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Abstract

linking or matching databases is becoming increasingly
important in many data mining projects, as linked data can
contain information that is not available otherwise, or that
would be too expensive to collect. a main challenge when
linking large databases is the complexity of the linkage pro-
cess: potentially each record in one database has to be
compared with all records in the other database. various
techniques, collectively know as ‘blocking’, have been de-
veloped to deal with this quadratic complexity. most of these
techniques require several parameters to be set by the user
in order to achieve good results. in this paper we evaluate
six blocking techniques within a common framework with
regard to the number and quality of the candidate record
pairs generated. we propose a modification to two existing
techniques that reduces the variance in the quality of the
blocking results over a range of parameter values, enabling
more robust, practical record linkage without the need of
time consuming manual parameter tuning.

1 Introduction

With many businesses, government agencies and re-
search projects collecting massive amounts of data, tech-
niques that allow efficient processing, analysing and min-
ing of large databases have in recent years attracted interest
from both academia and industry. An increasingly impor-
tant task in the data preparation phase of many data min-
ing projects is linking or matching records relating to the
same entity from several databases, as often information
from multiple sources needs to be integrated and combined
in order to enrich data and allow more detailed data mining
studies. The aim of such linkages is to match and aggregate
all records relating to the same entity, such as a patient, a
customer, a business, a consumer product, a bibliographic
citation, or a genome sequence.

Record or data linkage can be used to improve data
quality and integrity [23], to allow re-use of existing data

sources for new studies, and to reduce costs and efforts in
data acquisition. In the health sector, for example, linked
data might contain information that is needed to improve
health policies [19], and which traditionally has been col-
lected with time consuming and expensive survey methods.
Statistical agencies routinely link census data for further
analysis [15, 25], while businesses often deduplicate their
databases to compile mailing lists or link them for collab-
orative e-Commerce projects. Within taxation offices and
departments of social security, record linkage is used to
identify people who register for assistance multiple times
or who work and collect unemployment benefits. Another
application of current interest is the use of record linkagein
crime and terror detection. Security agencies and crime in-
vestigators increasingly rely on the ability to quickly access
files for a particular individual, which may help to prevent
crimes and terror by early intervention.

The problem of finding similar entities not only applies
to records that refer to persons. In bioinformatics, record
linkage can help find genome sequences in large data collec-
tions that are similar to a new, unknown sequence at hand.
Increasingly important is the removal of duplicates in the
results returned by Web search engines and automatic text
indexing systems, where copies of documents (such as bib-
liographic citations) have to be identified and filtered out
before being presented to the user. Finding and comparing
consumer products from several online stores is another ap-
plication of growing interest [4]. As product descriptions
are often slightly different, linking them becomes difficult.

If unique entity identifiers (or keys) are available in all
the databases to be linked, then the problem of linking at
the entity level becomes trivial: a simple database join is
all that is required. However, in most cases no unique keys
are shared by all databases, and more sophisticated link-
age techniques need to be applied. These techniques can
be broadly classified into deterministic, probabilistic, and
modern, machine learning based approaches [9, 12, 24].

A general schematic outline of the record linkage pro-
cess is given in Figure 1. As most real-world data collec-
tions contain noisy, incomplete and incorrectly formatted
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Figure 1. General record linkage process.
The output of the blocking step are candi-
date record pairs, while the comparison step
produces vectors with numerical similarity
weights.

information, data cleaning and standardisation are impor-
tant pre-processing steps for successful linkage, but also
before data can be loaded into data warehouses or used for
data mining [22]. A lack of good quality data can be one
of the biggest obstacles to successful record linkage [10].
The main task of data cleaning and standardisation is the
conversion of the raw input data into well defined, consis-
tent forms, as well as the resolution of inconsistencies in the
way information is represented and encoded.

If two databases,A andB, are to be linked, each record
fromA potentially has to be compared with all records from
B. The total number of potential record pair comparisons
thus equals the product of the size of the two databases,
|A| × |B|, with | · | denoting the number of records in
a database. The performance bottleneck in a record link-
age system is usually the expensive detailed comparison of
fields (or attributes) between pairs of records [3, 9], mak-
ing it unfeasible to compare all pairs when the databases
are large. For example, linking two databases with100, 000
records each would result in1010 (ten billion) record pair
comparisons. On the other hand, the maximum possible
number of truly matched record pairs corresponds to the
number of records in the smaller database (assuming there
are no duplicate records in the databases, and one record
in databaseA can only match to one record in databaseB,
and vice versa). Therefore, while the computational efforts
increase quadratically, the number of potential true matches
only increases linearly when linking larger databases.

