010,
Durham et al. 2011, Vatsalan et al. 2013). These
approaches can be classified into ‘three-party proto-
cols’ and ‘two-party protocols’. Three-party proto-
cols require a third party for performing the linkage
while two-party protocols don’t (Christen 2006, 2009,
Verykios et al. 2009). The main advantages of two-
party protocols over three-party protocols are that
they are more secure because there is no possibility of
collusion between one of the database owners and the
third party, and often they have lower communication
costs. However, two-party protocols generally apply
more complex techniques, such as Secure Multi-party
Computation (SMC) (Clifton et al. 2002, Goldreich
2004, Lindell & Pinkas 2009), to ensure that the two
database owners cannot infer any sensitive informa-
tion from each other during the linkage process. The
use of complex techniques, which are computation-
ally intensive, makes PPRL solutions not scalable to
large databases and thus are not applicable in real-
world contexts.

Among several different privacy techniques that
are applied in PPRL solutions, Bloom filters (Bloom
1970) are one efficient technique that can provide ade-
quate privacy guarantees if effectively used. A Bloom
filter is a bit string data structure of length [ bits,
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Figure 1: Mapping of strings into Bloom filters and
calculating their Dice coefficient similarity.

where all the bits are initially set to 0. k indepen-
dent hash functions, hi, ho, ..., h;, each with range
1,...1, are used to map the elements of a set into
the Bloom filter by setting the corresponding bit po-
sitions to 1. Bloom filters have previously been used
in several three-party or multi-party PPRL solutions.

Schnell et al. (Schnell et al. 2009) were the first
to propose a method for approximate matching in
PPRL using Bloom filters. In their work, the at-
tribute values of each record in the databases to be
linked are concatenated into one string, and the g-
grams (sub-strings of length ¢) of these strings are
mapped into Bloom filters using k£ independent hash
functions. These Bloom filters are sent to a third
party and the Dice coefficient (Christen 2012) is used
to calculate the similarity of two Bloom filters:

2c
sim(b,0%) = ——— 1
B0 = (1)
where ¢ is the number of common bit positions that
are set to 1 in both Bloom filters b and b® (common
1-bits), =4 is the number of bit positions that are set

to 1in b2, and z? is the number of bit positions that
are set to 1 in bg. The Dice coefficient is used since it
is insensitive to many matching zeros in long Bloom
filters (Schnell et al. 2009). For example, mapping the
bigrams (¢ = 2) of the two string values ‘peter’ and
‘pete’ into [ = 14 bits long Bloom filters using k =
2 hash functions and calculating the Dice coefficient
similarity of the two Bloom filters are illustrated in
Figure 1.

This approach requires a third party to perform
the linkage, since each of the two database owners
could mount a dictionary attack on the Bloom fil-
ters of the other party because they know the hash
functions hj ...hg and the length of the Bloom fil-
ters [. The approach is efficient because of the use
of Bloom filters and it supports approximate match-
ing of values as well, rendering it applicable to real-
world conditions. However, as with other three-party
protocols, collusion between the parties is a major
security drawback of this approach (Schnell et al.
2009). Recent research in PPRL has analysed the
weaknesses of Bloom filters in three-party settings us-
ing constraint satisfaction cryptanalysis (Kuzu et al.
2011), and novel solutions based on random sampling
of bits from attribute level Bloom filters have been
proposed (Durham 2012).

Our aim is to develop a two-party protocol for
PPRL using Bloom filters. We propose a method
that eliminates the need of a third party by iteratively
revealing selected bits in the Bloom filters between
two database owners, and classifying record pairs into
matches and non-matches in an iterative way to re-
duce the number of record pairs with unknown match
status at each iteration without compromising pri-
vacy.

Our paper contributes (1) a solution for PPRL in a
two-party framework using Bloom filters that is feasi-
ble in real-world PPRL applications by addressing the
three main challenges that a practical PPRL applica-
tion poses; (2) an analysis of the proposed solution in
terms of complexity, accuracy, and privacy; and (3)
an empirical evaluation of the protocol using a large
real-world Australian telephone database.

The remainder of the paper is structured as fol-
lows. In the following section, we provide an overview
of related work in PPRL. In Section 3 we describe the
steps of the protocol illustrated with two small sets
of Bloom filters. In Sections 4 and 5 we analyse the
protocol with regard to performance and privacy, and
in Section 6 we validate these analyses through an ex-
perimental study. Finally we summarize our findings
and discuss future research directions in Section 7.

2 Related Work

Various techniques for privately and efficiently cal-
culating approximate similarities in PPRL have
been proposed (Trepetin 2008, Verykios et al. 2009,
Karakasidis & Verykios 2010, Durham et al. 2011,
Vatsalan et al. 2013). There has been a variety of pri-
vacy techniques employed to facilitate PPRL. They
include secure hash encoding (Dusserre et al. 1995,
Van Eycken et al. 2000, Weber et al. 2012), generaliza-
tion techniques (Kantarcioglu et al. 2008, Inan et al.
2008, Vatsalan et al. 2011, Mohammed et al. 2011,
Karakasidis & Verykios 2012), SMC techniques (Song
et al. 2000, Atallah et al. 2003, Ravikumar et al. 2004,
Al-Lawati et al. 2005, Inan et al. 2008, 2010, Yakout
et al. 2012), differential privacy (Inan et al. 2010),
pseudo random functions (Song et al. 2000, O’Keefe
et al. 2004, Freedman et al. 2005), Bloom filters (Lai
et al. 2006, Schnell et al. 2009, Durham et al. 2010,
Karakasidis & Verykios 2011, Durham 2012), refer-
ence values (Scannapieco et al. 2007, Pang et al. 2009,
Vatsalan et al. 2011, Yakout et al. 2012), phonetic
encoding (Karakasidis & Verykios 2011, Karakasidis
et al. 2011), and random records (Kargupta et al.
2003, Karakasidis et al. 2011).

