Accurate Synthetic Generation of Realistic Personal Information

Peter Christen¹ and Agus Purdijono²

¹School of Computer Science, ANU College of Engineering and Computer Science, The Australian National University, Canberra, Australia
²Data Center, Ministry of Public Works of Republic of Indonesia, Jakarta, Indonesia

Contact: peter.christen@anu.edu.au

Outline

- Why synthetic data generation?
- Advantages and challenges of synthetic data
- Modelling of variations and errors
- The new Febi data generator
 - The data generation process
 - Generate family and household data
 - Duplicate record modification
 - Example of generated data
 - Outlook and future work

Why synthetic data generation?

- A large portion of data collected today is about people (such as customers, clients, patients, tax payers, students, travellers, employees, etc.)
- Analysis, mining and sharing of such data can result in privacy and confidentiality issues (especially when data needs to be matched or exchanged between organisations)
- Privacy issues prohibit publication of real data (that contains personal information)
- It is therefore difficult for researchers to efficiently conduct their work if they rely upon such data (for example for research in deduplication, data linkage, data mining, or information retrieval and extraction)

Synthetic data – Advantages

- Privacy issues prohibit publication of real data (for example of names, addresses, dates of birth, etc.)
- De-identified or encrypted data cannot be used (as real name and address values are required, for example for data linkage or deduplication research)
- Several advantages of synthetic data
 - Volume and characteristics can be controlled (errors and variations in records, number of duplicates, etc.)
 - It is known which records are duplicates of each other, and so matching quality can be calculated
 - Data and the data generator program can be published (allowing others to repeat experiments)

Synthetic data – Challenges

- Modelling the content and characteristics of real data (frequencies of values, variations and errors)
- Modelling dependencies between attributes (for example, given names often depend on gender)
- Earlier data generators were much simpler
 - Hernandez and Stoll (mid 1990s): Only based on value tables, no frequencies, simple typographic errors
 - Bertolazzi et al. (2003): Added frequency tables, allowed missing values, still simple error generation
 - Christen (2005): First version of Febi generator, added look-up tables with misspellings, nicknames, etc.

Modelling of variations and errors

[Diagram showing various components and processes related to data generation and error modelling]
The new Febri data generator

- Can generate different types of modifications
 - Typographic (insert, delete, substitute, transpose)
 - Phonetic (based on transformation rules - more later)
 - Optical character recognition (OCR) (single or groups of characters that look similar)
- Can generate family and household data (groups of records with same address but different given names and ages - more later)
- Can model dependencies between attributes
 - Using look-up tables with dependency information
 - With a certain probability (set by user), a dependency is not followed

The data generation process

1. Step 1: Generate original records
2. Step 2: Generate duplicates of these originals, or generate family and household records

Family and household generation

- For a family, select an original record at random, then determine its role according to its values (possible roles are wife, husband, daughter, or son)
- Then randomly choose the number of members to be generated for this family
- Copy the original record and change age, given name and gender values (and with small probability also address, assuming a child has left home)
- Similar approach for households, but also change surnames and keep all ages above 18
- Family and household data generation involves many parameters to be set by the user

Phonetic modifications for duplicates

- Based on phonetic encoding rules that are used in Soundex, Phonix, Double-Metaphone, etc. (methods to group together strings that sound similar)
- Currently, around 350 phonetic modification rules (each made of position, original pattern, substitute pattern, and four conditions)
- Example phonetic rules
 - ALL: "hi" → "" ("" refers to the empty string)
 - END: "le" → "le" (Condition: Only after a consonant)
 - MIDDLE: "ge" → "ke" (Condition: Start with 'van', 'van', or 'ich')

- Typographic (rec-1), phonetic (rec-2) and OCR (rec-3) modifications

Example of generated data

<table>
<thead>
<tr>
<th>rec_id</th>
<th>age</th>
<th>given_name</th>
<th>surname</th>
<th>street</th>
<th>suburb</th>
</tr>
</thead>
<tbody>
<tr>
<td>rec-1-orig</td>
<td>33</td>
<td>Madison</td>
<td>Solomon</td>
<td>Tazewell Circuit</td>
<td>Beechboro</td>
</tr>
<tr>
<td>rec-1-dup-0</td>
<td>33</td>
<td>Madison</td>
<td>Solomon</td>
<td>Tazewell Circe</td>
<td>Beechboro</td>
</tr>
<tr>
<td>rec-1-dup-1</td>
<td>Madison</td>
<td>Solomon</td>
<td>Tazewell Circt</td>
<td>Beechboro</td>
<td></td>
</tr>
<tr>
<td>rec-2-orig</td>
<td>39</td>
<td>Desiree</td>
<td>Contreras</td>
<td>Malby Street</td>
<td>Burrawang</td>
</tr>
<tr>
<td>rec-2-dup-0</td>
<td>39</td>
<td>Desiree</td>
<td>Contreras</td>
<td>Malby Street</td>
<td>Burrawang</td>
</tr>
<tr>
<td>rec-2-dup-1</td>
<td>39</td>
<td>Desiree</td>
<td>Contreras</td>
<td>Malby Street</td>
<td>Burrawang</td>
</tr>
<tr>
<td>rec-3-orig</td>
<td>87</td>
<td>Madison</td>
<td>Sergeant</td>
<td>Howitt Street</td>
<td>Nangiloc</td>
</tr>
<tr>
<td>rec-3-dup-0</td>
<td>87</td>
<td>Madison</td>
<td>Sergeant</td>
<td>Howitt Street</td>
<td>Nangiloc</td>
</tr>
</tbody>
</table>

Outlook and future work

- We have presented a novel data generator that can create realistic personal information
- Much improved compared to similar earlier data generators
- Part of the Febri data linkage system (Freely extensible biomedical record linkage)
- Various avenues for future work
 - Extend family roles (nieces, cousins, aunts, uncles, etc.)
 - Enable Unicode to allow generation of international data
 - Develop a GUI to facilitate setting of parameters
- Freely available at:
 - https://sourceforge.net/projects/febr/