To reduce the large amount of potential record pair com-
parisons, traditional record linkage techniques [14, 25] em-
ploy blocking[3]: a single record attribute or a combination
of attributes, called theblocking keyor blocking variable, is
used to split the databases into blocks. All records having
the same value in the blocking key will be inserted into one
block, and candidate record pairs are generated only from

records within the same block. While the aim of blocking
is to reduce the number of record pair comparisons made as
much as possible (by eliminating pairs of records that obvi-
ously are not matches), it is important that no true matches
are removed by the blocking process. Two main issues have
to be considered when blocking keys are defined.

• The error characteristics of the attributes used in block-
ing keys will influence the quality of the generated can-
didate record pairs. Ideally, attributes containing the
fewest errors or missing values should be chosen, as
any error in an attribute value in a blocking key will
potentially result in a record being inserted into the
wrong block, thus missing true matches.

• The frequency distribution of the values in the at-
tributes used as blocking keys will affect the size of
the blocks generated. Ifm records are in a block
from databaseA andn records in the same block from
databaseB, thenm× n record pairs will be generated
from this block. The largest blocks will dominate ex-
ecution time of the comparison step, as they will con-
tribute very large numbers of record pairs.

When defining blocking keys, there is also a trade-off
to be considered. Having a large number of smaller blocks
will mean that fewer candidate record pairs will be gener-
ated, but likely result in more true matches being missed;
while blocking keys that result in larger blocks will generate
more record pairs that likely will cover more true matches,
but at the cost of having to compare many more pairs [3].
As discussed in Section 2 below, some blocking techniques
allow the size of blocks to be controlled directly through pa-
rameters, while for other techniques the block sizes depend
mainly upon characteristics of the data.

All the candidate record pairs generated by the blocking
process are compared using a variety of comparison func-
tions applied to one or more (or a combination of) records
attributes. These functions can be as simple as an exact
string or a numerical comparison, can take variations and
typographical errors into account [9, 24], or can be as com-
plex as a distance comparison based on look-up tables of
geographic locations. Each comparison returns a numer-
ical similarity value (calledmatching weight), often pos-
itive for agreeing and negative for disagreeing values. A
vector is formed for each compared record pair containing
all the values calculated by the different comparison func-
tions. These vectors are then used to classify record pairs
into matches, non-matches, andpossible matches(depend-
ing upon the decision model used) [14, 15, 24]. Record
pairs that were removed by the blocking process are classi-
fied as non-matches without being compared explicitly.

Current research into blocking can be categorised into
two areas. The first is developing new, and improving ex-
isting, blocking techniques with the aim of making them



more scalable (i.e. allow linking of very large databases
with many millions of records) while enabling high-quality
linkage results (by generating as many true matches as
possible). Besides the standard blocking approach dis-
cussed above, new techniques recently developed include
the sorted neighbourhood approach [17],q-gram based
blocking [3, 6, 8, 16], high-dimensional overlapping clus-
tering [11, 20], mapping strings into a multi-dimensional
space followed by similarity joins [18], and suffix-array
based blocking [2]. These techniques will be discussed in
Section 2 and evaluated experimentally in Section 3.

The second area of current blocking research is into ap-
proaches that learn how to optimally choose blocking keys.
Traditionally, the choice of blocking keys is made manu-
ally by domain and record linkage experts. Two approaches
based on supervised learning of blocking keys have recently
been presented. They employ predicate-based formulations
of learnable blocking functions [5] and the sequential cover-
ing algorithm which discovers disjunctive sets of rules [21],
respectively. The aim of both approaches is to find blocking
keys such that the number of true matches in the candidate
record pairs is maximised, while keeping the total number
of candidate pairs as small as possible. Both approaches
rely on training examples, i.e. pairs of true matched and
non-matched record pairs, which are often not available in
real world situations, or have to be prepared manually.