Most of the two-party solutions use SMC tech-
niques for the private comparison. Atallah et al.
(2003) proposed a two-party protocol where the edit
distance algorithm is modified to provide privacy us-
ing SMC techniques. Ravikumar et al. (2004) used
SMC techniques for the secure computation of several
distance functions. The approach of Song et al. (2000)
in a two-party context calculates enciphered permu-
tations of values using pseudo random functions and
SMC techniques for approximate matching of docu-
ments.

Inan et al. (2010) and Yakout et al. (2012) pro-
posed two phase solutions where the first phase is the
blocking phase that aims to reduce the number of
candidate record pairs by removing pairs that are un-
likely to be matches. The remaining candidate pairs
are then compared in detail using SMC techniques in
the second phase. Inan et al. used differential privacy
to partition the perturbed datasets through statisti-
cal queries and then generate candidate record pairs
from the records in the same partitions. Yakout et al.
mapped all the records into a complex plane and then
used a slab of a certain width to generate candidate
record pairs.

Bloom filters were proposed by Bloom (1970)
for efficiently checking set membership. Initially,
Bloom filters have been used to support membership
queries (Broder et al. 2002). More recently, they have
also been used for computing similarities. Several ap-



Table 1: Notation used in this paper.

DA DB Databases held by database owners Alice and Bob, respectively

sA sB Lists of values of linkage attributes A for each record in D® and D®, respectively

b, bB A Bloom filter of each record in S or SB, respectively

oA, OB Lists of record IDs and number of 1-bits for each record in D® and DB, respectively

C, G List of candidate record pairs, list of candidate record pairs at iteration 4

St, S, Sr Minimum similarity threshold value to classify a record pair as a match, minimum acceptable similarity
threshold value to add random bits, and minimum similarity threshold value to reveal bits in an iteration

l Length of Bloom filters

hi...hg, k Hash functions used to map a set of elements into a Bloom filter, number of hash functions

q Number of characters that make a g-gram

7 Iteration 7, 2 > 0

T, Ti Number of bit positions revealed, number of bit positions revealed in iteration ¢

t; Total number of bit positions revealed so far up to iteration i, t; = ZI T

x, :cA, zB Number of 1-bits, number of 1-bits in b4 or bB7 respectively

Total number of 1-bits revealed so far up to iteration i,

total number of 1-bits revealed in b or b” so far up to iteration i, respectively

Tmin,Tmax,Zmax

Minimum number of bits that can be revealed in an iteration, maximum

number of total bits to be revealed, maximum number of random bits that can be added

Cmin, Ci

Minimum number of common 1-bits required in both Bloom filters b4 and bZ,

total number of common 1-bits revealed from Bloom filters b and b® so far up to iteration 4

d) dm,am A

sim(-, -)

Difference between z

and 2, maximum difference between z
Function used to calculate similarities between two Bloom filters b and b® (Dice coefficient)

A

¢

and zZ to be classified as a ‘match’

proaches have been suggested for similarity calcula-
tion in PPRL by using Bloom filters (Lai et al. 2006,
Schnell et al. 2009, Durham et al. 2010, Karakasidis
& Verykios 2011, Durham 2012).

Lai et al. (2006) proposed a multi-party approach
that uses Bloom filters for private matching. In their
approach, each party partitions its Bloom filters and
sends a segment to the other party. The received seg-
ments are computed with a logical conjunction (and)
and the partial resulting segments are exchanged be-
tween the parties. Each party checks its own full
Bloom filters with the results and if the membership
test is successful then it is considered to be a match.
Though the cost of this approach is low since the com-
putation is totally distributed between the parties and
the creation and processing of Bloom filters are very
fast, the approach is very sensitive to low quality data
and is unable to perform approximate matching.

Schnell et al. (2009)’s three-party approach takes
into consideration the problem of approximate match-
ing based on a combination of g-grams and Bloom
filters as described in Section 1.

Recently, Durham (2012) proposed a three-party
framework for PPRL using Bloom filters. In her
work, she suggested record level Bloom filter encoding
to overcome the problem of cryptanalysis associated
with field (or attribute) level encoding (Kuzu et al.
2011), and she used locality-sensitive hash functions
for private blocking to reduce the computational com-
plexity. Empirical studies conducted on real datasets
show that this approach outperforms existing Bloom
filter based approaches.

3 Protocol Description

Two database owners, Alice and Bob, with databases
DA and D®, participate in the protocol. We di-
vide the steps of our protocol into three main phases,
which are the preparation phase, the length filtering
phase, and the iterative classification phase. The no-
tation we use is summarized in Table 1. Figures 2
to 7 illustrate the steps of the protocol.

3.1 Preparation Phase

In the initial preparation phase the database owners
prepare their data to be used in the iterative protocol.
The steps of this phase are:

1. Alice and Bob agree upon a bit array length
I; k hashing functions hj...hg; the length (in
characters) of grams ¢; the similarity measure
sim(b4,bP) to measure the similarity of two
Bloom filters b4 and bZ; a minimum similarity
threshold value s;, above which two records are
classified as a match; the maximum number of
bit positions they are willing to reveal to each
other Tmae (Fmae < 1); and a set of attributes
A (linkage attributes) that are used to link the
records.

2. Alice and Bob each stores the values of their link-
age attributes in a list, S and SB, respectively,
for each of the records in their databases.

3. For every attribute string s in S, Alice performs
the following steps:

(a) Alice converts string s into a set of g-grams.

(b) Alice converts these g¢-gram sets into a

Bloom filter b (of that record) of length
[ using the hash functions h; ... hg. All the
attributes of a record are mapped to one
single Bloom filter.

4. Alice also counts for each Bloom filter the num-
ber of bit positions that are set to 1 (1-bits), 24,
and stores this number along with the identifier
of the record into its list O?, as is illustrated in
Figure 2 for the example Bloom filters.

5. For every attribute string s in SB, Bob performs
steps 3 and 4.

3.2 Length Filtering Phase

The second phase of our protocol aims to remove non-
matching record pairs using a length filtering method
on the Bloom filters. At the end of this phase, candi-
date record pairs are generated with their correspond-
ing value for the minimum number of common 1-bits
they require (¢min) to be classified as a match. We
use the Dice-coefficient (Equation 1) as the similar-
ity function sim(-,-) to compare two Bloom filters,
as it is insensitive to many zeros in Bloom filters.
However, any g-gram based similarity function can
be used (Christen 2012). Algorithm 1 shows the main
steps involved in this phase.



Alice’s Bloom Filters

ReclD Bloom Filters Num 1s (x4
RAL 6
RA2 3
RA3 6
RA4 [i[1[o[ol1fo[1[1]0[0] 5

Bob’s Bloom Filters

ReclD Bloom Filters Num 1s (x®)
RB1 7
RB2 7
RB3 s

Figure 2: Example Bloom filters held by Alice and Bob for the records in their databases (D4) and (D),
respectively, and the number of 1-bits in each of the Bloom filers.

Record Pairs

A B x* x® Length Filter A B x* x° Cni
RA1 RB1 6 7 (16-7| <= 6/2) Yes RA1 RB1 6 7 6
RAL RB2 6 7 (16=7| <= 6/2) Yes RAL RB2 6 7 6
RAL RB3 6 5 (16-5| <= 6/2) Yes RAL RB3 6 5 5
RA2 RB1 3 7 (13-7] <=3/2) No RA3 RB1 6 7 6
RA2 RB2 3 7 (I13-7] <= 3/2) No RA3 RB2 6 7 6
RA2 RB3 3 5 (I3-5| <=3/2) No RA3 RB3 6 5 5
RA3 RB1 6 7 (16-7| <= 6/2) Yes RA4 RB1 5 7 5
RA3 RB2 6 7 (16-7| <= 6/2) Yes RA4 RB2 5 7 5
RA3 RB3 6 5 (16-5| <= 5/2) Yes RA4 RB3 5 5 4
RA4 RB1 5 7 (I5-7| <= 5/2) Yes
RA4 RB2 5 7 (I5-7] <= 5/2) Yes
RA4 RB3 5 5 (I5-5| <= 5/2) Yes

Candidate Record Pairs

Figure 3: Pruning record pairs that are non-matches (length filtering) according to the number of 1-bits, z®
and z°, using Equation 2 (left), and candidate record pairs after the length filtering phase, with the minimum

number of common 1-bits required to be classified as a match, ¢pin, according to the values of z# and zB,
calculated using Equation 3 (right). s; is set to 0.8. The minimum value of all ¢pin, Mmin(cmin), is 4 which

will be used as the value for r1 in the first iteration (i = 1).

Algorithm 1: Length Filtering

Input:

- OA: List of record IDs and num of 1-bits (r,z*) from Alice
- OB: List of record IDs and num of 1-bits (rZ,25) from Bob

- Minimum similarity threshold s¢
Output:

- List of candidate record pairs with their minimum number of
common 1-bits required (¢pmin): C

1: C =]
2: for (r,2%) € OA do

3
4
5:
6:
7.
8
9

i 0%
for (rB,2B) € OB do
L : A . B
Tmin = min(zir, x.”)
d= |J1f\ — xf‘\
d _ 2Tymin(1—s¢)
mar — St
if d < dpmax then
Cmin = LSt(z‘iA+z?)

2
Append ([T;A7$;AL [rti x'LB]7 cmin) to C

1. Alice and Bob exchange the number of 1-bits

in each of their Bloom filters along with their
record identifiers or randomly generated unique
ID numbers (lists O* and OB, respectively).
They then generate all the record pairs (|[DA| x
|D4] if no blocking function is applied, see Sec-
tion 4 for how this can be improved) along with
the number of 1-bits as is illustrated in Figure 3.

. The difference between the number of 1-bits in

two Bloom filters d = |4 — 2P|, should be less
than the maximum bit difference d,,q., in order
to consider the pair as a possible match. Assume
x4 < 2P and all the bit positions set to 1 in b4
are also set to 1 in b8 (¢ = z#). This assumption
gives the lower bound of the similarity coefficient
and the upper bound of bit difference d, ;4. The
value for d,,q, can be calculated given the mini-
mum similarity coefficient threshold s; and num-
ber of 1-bits in the Bloom filters, z# and zZ, as
shown in Equation 2.

All the pairs that have a larger 1-bit difference
than d,,, can be removed without proceeding

further since they cannot be matches.

2c
. A 1By __
sim(b”,b%) = A B > St
2min(z4, 28) S
s
min(z4, z8) + (min(z4, 28) +d) ~—
224 <
_ s
A +zAi4+d — 7
A1 —
dg 2x (1 St)
St
2z4(1 —
dmaz:M- (2)
St

In order to classify a record pair as a match
(similarity value above the threshold value s;),
the record pair must have less than or equal
to dynae number of differences between 1-bits in
their Bloom filters. Alice and Bob store only the
record pairs that have |24 — 28| < d,a0, as is
illustrated in Figure 3.

For example, if s; is set to 0.8, then the differ-
ence between 1-bits in two Bloom filters must
be at maximum half the value of the smaller
value for the 1-bits in the two Bloom filters
(0.5 x min(z, 2B)) in order to be classified as a

match, following sz’m(bA,bB) > 0.8 = 25 >

A B
o ey

A
8 2x]
10 >

.5 N 8 A
:>$f+(${,+d)_w:d§0.5x1.

. Alice and Bob now calculate the minimum num-

ber of common 1-bits required for a record pair
to be classified as a match, ¢, for each pair
of the remaining candidate records, as is illus-
trated in Figure 3. This is calculated for each
pair using the values for 24, ¥ and s; as shown
in Equation 3, where |- | denotes the rounding to
the next lowest integer value. The resulting can-

didate record pairs with the values for z4, 22,
and ¢,,;, are stored in the Candidates Index data

structure, C, which will be used as an input to



the next phase of the protocol, the iterative clas-
sification phase.

2c
. A
sim(b?,b5) = mzst
QCmin
GA B
A B
se(x? + aP)
o = S

3.3 Iterative Classification Phase

The main task of a record linkage process is the
classification of record pairs (Christen 2012). The
iterative classification phase is where we classify
record pairs into matches, non-matches, and possi-
ble matches. This classification needs to be done in
such a way that no information about the values that
were mapped into Bloom filters is being revealed to
the two database owners.