Many of the recently developed blocking techniques re-
quire several parameters to be set in order to achieve good
blocking results. Optimal parameter values depend both
upon the data to be linked (such as its error characteris-
tics, distribution of values, etc.) and the choice of attributes
used as blocking keys. The resulting large parameter space
makes it difficult in practise to achieve a good blocking
quality, as time consuming manual parameter tuning is re-
quired. Additionally, in many real world applications, no
truly linked data is available that can be used to validate the
quality of the resulting blocking, as it is not known if the
candidate record pairs generated contain all or many of the
truly matched record pairs. Blocking techniques are there-
fore required that are either robust with the chosen parame-
ters values, or do not require parameters at all (which would
allow automated blocking without user intervention).

1.1 Contributions

We know of only one earlier study [3], similar to the
experiments presented here, that compared three blocking
techniques. In this paper, we compare and evaluate six
blocking techniques and modify two of them with the ob-
jective to make them more robust with regard to parameter
settings. The ultimate aim of our work is to develop block-
ing techniques that do not require extensive parameter tun-
ing, thus making blocking more applicable in practice.

The first contribution of this paper is the experimental
evaluation of traditional, and several more recent, blocking
techniques within a common framework. The second con-
tribution is the modification of two techniques, replacing
global thresholds with nearest neighbour based parameters,
which results in much reduced variance in the quality of
the candidate record pairs generated, and thus improves the
robustness of these blocking techniques to changes in pa-
rameter settings, making them more applicable in practice.

2 Blocking techniques

When linking large databases, blocking is essential in or-
der to make record linkage possible at all, and to improve
the efficiency of the linkage process. Blocking, however,
will reduce the linkage quality [9], as it is very likely that
some true matched record pairs will be removed by the
blocking process, if records are not being inserted into the
correct block (or blocks) due to variations and errors in their
blocking key values. The blocking step from Figure 1 can
be split into the following two sub-steps.

1. Build: All records in the databases are read, the block-
ing key values are created, and the records are inserted
into a suitable index data structure. For most blocking
techniques, aninverted index[26] can be used. The
blocking key values will become the keys of the in-
verted index, and the record identifiers of all records
that have the same blocking key value will be inserted
into the same inverted index list. The record attribute
values required in the comparison step will be inserted
into another data structure, for example a hash-table
with record identifiers as keys (which can be main
memory or disk based).

2. Retrieve: Record identifiers are retrieved from the in-
dex data structure block by block, and the correspond-
ing record attribute values required for the compar-
isons are retrieved. Candidate record pairs are then
generated from these records, by pairing all records in
a block from one database with all records in the same
block from the other database.

The generated candidate record pairs are then compared
and the resulting vectors containing numerical similarity
values are given to a classifier. In this paper, we are mainly
interested in theBuild step, namely how different blocking
techniques, using the same blocking key definition, are able
to index records from databases with different error charac-
teristics in the blocking key values, and how this, in com-
bination with various parameter settings, affects the quality
of the generated candidate record pairs.



2.1 Standard blocking

This technique has been used in record linkage for sev-
eral decades [14]. All records having the same value in
a blocking key are inserted into the same block, and only
records within the same block are compared with each
other. A record will only be inserted into one block. Stan-
dard blocking can be implemented efficiently using a stan-
dard inverted index [26], as described in theBuild step
above. In theRetrieve step, the identifiers of all records
in the same block from both databases are extracted and the
corresponding candidate record pairs are generated.

One major drawback of standard blocking is that errors
in the blocking key values will result in records being in-
serted into the wrong block. This can be overcome by defin-
ing several blocking keys using different record attributes.
The second drawback is that the sizes of the blocks gener-
ated depend upon the frequency distributions of the block-
ing key values, and thus it is difficult to predict the to-
tal number of candidate record pairs generated. Standard
blocking does not have any explicit parameters; however,
as with all blocking techniques, the way blocking keys are
defined will influence the quality and number of the candi-
date record pairs generated.

2.2 Sorted neighbourhood

First proposed in the mid 1990s [17], the basic idea be-
hind this technique is to sort the blocking key values once
the basic inverted index has been built, and to sequentially
move a window of sizew over the sorted values. With a
window sizew > 1 records that have similar, not just ex-
actly the same, blocking key values will be inserted into
the same block. Blocks are formed from the record identi-
fiers in the inverted index lists of all blocking key values in
the current window. If the window sizew = 1, the sorted
neighbourhood technique becomes standard blocking as de-
scribed above. Therefore, for all window sizesw > 1, the
generated candidate record pairs will be a super-set of the
pairs generated by standard blocking. In general, for two
window sizeswi andwj , with wi < wj , all record pairs
generated with window sizewi will also be in the pairs gen-
erated withwj . However, the larger the window size the
more records are being inserted into a block.

The two main disadvantages of this method are that, sim-
ilarly to standard blocking, the largest blocks will dominate
the performance (as large numbers of record pairs will be
generated); and that the sorting process assumes that the
beginning of the blocking key values are error free, as oth-
erwise similar values will not be close enough in the list of
sorted values, and will therefore not be covered in the same
window. For example, if the blocking key values are given
names, ‘christina’ and ‘kristina’ will very likely be too far

away in the sorted values to be inserted into the same win-
dow, even though they are very similar. It is therefore good
practice to define several blocking keys, resulting in several
sorted list of values, and to use pre-processing, like phonetic
encodings [7], to bring similar values closer together.

2.3 Q-gram based blocking

This technique aims to enable blocking such that varia-
tions in the blocking key values (like deletions, insertions
or substitutions of characters) do not affect the blocking
process [3]. It works by inserting records into more than
one block, similar to the canopy clustering approach dis-
cussed below. This is achieved by transforming the block-
ing key values into lists ofq-grams (sub-strings of lengthq),
and creating all combinations of sub-lists down to a certain
length, determined by a threshold parametert, which des-
ignates the fraction of the shortest sub-lists to be generated
relative to the length of theq-gram list. The resultingq-
gram sub-lists are then converted back into strings and used
as keys in an inverted index. Witht = 1.0, q-gram based
blocking becomes the same as standard blocking.

For example, assume a blocking key value ‘peter’,
q = 2 (bigrams) and a threshold value oft = 0.8.
The 2-gram list for this value is [‘pe’,‘et’,‘te’,‘er’] with
four elements, and using the threshold0.8 results in
4 × 0.8 = 3.2, rounded to3, which means all sub-list
combinations with a length of four and three are gen-
erated: [‘pe’,‘et’,‘te’,‘er’], [‘et’,‘te’,‘er’], [‘pe’ ,‘te’,‘er’],
[‘pe’,‘et’,‘er’], and [‘pe’,‘et’,‘te’]. Therefore, the record
identifiers of all records with blocking key value ‘peter’ will
be inserted into five inverted index lists (blocks) with key
values ‘peetteer’, ‘etteer’, ‘peteer’, ‘peeter’, and ‘peette’.

As shown in an earlier study [3],q-gram based blocking
can achieve better blocking quality results than both
standard blocking and the sorted neighbourhood approach.
However, as the number of sub-lists created for a blocking
key value depends both on the length of the value and the
threshold parametert, lower threshold values will result
in larger numbers of shorter sub-lists and therefore many
different inverted index key values. Longer blocking key
values will dominate the performance of this blocking
technique, as the (recursive) creation of a large number
of sub-lists will be time consuming. For a blocking key
value of lengthc characters, there will ben = (c − q + 1)
q-grams, and withk = int(n× t) the length of the shortest
sub-lists (withk ≤ n), a total of

∑n

i=k

(

n

i

)

sub-lists will be
generated for this blocking key value. This explosion in the
number of sub-lists limitsq-gram based blocking to short
blocking key values. The number of sub-lists generated
also depends upon the value of the parameterq, the length
of the sub-strings used.



A similar q-grams based approach to blocking has been
proposed within a database framework [16], usingq-gram
based similarity joins and several filtering techniques to im-
prove performance implemented using SQL statements.

2.4 Canopy clustering

The idea behind this recently developed technique [11,
20] is to use a computationally cheap similarity measure
to efficiently construct high-dimensional, overlapping clus-
ters, calledcanopies, and to then extract blocks from
these clusters. As similarity measure, Jaccard or TF-
IDF/cosine [26] can be used. Both are based onq-grams
(or more generally, tokens [11]) and can be implemented
efficiently using an inverted index with theq-grams (rather
than blocking key values) as index keys.