Alice and Bob are prepared to reveal (I — ryaz)
bit positions to each other in an iterative way with-
out compromising the sensitive values in their Bloom
filters. The number of bits to be revealed in each it-
eration, r;, is a crucial parameter to be set as it pro-
vides a trade-off between privacy and computational
efficiency of the protocol. There are two possible ex-
treme cases.

1. Revealing all the (I — ryq,) bits in one itera-
tion, which is very fast but is not secure since
the bit positions are revealed for all the Bloom
filter pairs including non-matches as well.

2. Revealing the (I — rmaz) bits in (I — rmae) it-
erations where only 1 bit position is revealed in
each iteration. This would be the best case for
preserving privacy as it removes the non-matches
in an iterative way before revealing the rest of
the bit positions. This approach is however not
scalable to large databases, especially with long
Bloom filters, as each iteration requires commu-
nication between the database owners.

Hence, a method to reveal an optimal number of
bits, r;, in each iteration is required. We propose a
method to calculate this optimal number by finding
the smallest value of the minimum number of addi-
tional common 1-bits required to classify a pair as a
match in each iteration among all the record pairs.
The record pair that requires the smallest number of
additional common 1-bits among all the other pairs
has a security risk if more bit positions are revealed
than the minimum number of common 1-bits it re-
quires.

Assume ¢; is the total number of common 1-bits
revealed so far up to iteration i. The value for
min(cmin — ci—1) (¢ > 0) is calculated to be used

as the value for r; in the i*" iteration. For example,
in the first iteration (i = 1), min(cmin) (co = 0) will
be used as the value for the number of bit positions
to be revealed, r1. After r; bit positions are revealed
in the first iteration, the value for (¢ — c1) will be
calculated for each of the remaining record pairs to
calculate the value for ro = min(c¢pin —c1) in the sec-
ond iteration, and then min(cmi, — c2) will be used
as the value for r3 in the third iteration, and so on.
The iterative classification phase is done as follows
(Algorithm 2 provides an overview of these steps):

1. Among all the (¢pin — ¢;i—1) values for all the
unclassified pairs of records, the minimum value,

Algorithm 2: Iterative Classification Phase

Input:

- C: Candidate record pairs from length filtering phase
Output:

- M: Set of record pairs classified as matches

- N: Set of record pairs classified as non-matches

- P: Set of record pairs classified as possible matches

M=, N=[,P=C
2: while P # [] do
3: 1=1t=0
4:  while r < rpqz do
5: ri = main(Cmin — Ci—1)
6: t=t+r;
7: for (b4,bP) € P do
8: A = num_1-bits_in_b4
9: B = num_1-bits_in_bB
10: Cmin = num_common_1-bits_in_b4_and_bB
11: reveal_bits(r)
12: z? = total_num_1-bits_revealed_in_b?
13: x7 = total_num_1-bits_revealed_in_b5
14: ¢; = total_num_common_1-bits_revealed_in_b4 _and_b5B
15: if ¢; > cmin then // Case C1
16: Append (b4,b5) to M
17: Delete (b4,b5) from P
18: else if ¢; < ¢min and (¢min —¢;) > (I —t) then // C2
19: Append (b4,b5) to N
20: Delete (b4,bB) from P
21: else if ¢; < ¢min and (cmin —¢;) < (I —t) then // C8
22: if ((z4 — 2') < (cmin — ;) or
((@f — 2P) < (¢min — ¢i)) then // C4
23: Append (b4,b5) to N
24: Delete (b4, b5) from P

25: i=1+1
26: for (b4,bP) € P do
27: Do_rehash()

min(cmin — ¢i—1), is taken as the lower bound of
the number of bits to be revealed in the next
iteration. Alice and Bob both will exchange
r; = min(Cmin — ci—1) same bit positions from
each of their Bloom filters. For example, if
r1 = min(Cmin — co) = Min(Cmin) = 4, then the
first 4 bit positions are exchanged in the first it-
eration, as shown in Figure 4. The total number
of bit positions revealed so far up to an iteration
Pisti =Y, 1.

From the exchange of t; bit positions, three pos-
sible cases can occur with each record pair.

e Case 1 (C1 in Algorithm 2): Record pairs
which have ¢;,,;, or more than ¢,,;, out of ¢;
bit positions in both Bloom filters (b and
bB) set to 1 (¢; > cmin). These pairs are
classified as matches.

e Case 2 (C2 in Algorithm 2): Record pairs
which have some or none of the ¢; bit posi-
tions set to 1 in both Bloom filters b and
b® (¢; < cmin) and the number of addi-
tional common 1-bits required (¢pmin — ¢;)
is greater than the number of remaining
unrevealed bit positions (¢; < ¢min and
(Cmin —¢i) > (I —1;)). These pairs are clas-
sified as non-matches.

e Case 3 (C3 in Algorithm 2): Record pairs
which have some or none of the t; bit posi-
tions set to 1 in both Bloom filters b4 and
b5 (¢; < cmin) and the number of addi-
tional common 1-bits required (¢min — ¢;)
is less than or equal to the number of re-
maining unrevealed bit positions (¢; < ¢min
and (¢min — ¢;) < (I —t;)). These record
pairs are classified as possible matches.



Candidate Record Pairs — Iteration 1

A B Cnin Alice’s BF Bob's BF Cmin~ C1 XA = | xB =8 Class
RAL1(6) | RBL(7) 6 [T 22T a DX | [l 2l a1 XXX 2 RA1(2) | RB1(3) |Pos Match
RAL(6) | RB2(7) 6 RSOOSR RRRECCCS 2 RA1(2) | RB2(3) |Pos Match
RA1(6) | RB3(5) 5 (A2 1 1<K | (A o] XXX 2 RAL(2) | RB3(2) |Pos Match
RA3(6) | RB1(7) 6 O 1 IXEIA | [ 1] 1 XK 3 RA3(3) | RB1(3) |Pos Match
RA3(6) | RB2() | 6 | [o[ali[1DIDARIN | [AA[AADIRIN] | 3 RA3(3) | RB2(3) |Pos Match
RA3(6) | RB3(5) 5 o[ 2] 1 AKX | [A] 2] o] 1 XXX 3 RA3(3) | RB3(2) | Non Match
RA4(5) | RBL(7) 5 [2[ 1] o] o<XIXIIK | [A] [ 1] XXX 3 RA4(3) | RB1(3) |Pos Match
RA4(5) | RB2(7) 5 (A1 o[ oOXIIIA | [ 1] 1 1K) 3 RA4(3) | RB2(3) |Pos Match
RA4(5) | RB3(5) 4 [1[ 1] o] oI | [A] 2] o] 1 XXX 2 RA4(3) | RB3(2) |Pos Match

Figure 4: Bloom Filters of Alice and Bob with ¢; = 4 (r1 = min(cmin) = 4) bits revealed after the first iteration.
The calculated values for ¢; are used to calculate the value for r5 for the next iteration, ro = min(cpin—c1) = 2.

Candidate Record Pairs — Iteration 2

A B Cmin~ C1 Alice's BF Bob's BF Cmin~ C2 = b x% x3 Class
RAL(2) | RB1(3) 2 (AT a2 2] o[ 1 XXX | [a]al 2] 1] o] 1 XIXIXTX] 1 RA1(1) | RB1(2) |Pos Match
RAL() | RB2(3) 2| [E[a[a[a[o[1XIXIXIK | [A[a[2[2[o][ 1<K 1 RAL(1) | RB2(2) |Pos Match
RALR) | RB3() | 2 | [A[a[a[2[o[1[XXIXIX| | [Z[2[0] 1] 0<IXIXIK] 2 RAL(1) | RB2(1) | Non Match
RA3(3) | RB1(3) 3 (o[22 1] o] il<IXIXIX | [Ala[ 2] 1] o[ 1 XIXI<IX) 2 RA3(2) | RB1(2) |Pos Match
RAS() | RB2(3) s Lol ala[ ol PP | [A[A[2[1[ o[ 1PXPLIXIK] 2 RA3(2) | RB2(2) | Pos Match
RA43) | RB1(3) 3 | [a[afo[o[1[oXIXIXIX | [A[A[2[2[0] 1<K 3 RA4(2) | RB1(2) | Non Match
RA4(3) RB2(3) 3 [(ATa] o] o[ [ oXIXDXIX] | [aalal1] o] iXIXIXIX] 3 RA4(2) RB2(2) Non Match
RA4(3) | RB3(2) 2 [2[2] 0] o] L[ o<IXIXIX | [A] 2] o] 1] 1] o[ XXX 1 RA4(2) | RB3(1) |Pos Match

Figure 5: Bloom Filters of Alice and Bob with t3 = 6 (r2 = 2) bits revealed after
calculated values for ¢o are used to calculate the value for r3 for the next iteration,

Candidate Record Pairs — lteration 3

the second iteration. The
r3 = Min(Cmin

A B Cmin~ C2 Alice’s BF Bob's BF Cmin~ C3 xA x4 x% x5 Class
RAL(1) | RB1(2) 1 [aTalaTalolaloXDXX] | [ala[alafo[2[olXDXX] 1 RA1(1) | RB1(2) |Pos Match
RAL(1) | RB2(2) 1 (]2 1] 1] o] 1 oIXIXIX | [A[a[ ][ o[ [ 1[XXIX] 1 RA1(1) | RB2(1) |Pos Match
RA3(2) | RB1(2) 2 o[a[a[ 1] o[ 11X | [Z[a[1[1[ o] 1] o[ XXX 2 RA3(1) | RB1(2) |Pos Match
RA3(2) | RB2(2) 2 [ola[afafo[1[ 1D | [a[afa[afo[1[1XIXIX] 1 RA3(1) | RB2(1) |Pos Match
RA4(2) | RB3(1) 1 [2[1] o] o] 1] o] ilXIXIX] | [A[a[ o] 1] 1] o] 1[XIXIX] o} RA4(1) | RB3(0) Match

—Cg) =1.

Figure 6: Bloom Filters of Alice and Bob with t3 = 7 (r3 = 1) bits revealed after the third iteration. The

calculated values for c3 are used to calculate the value for r4 for the next iteration, r4 = min(cmin —

Candidate Record Pairs — Iteration 4

A B Cmin~ C3 Alice’s BF Bob’s BF Cmin~ Ca X2 x4 x% xz Class
RAL(1) | RB1(2) 1 [alalafaJolafo[al<XDX | [a]afla]aJo]1[o[1[XX] 0 RA1(0) | RB1(1) Match
RAL(1) | RB2(1) 1 [A[a[1[1] o]l ol iXIX] | [A[a[1[1[o[1[1[o[X[X] 1 RA1(0) | RB2(1) | Non Match
RA3(1) RB1(2) 2 [o[afafaJola[a[ol<X] | [a]a[al1]o[1[0[1[XX] 2 RA3(1) RB1(1) Non Match
RA3(1) | RB2(1) 1 [o[i[a[1]o[1[ 1] o< | [Z[x[1[1[o] 1] 1[o[XX] 1 RA3(1) | RB2(1) |Pos Match

63) = 1.

Figure 7: Bloom Filters of Alice and Bob with t4 = 8 (r4 = 1) bits revealed after the fourth iteration. The
pair that is still classified as possible match will need to be re-processed with different hash functions.

2. After having t; bit positions revealed in iteration

(Cmin

—c¢;) is 3 which means at least 3 more com-

i, all the pairs that are classified as matches and
non-matches (cases C1 and C2) can be removed
from the set of candidate record pairs C. Only
pairs that are classified as possible matches (case
C3) will be taken to the next iteration.

Based on the revealed bit positions, Alice and
Bob calculate the new values for ¢;, z7', and z?.