In the Build step, the blocking key values are first con-
verted intoq-gram lists, and eachq-gram is then inserted
into an inverted index. For TF-IDF/cosine similarity, addi-
tional information has to be calculated and stored: for each
uniqueq-gram the number of records that contain thisq-
gram, i.e. its term frequency (TF); and within the inverted
index the document frequency (DF) for eachq-gram in each
record (i.e. the frequency of aq-gram in a blocking key
value). Once all records in a database have been read and
processed, the TF and DF values can be normalised and the
inverse document frequencies (IDF) can be calculated. No
such frequency information or normalisation is required for
Jaccard similarity.

In theRetrieve step, all records are initially inserted into
a pool of candidate records. Canopy clusters are then gen-
erated by randomly selecting a record from the pool (which
will become the centroid of a cluster), and adding all records
from the pool into a cluster that are similar to this centroid
record. When using Jaccard, the similarity between two
records is calculated as the number ofq-grams in the two
blocking key values in common divided by the union ofq-
grams in the two values. For TF-IDF/cosine similarity, ad-
ditionally the TF and IDF values are included [26], which
makes the similarity calculations computationally more ex-
pensive. In the traditional approach [11, 20], all records
closer than a loose similarity value threshold,tloose, are in-
serted into the canopy. Of these, all records within a tight
similarity thresholdttight (with ttight ≥ tloose), are re-
moved from the candidate pool of records. This process
is repeated until no candidate records are left in the pool.
Note that if bothtloose = 1.0 and ttight = 1.0 (i.e. only
exact similarity), canopy clustering becomes the same as
standard blocking.

Similar to the previously described blocking techniques,
the canopy clustering approach with global threshold pa-
rameterstloose andttight will result in blocks (i.e. canopy
clusters) of different sizes, even though TF-IDF/cosine sim-

ilarity to some degree adjusts similarity weights according
to the frequency of theq-grams in the blocking key values.

We have modified the canopy clustering approach by re-
placing the two global thresholds with two neighbouring
based parameters:nloose is the number of closest records
to the randomly chosen centroid record (according to the
similarities of their blocking key values) that will be in-
serted into the canopy cluster, and of these thentight clos-
est records will then be removed from the pool of candidate
records (withntight ≤ nloose). This approach results in
blocks of similar sizes, with the maximum size known be-
forehand asnloose. This not only prevents very large blocks,
but also allows an estimate of the number of record pairs
generated, as the number of blocks (canopy clusters) corre-
sponds ton/ntight, with n being the total number of differ-
ent blocking key values. As we will see in the experimental
evaluation, using these two nearest neighbour based param-
eters also results in a canopy clustering based blocking tech-
nique that is more robust with regard to the parameter values
chosen compared to using global threshold parameters.

2.5 String map based blocking

This technique [18] is based on mapping the blocking
key values (assumed to be strings) to objects in a multi-
dimensional Euclidean space, such that similarities (or dis-
tances, like edit-distance [7]) between pairs of strings are
preserved; followed by finding pairs of objects in this space
that are similar to each other. In [18], the authors modify the
FastMap[13] algorithm intoStringMap, which has a linear
complexity in the number of strings to be mapped. In a first
step, this algorithm iterates overd dimensions; for each it
finds two pivot strings and then forms orthogonal directions
and calculates the coordinates of all other strings on these
directions. In the second step, the authors use an R-tree
as multi-dimensional index in combination with a queue
to efficiently retrieve pairs of similar strings. Choosing an
appropriate dimensionalityd is done using a heuristic ap-
proach that tries a range of dimensions and selects one that
minimises a cost function (dimensions between 15 and 25
typically seem to achieve good results) [18].

In our implementation, we replaced the R-tree data struc-
ture with a grid based index [1], as most tree-based multi-
dimensional index structures degrade rapidly with increas-
ing dimensionality. It is reported that with a dimensionality
above 15 to 20, in most tree based indices all objects will be
accessed when performing similarity searches [1].