Moreover, the values for ! and zP can also 3
be used to prune more non-matches from the
pairs of records that were classified as possible
matches. Record pairs which have (¢pin — ¢;) <
(2 — 28) or (cmin — ;) < (2B — 2P) can be 4

classified as non-matches and pruned (case C4
in Algorithm 2). For example, if 2 more 1-bits
are left unrevealed in b? (28 — 2P = 2) after re-
vealing 4 bit positions in the first iteration, and

mon 1-bits are required for the record pair to be
classified as a match from only 2 1-bits in b”
(which is impossible), then this record pair can
be removed at this iteration without taking into
the next iteration and revealing more bits for this
non-matching pair. Record pair RA3 and RB3 in
Figure 4 is such a case.

. For the pairs that are classified as possible

matches (case 3), Alice and Bob repeat the steps
until 7,4, bit positions are exchanged in an iter-
ative method (7,42 is set to 8 in our example).

The record pairs that are still classified as pos-
sible matches in the last step, after r,,q. bit po-
sitions have been revealed, need to be re-hashed
into new Bloom filters with different hash func-
tions k (lines 26 and 27 in Algorithm 2).



3.4 Computational Complexity

Assuming the number of candidate record pairs is n,
the average number of g-grams in each record is @,
the number of hash functions used to map g-grams
into a Bloom filter is k, and the length of Bloom fil-
ters is [, then the computation cost of this protocol is
O(n*Qxk) hash operations and O((nxl)?) bit compar-
isons, while the communication cost is O(n * ). The
communication complexity of this protocol is there-
fore linear in the size of the databases.

4 TImproving Efficiency

In the length filtering phase, we remove record pairs
that have a difference between the number of 1-bits
larger than a certain value, depending on the mini-
mum similarity threshold value s; before starting the
iterations as explained in Section 3.2. This reduces
the number of candidate record pairs to be processed
in the iterative classification phase.

Indexing techniques (Christen 2011) can be ap-
plied before performing the linkage based on phonetic
encodings (Christen 2012) such that similar records
are grouped together. This further reduces the num-
ber of candidate record pairs, because only the record
pairs that are in the same blocks will be considered as
candidate record pairs. Alice and Bob each indepen-
dently applies an indexing function to their databases
and groups records that have the same blocking key
value (Christen 2012). The indexing function, for
example, can be applied on another set of quasi-
identifier attributes or part of the linkage attributes.
Secure set intersection protocols (Agrawal et al. 2003,
Kissner & Song 2004) can be used to securely identify
the list of common blocks in both databases (Vatsalan
et al. 2011).

Locality sensitive hashing (LSH) can also be ap-
plied to reduce the number of candidate record
pairs (Gionis et al. 1999). The LSH method originally
addresses the approximate nearest neighbor problem
by hashing values such that similar records are put
into the same buckets with high probability. Secure
set intersection or binning (Vatsalan et al. 2011) can
then be used to find the list of common blocks in both
databases.

The iterative pruning of candidate record pairs
using Bloom filters allows removing pairs that have
higher probability of being non-matches before ex-
changing more bit positions. The aim of our iterative
method is to prune the record pairs that are classi-
fied as non-matches and matches and thereby reduce
the number of pairs of possible matches in each it-
eration as much as possible. We proposed to reveal
min(¢min — ¢i—1) number of bits in each iteration.
Experiments conducted on a real-world database (see
Section 6) show that though many bits are being re-
vealed in the first few iterations, only a very few bits
are being revealed in the later iterations which takes
many iterations to run and thus makes the process
not scalable to large databases.

To overcome this problem, we propose a method
for revealing more bits when the number of bits to
be revealed becomes very small, without compromis-
ing privacy. Assume r; bits have been revealed in
iteration ¢, among which ¢; number of common 1-bits
have been found in a record pair which needs ¢, —¢;
more common 1-bits in both Bloom filters in order to
classify the pair as a match. If ¢, — ¢; is very small
and we still can classify the pair as a match even if no
more common 1-bits are found in the later iterations,
then this pair will not be at a security risk if more bits

are revealed in the next iteration, because it has al-
ready been considered as a match. The question now
arises what is the maximum value for ¢,,on, = Crmin —Ci
that can be ignored to classify the pairs as matches
without accuracy loss. We introduce another similar-
ity threshold value, s,, to calculate the value for the
minimum number of bits that can be revealed for each
pair in an iteration, r,,;,, as shown in Equation 4.
This basically expands the calculation of value r; in
step 5 of Algorithm 2 as below. Among the values for
Cnon for all the pairs, the smallest value is taken to
be used as the value for the minimum number of bits
that can be revealed in all the pairs of Bloom filters
in an iteration, rym = Min(Cnon)-

. 2(Cnon)
St — Sy = 7;&’4 T [L‘B
Tmin = min(cnon)
ri = min(ri, Tmin) (4)

If r; becomes less than r,,;, in an iteration, es-
pecially in later iterations, then r,,;, bits will be re-
vealed. It is important to note that the similarity
threshold to reveal, s, is only used to calculate the
value for 7,,;, while the similarity threshold s; is used
to classify the pairs. This approach reduces the com-
plexity of the protocol significantly without compro-
mising the privacy of the non-matched record pairs.
This is empirically evaluated in Section 6.

5 Privacy Analysis

The amount of privacy provided by this protocol de-
pends on the number of hash functions used (k) and
the length of the Bloom filter (1) (Schnell et al. 2009,
Kuzu et al. 2011). The values for k and [ have to
be carefully chosen as these values provide a trade-
off between accuracy of the classification and privacy.
The higher the value for k/I, the higher the privacy
and the lower the accuracy, because the number of
g-grams mapped to one single bit increases, which
results in less accurate linkage results but makes it
harder for an attacker to infer the possible combina-
tions.

Assume the minimum number of bits required
to perform a dictionary attack using an external
database to infer a bit pattern is t,. The privacy
characteristics provided by our protocol are:

1. More bits are revealed for pairs that are more
likely to be matches (Figure 16).

2. Non-matching record pairs are removed in the
earlier iterations when only a small number of
bits have been revealed (¢; < t,), which therefore
cannot be used to infer records using a dictionary
attack (Figures 13 and 16).