Our grid based index works by having a regular grid of
dimensionalityd (a parameter to be chosen by the user) im-
plemented as an inverted index in each dimension (i.e. all
objects mapped into the same grid cell in a dimension are in-
serted into the same inverted index list). TheRetrieve step
works in a similar way as in canopy clustering described



above. An object (blocking key value) is randomly picked
from the pool of (initially all) objects, and the objects in the
same, as well as in the neighbouring grid cells, are then re-
trieved from the index. Similar to canopy clustering, either
two global threshold parameterstloose andttight, or alterna-
tively two nearest-neighbour parametersnloose andntight,
can be used to insert the most similar objects into a block.

2.6 Suffix array based blocking

This technique has recently been proposed as an efficient
domain independent method for multi-source information
integration [2]. The basic idea is to insert the blocking key
values and their suffixes into asuffix arraybased inverted
index. A suffix array contains strings or sequences and their
suffixes in a sorted order. Blocking based on suffix arrays
has successfully been used on both English and Japanese
bibliographic databases [2], where suffix arrays were cre-
ated using both English names and Japanese characters.

In this blocking technique, only suffixes down to a min-
imum length, min len, are inserted into the suffix ar-
ray. For example, for a blocking key value ‘christen’ and
min len = 3, the values ‘christen’, ‘hristen’, ‘risten’, ‘is-
ten’, ‘sten’ and ‘ten’ will be inserted, and the identifiers
of all records that have this blocking key value will be in-
serted into the corresponding inverted index lists. Similar to
canopy clustering, the identifier of a record will be inserted
into several blocks (i.e. inverted index lists), accordingto
the length of its blocking key value. A blocking key value
of lengthc characters will be inserted into(c−min len+1)
inverted index lists.

In order to limit the maximum block size, only values
in the suffix array are used that have less than a maximum
number,max block, of record identifiers in their corre-
sponding inverted index list. For example, if the suffix array
value ‘ten’ has 20 records in its inverted index list, and the
value ‘sten’ has only 5 records, andmax block = 6, then
‘ten’ is considered to be too general and is not used in the
Retrieve step (when blocks are extracted and record pairs
are generated), as it would generate too many pairs.

3 Experimental evaluation

The aim of the experiments described here was to em-
pirically evaluate the quality, efficiency and performanceof
the above presented blocking techniques within a common
framework, in order to answer questions such as: How do
parameter values and the choice of the blocking key influ-
ence the quality of the candidate record pairs generated?
Which blocking technique performs best for databases with
certain error characteristics? Which techniques are scalable
to very large databases? What are the memory requirements
of blocking techniques?

Due to limited space we mainly report on the quality of
the candidate record pairs produced by the different block-
ing techniques. We have evaluated the six techniques de-
scribed in Section 2 above using data sets of different sizes
and with different error characteristics, and using different
blocking keys and parameter values, as described below. All
blocking techniques were implemented in Python using the
Febrl [8] open source record linkage system. The experi-
ments were carried out on a Dell Optiplex GX280 with a
Intel Pentium 3 GHz CPU and 2 Gigabytes of main mem-
ory, running Linux 2.6.8 and using Python 2.4.4.

3.1 Test data and blocking key definition

In order to evaluate how the quality (number of true
matches in the candidate record pairs) and efficiency (num-
ber of candidate record pairs generated) of a blocking tech-
nique is affected by the size and error characteristics of the
databases to be linked, we created synthetic data sets con-
taining 1000, 2500, 5000, 10, 000 and25, 000 records us-
ing the data set generator inFebrl [8]. This generator works
by first creatingoriginal records based on frequency tables
containing real world names (given- and surname) and ad-
dresses (street number, name and type; postcode; suburb
and state names), followed by the random generation ofdu-
plicatesof these records based on modifications (like in-
serting, deleting or substituting characters, and swapping,
removing, inserting, splitting or merging words), also based
on real error characteristics. The original and duplicate
records were then split into two files to allow record link-
age. We generated two data sets for each size, with different
error characteristics as described below.

• Clean data sets:80% original and20% duplicate re-
cords; up to three duplicates for one original record,
maximum one modification per attribute, and maxi-
mum three modifications per record.