3. When a sufficient number of bits ¢, are revealed
for a dictionary attack (iteration ¢), the remain-
ing unclassified pairs have a minimum similarity
that is close enough (sim,n(C;) = s:) to be
considered as matches (Figures 13 and 14).

Pruning candidate record pairs that have higher
probability of being classified as non-matches at early
iterations improves the privacy of the protocol, since
the non-matches are removed without revealing more
bits in the next iterations. We evaluate the probabil-
ity of a dictionary attack when different percentage
of bits are revealed (see Section 6). We expect the
probability to increase with the percentage of bits
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Figure 8: Maximum number of random bits z,4, that
can be added against the minimum lower bound s; of
the similarity threshold value, with s; = 0.8.

revealed, as the more bits revealed the smaller the
number of possible attribute values one could infer,
having access to an external data source (such as a
large telephone directory) containing most possible
attribute values, which results in a reduced security
of the protocol. Hence, only the pairs that have a
higher possibility of becoming matches are having a
higher probability of a dictionary attack when the
percentage of revealed bits increases. Since we hash-
map several attribute values from each record into one
combined Bloom filter, it is harder for an attacker to
infer individual attribute values that correspond to a
revealed bit pattern (Durham 2012).

The security parameter which is the maximum
number of bits to be revealed in the Bloom filters 7,44
is agreed upon by the two database owners. This de-
termines the privacy of the protocol. A larger value
of rpar results in less privacy but more record pairs
being classified, while a smaller value allows only a
smaller number of pairs being classified with higher
privacy.

Depending on the data and the distribution of 1-
bit patterns, another security issue to be considered
with our protocol is that revealing some bits (that
have comparatively high sensitive information due to
a small number of g-grams that are mapped to those
bits) are susceptible to dictionary attacks. We pro-
pose two methods for overcoming the problem of re-
vealing the rare bits in Bloom filters that can be at-
tacked with higher probability.

1. Adding random bits: Random bits can
be added to Bloom filters individually by the
database owners in the preparation phase in or-
der to perturb the dataset. The question is how
many random bits need to be added to increase
the security without compromising accuracy and
complexity. When adding random bits three
cases can occur. One is when the bits added by
the two database owners lead to the same number
of additional matching 1-bits at the same posi-
tions (common 1-bits) which results in almost the
same similarity value. The second case is where
some of the added bits are matching and thus the
number of additional common 1-bits introduced
by the addition of random bits is less than the
number of random bits added by the database
owners. The third case occurs where the added
bits do not match with any bit positions and thus
no additional common 1-bits are introduced by
adding random bits.
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Figure 9: Bit distribution in Bloom filters. Numbers
shown are mean values and the error bars are stan-
dard deviations.

In both the second and third cases, the new sim-
ilarity value decreases because of the random
bits. However, the third case is the worst case
and needs to be considered in determining the
similarity threshold value. The database own-
ers must agree on a minimum acceptable lower
bound of the similarity threshold, s;, with s; <
s¢. If the values for x4, . xB. s and s; are
known, then the maximum number of random
bits that can be added by the database owners,
Zmaz, can be estimated using Equation 5.

2 X Cmin
S = —/——
2 X Cmin

S =

(‘rfr‘nn + Zmaz) + (xfnn + zmaz)
s = St X (zfr‘nn + xfnn)

(‘r;?un + Zmaz) + (‘Tﬁun + zmaz)

_ (St B Sl) X (x;ér‘nn + ‘/L"r]fnn)
Zmaxr = (5)
2 x S1

Figure 8 shows the maximum number of random
bits (Zmasz) that can be individually added to
each Bloom filter by the database owners to per-
turb the bit distribution in Bloom filters against
the minimum similarity threshold value that is
acceptable without much accuracy loss in the
classification results. The maximum number of
random bits linearly increases when the mini-
mum similarity threshold decreases.

2. Simulation attack: The database owners can
individually simulate the protocol and attack
their own databases before exchanging the val-
ues in order to identify if there exist any bits that
map only to a small number of g-grams. Based
on that, they can either change the values for
k, I, and g, or they can agree on an appropri-
ate value for the security parameter r,,4.. The
bit distribution in Bloom filters in a real-world
Australian online telephone database with 17,294
records shows that an average of 22 ¢g-grams and
a minimum of 14 g-grams are mapped to one sin-
gle bit when k = 30, ¢ = 2 and [ = 1000 (as
shown in Figure 9). As can be seen from this
figure, the number of g-grams mapped to one bit
decreases with [ while increasing with k.
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both database owners over all variations of each dataset. The error bars shown are the standard deviations.
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Figure 11: Total number of bits revealed at each iteration without s, (left plot) and after introducing s, (right
plot). The values for the similarity thresholds were set as s; = 0.8 and s, = 0.77.

Table 2: The number of records in the datasets used
for experiments, and the number of records that over-
lap (i.e. occur in both datasets of a pair). This is
considered as the number of true matches.

Dataset sizes 25% overlap 50% overlap 75% overlap

1730 / 1730 446 897 1310
17,290 / 17,290 4365 8611 12,973
172,938 / 172,938 42,980 86,363 129,542
1,729,379 / 1,729,379 432,538 86,487 1,297,029

6 Experimental Evaluation

We conducted experiments using a real Australian
telephone directory database containing 6,917,514
records. We extracted four attributes commonly used
for record linkage: Given name (with 78,336 unique
values), Surname (with 404,651 unique values), Sub-
urb (town) name (13,109 unique values), and Post-
code (2,632 unique values). To generate datasets of
different sizes, we sampled 0.1%, 1%, 10% and 100%
of records in the full database twice each, and stored
them into a pair of files such that 25%, 50% or 75%
of records appeared in both files of a pair. Table 2
provides an overview of the datasets generated.