• Dirty data sets:60% original and40% duplicate re-
cords; up to nine duplicates for one original record,
maximum three modifications per attribute, and maxi-
mum ten modifications per record.

We ran experiments with various blocking key defini-
tions and present results from two different blocking keys:

• Traditional: Several blocking keys were defined, as
commonly done in traditional blocking [14]. The first
are the Soundex [7] encoded surname values, the sec-
ond are the first four characters of given name values
concatenated with the first two digits of postcode val-
ues, and the third blocking key are the two last post-
code digits concatenated with Double-Metaphone [7]
encoded suburb name values.



• Concatenated: Only one blocking key is defined by
concatenating surname, given name, postcode and sub-
urb name values into one string (without separators).

3.2 Quality and complexity measures

The quality and complexity of blocking techniques have
traditionally been evaluated using thepairs completeness
and reduction ratio measures [9, 12], as defined below.
Following [12], let nM and nU be the total number of
matched and un-matched record pairs, respectively, such
that(nM + nU ) = |A| × |B| (with | · | denoting the num-
ber of records in a database) for linkage of two databasesA

andB. Next, letsM andsU be the number of true matched
and true non-matched record pairs generated by a blocking
technique, respectively, with(sM + sU ) ≪ (nM + nU ).

Pairs completeness,PC = sM

nM
, is the number of true

matched record pairs generated by a blocking technique di-
vided by the total number of true matched pairs. It mea-
sures how effective a blocking technique is in generating
true matched record pairs. Pairs completeness corresponds
to therecall measure as used in information retrieval [26].

The reduction ratio,RR = 1.0 − (sM +sU )
(nM+nU ) , measures

the reduction of the comparison space, i.e. the more record
pairs are removed by a blocking technique the higher the
reduction ratio value becomes. However, reduction ratio
does not take the quality of the generated candidate record
pairs into account (how many are true matches or not).

We now define an new measure, which we callpairs
quality, PQ = sM

(sM+sU ) . It is the number of true matched
record pairs generated by a blocking technique divided by
the total number of record pairs generated. A high pairs
quality means a blocking technique is efficient and mainly
generates true matched record pairs. On the other hand, a
low pairs quality means a large number of true non-matches
are also generated, resulting in more record pair compar-
isons to be made, which is computationally expensive. Pairs
quality corresponds to theprecisionmeasure as used in in-
formation retrieval [26].

Note that none of these three measures is taking com-
putational resources (processing time and main memory us-
age) required by a blocking technique into account. We will
report elsewhere the results of our experiments with regard
to resources required.

3.3 Experimental results

We ran blocking experiments using the two different
data set series and two different blocking key definitions
described above on the six blocking techniques presented
in Section 2. In Figures 2 to 4 the RR, PC and PQ re-
sults are shown averaged over the five data set sizes (1000
to 25, 000 records) and over a variety of parameter values

as follows. No parameters can be selected for the stan-
dard blocking approach. For the sorted neighbourhood ap-
proach, we selected window sizesw = {3, 5}. For q-
gram based blocking, we set the thresholdt = 0.8, and
q = {2, 3}. For canopy clustering, we used both Jaccard
and TF-IDF/cosine similarities, setq = {2, 3}, the global
thresholdsttight/tloose as{0.9/0.8, 0.8/0.6}, and the near-
est neighbour parametersntight/nloose as {4/8, 10/20}.
For the string map technique, we selectedd = {15, 20},
ttight/tloose as0.9/0.8 andntight/nloose as4/8. Finally,
for suffix array based blocking, we setmin len = {3, 5}
andmax block = {5, 10}. In total, we evaluated two dif-
ferent parameter settings each for sorted neighbourhoodand
q-gram based blocking, sixteen for canopy clustering, and
four each for string map and suffix array based blocking.

Note that no results forq-gram based blocking are avail-
able for the concatenated blocking key definition, as the
long blocking key values resulted in too manyq-gram sub-
lists, and thus a computational complexity too large.

4 Discussion

Looking at the RR results in Figure 2, one can see
that, with the exception of string map based blocking using
global threshold parameters, all techniques have RR values
above 0.9, independent of the blocking key definition, and
error characteristics and size of the data sets. Apart from the
threshold based string map and sorted neighbourhood ap-
proaches, all blocking techniques have small standard devi-
ation values (below 0.02) over all data set sizes and param-
eter settings. The lower RR values for the threshold based
string map technique means that this approach generates a
much larger number of candidate record pairs compared to
all other approaches, resulting in much longer run times.