The record pairs that occur in both datasets are
exact matches (these datasets are labelled as ‘No-
mod’ in the results figures). To investigate the per-
formance of our protocol in the context of ‘dirty data’
(where attribute values contain errors and variations),
we generated another series of datasets (labelled as
‘Mod’) where we modified each attribute value by
applying two randomly selected character edit op-

erations (insert, delete, substitute or transposition).
This leads to a much reduced number of exact match-
ing record pairs and allows us to evaluate the accuracy
of approximate matching of our protocol.

Following previous work (Schnell et al. 2009), we
set the values for the Bloom filter parameters as [ =
1000, £ = 30, and ¢ = 2. The minimum similarity
threshold to classify was set to s; = 0.8 and threshold
to reveal bits was set to s, = 0.77. All four attributes
were used as the linkage attributes.

We prototyped the protocol using the Python pro-
gramming language (version 2.7.1). We also imple-
mented an attacker program to evaluate the privacy
characteristics of this protocol. We used the attribute
values in the full Australian telephone directory as the
attacker’s reference set of values, and we calculated
the probability of a dictionary attack as the number
of unique possible values that can be inferred with
the bits revealed for every bit pattern in a dataset.

All tests were run on an otherwise idle computer
with a 64 bit Intel Xeon (2.4 GHz), 128 GBytes of
main memory and running Ubuntu 11.04. The proto-
type and test datasets are available from the authors.

6.1 Scalability

Figure 10 shows the scalability of our protocol. Com-
putation complexity is assessed as the total run time
and memory usage required for the linkage. All vari-
ations of the datasets were used. The results of both
the exact and the approximate matching (‘No-mod’
and ‘Mod’) are shown in the figures. The result fig-
ures exhibit a linear complexity trend in the size of
the databases which makes the protocol scalable to
large databases.



As discussed in Section 4, the number of bits re-
vealed in the later iterations is very small and there-
fore it takes more iterations to classify the record
pairs (see the left plot in Figure 11). With the pro-
posed method of using a second similarity threshold,
s = 0.77, this has been significantly improved, as
shown in the right plot in Figure 11. The total num-
ber of iterations required to classify all the record
pairs is reduced 6-fold (from 300 to 50 iterations for
the largest dataset) with the proposed approach using
a second threshold s, = 0.77.

The reduction ratio (Christen 2012) of record pairs
with unknown match status after classifying record
pairs as ‘matches’ and ‘non-matches’ at each itera-
tion is shown in Figure 12. As can be seen from the
figure, the protocol shows a high increment rate in
the reduction ratio after the first few iterations.
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Figure 12: Reduction ratio (Christen 2012) of possi-
ble matches at each iteration, using different dataset
sizes.

6.2 Privacy

The privacy characteristics of this protocol (as dis-
cussed in Section 5) are empirically evaluated in this
section assuming that an adversary has access to an
external database. The empirical evaluation of proba-
bility of a dictionary attack on a dataset consisting of
17,294 records using a public Australian telephone di-
rectory as an external database is shown in Figure 13.
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Figure 13: Probability of a dictionary attack from
bits revealed (dataset with 17,294 records, reference
dataset Australian telephone directory).

This study practically validates that the probabil-
ity of a dictionary attack increases with the number
of bits revealed, and the minimum probability of an
attack becomes greater than 0.05 (i.e. the number

of values that can be inferred becomes less than 20)
only after 800 bits being revealed. When 800 bits are
revealed, most of the non-matching record pairs have
already been removed (as can be seen from Figure 16),
and the minimum similarity value of the remaining
record pairs is nearly 0.7 (illustrated in Figure 14),
which assures that the privacy of non-matches with
similarity below 0.6 is not compromised with this it-
erative pruning approach.
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Figure 14: Minimum similarity value of unclassified
record pairs at each iteration.

The results of this empirical evaluation of a dictio-
nary attack validates that the privacy of the records
corresponding to non-matches is not compromised by
this iterative classification approach. The value for
security parameter r,,q, can be set after conducting
such a simulation attack as described above. For ex-
ample, in this setting 7,4, can be agreed upon by the
database owners to be set as 800.

6.3 Linkage quality

As can be seen from Figure 16, many non-matches are
being classified in the first few iterations and then
matches are classified more towards the middle to
last iterations. The overall reduction ratio (Chris-
ten 2012) of candidate record pairs is thus high (Fig-
ure 12), while the recall ratio of matches being clas-
sified is also high (Figure 15).

The recall ratio is almost 1.0 for the datasets with
no modifications (‘No-mod’). It is higher (nearly 0.8)
with modified datasets as well (a total of 8 edits per
record that results in almost 50% modifications in the
corresponding g-grams), which explains the aspect of
fault-tolerance to data errors by performing approxi-
mate matching.
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Figure 15: Recall of matches at each iteration, using
different dataset sizes.
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Figure 16: (a) Total number of record pairs classified as matches, (b) non-matches, (¢) possible matches, and
(d) number of record pairs classified as matches and (e) non-matches at each iteration.

The results of this empirical study validate that
this parametric solution performs well by addressing
the three main challenges of PPRL which are scalabil-
ity, privacy, and linkage quality in the current param-
eter settings. The values for the Bloom filter related
parameters [, k, and ¢ play a major role in deter-
mining the balancing of these three factors as they
provide a trade-off among the three factors.

7 Conclusion

In this paper we proposed a practical two-party proto-
col for privacy-preserving record linkage by address-
ing the three main challenges, which are scalability
to large databases, high linkage quality results, and
sufficient privacy characteristics. With the appropri-
ate determination of values for the parameters, the
experimental studies on a real-world database show
that our proposed two-party PPRL protocol can per-
form efficient linkage with high linkage quality while
providing adequate privacy characteristics.

In future work, we aim to find the best optimal
values for the parameters by theoretically modelling
the privacy, accuracy, and complexity of the protocol
with different parameter values. Comparing our pro-
tocol with other two-party protocols in terms of the
three factors is also an interesting research avenue.
Another direction would be to study how effectively
parallelism can be applied into this protocol.

Learning the values of the parameters such that
all three main factors of PPRL are balanced will al-
low this protocol to be employed in real-world PPRL
applications.
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