The PC result in Figure 3 show that the results achieved
with theTraditional blocking keys (left side of figure) that
use several shorter keys produce significantly better candi-
date record pairs (higher PC values) compared to the results
of the Concatenated blocking key (right side of figure).
This even holds for canopy clustering, which usesq-grams
of the blocking key values to calculate similarities. This is
surprising, as one would assume thatq-grams based tech-
niques would accommodate for variations and errors in the
blocking key values. More detailed investigations need to
be conducted on this issue, in order to find blocking key
definitions that achieve the best results.

The PQ results in Figure 4 indicate that for most ap-
proaches good PC results come at the costs of lower PQ
values, which is similar to the precision-recall trade-offin
information retrieval.

As the aim of our modifications to blocking techniques
is to make blocking less sensitive to the choice of param-
eter values, when comparing the approaches using global



 0.5

 0.6

 0.7

 0.8

 0.9

 1

Suffix Array

String M
ap (NN)

String M
ap (TH)

Canopy (NN)

Canopy (TH)

Q-Gram

Sorted Neighbour

Standard Block

Reduction-ratio for clean data sets and traditional blocking key.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Suffix Array

String M
ap (NN)

String M
ap (TH)

Canopy (NN)

Canopy (TH)

Q-Gram

Sorted Neighbour

Standard Block

Reduction-ratio for clean data sets and concatenated blocking key.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Suffix Array

String M
ap (NN)

String M
ap (TH)

Canopy (NN)

Canopy (TH)

Q-Gram

Sorted Neighbour

Standard Block

Reduction-ratio for dirty data sets and traditional blocking key.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Suffix Array

String M
ap (NN)

String M
ap (TH)

Canopy (NN)

Canopy (TH)

Q-Gram

Sorted Neighbour

Standard Block

Reduction-ratio for dirty data sets and concatenated blocking key.

Figure 2. Reduction ratio results (averages and standard deviations over all parameter settings).

thresholds with the nearest neighbour based approaches,
one can clearly see in the results that the variance of both
canopy clustering and string map based blocking using
nearest neighbour parameters is much smaller compared to
when using global thresholds. At the same time, the RR re-
sults are very similar for both approaches, and the average
PC results based on nearest neighbour parameters are bet-
ter for canopy clustering and only slightly worse for string
map based blocking. These results indicate that the global
threshold based approach can be highly sensitive to the cho-
sen threshold values, while the nearest neighbour parame-
ters are less sensitive and generally produce good results.

For blocking techniques to become suitable for opera-
tional record linkage systems, robustness with regard to pa-
rameter settings is crucial, as users will not be satisfied with
techniques that require extensive (and costly) manual pa-
rameter tuning in order to achieve good results.

5 Conclusions and future work

We presented six blocking techniques for record link-
age and experimentally evaluated their performance on syn-
thetic data sets of various sizes and with different error char-
acteristics. The results showed that there are large differ-

ences in the number of true matched candidate record pairs
generated by the different techniques, but also large differ-
ences for several blocking techniques depending upon the
setting of their parameters. The variety of parameters which
have to be set by a user, and the sensitivity of some of them
(especially global thresholds) with regard to the candidate
record pairs produced, makes it somewhat difficult to suc-
cessfully apply these techniques in practice, as parameter
settings depend both upon the quality and characteristics of
the databases to be linked.

We aim to continue our work on nearest-neighbour based
blocking techniques as they seem to be more robust with
regard to parameter settings. We will also investigate the
scalability of the blocking techniques with regard to com-
putational resources (processing times and amount of main
memory) required, and we plan to conduct more detailed
experimental evaluations using real world databases in or-
der to validate the results presented here. We also plan to
combine the different blocking techniques with the learning
approaches of adaptive blocking that have recently been de-
veloped [5, 21], with the objective to make record linkage a
more automated and more scalable process.
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Figure 3. Pairs completeness results (averages and standard deviations over all parameter settings).
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