
Automatic Training Example Selection for

Scalable Unsupervised Record Linkage

Peter Christen

Department of Computer Science, The Australian National University
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

Abstract. Linking records from two or more databases is becoming
increasingly important in the data preparation step of many data min-
ing projects, as linked data can enable analysts to conduct studies that
are not feasible otherwise, or that would require expensive and time-
consuming collection of specific data. The aim of such linkages is to match
all records that refer to the same entity. One of the main challenges in
record linkage is the accurate classification of record pairs into matches
and non-matches. With traditional techniques, classification thresholds
have to be set either manually or using an EM-based approach. Many
modern classification techniques, on the other hand, are based on super-
vised machine learning and thus require training data, which is often not
available in real world situations. A novel two-step approach to unsu-
pervised record pair classification is presented in this paper. In the first
step, training examples are selected automatically, and in the second step
these examples are used to train a binary classifier. An experimental eval-
uation shows that this approach can outperform k-means clustering and
can also be much faster than other classification techniques.

Keywords: data linkage, entity resolution, clustering, support vector
machines, data mining preprocessing.

1 Introduction

With massive amounts of data being collected by many businesses, government
agencies and research projects, techniques that enable efficient and automatic
sharing of large databases between organisations are of increasing importance in
many data mining projects. Data from various sources often has to be linked and
aggregated in order to improve data quality and integrity, or to enrich existing
data with additional information [16]. The aim of such linkages is to match all
records that refer to the same entity, for example a customer, a patient, or a
business. A related task is finding duplicate records that refer to the same entity
within one database, as such duplicates can significantly affect data quality.

Record linkage has traditionally been employed in the health sector for
epidemiological studies [11] and within statistical agencies for linking census
data [17]. Today, businesses increasingly use deduplication and linkage tech-
niques to improve the quality of their data, for example when compiling mailing



lists or when linking data within collaborative e-Commerce projects. Within
government agencies, such as taxation offices and departments of social security,
record linkage is used to identify people who register for assistance multiple times
or who work and collect unemployment benefits. Another area where record link-
age techniques are increasingly being used is fraud, crime and terror detection.
Security agencies often require fast access to files of a particular individual in
order to solve crimes or to prevent terror through early intervention.

Linking entities is often challenged by the lack of unique entity identifiers, and
thus more sophisticated linkage techniques, using the available record attributes,
are required [8, 17]. The naive approach for linking two databases, to compare
each record in one database with all records in another database, is of quadratic
complexity. Because the performance bottleneck in a record linkage system is
usually the computationally expensive comparison of fields (or attributes) be-
tween pairs of records [8], blocking, filtering or indexing techniques are normally
employed to reduce the large amount of potential record pair comparisons [1].
These techniques group records into blocks according to some criteria (such as
having the same value in a ‘postcode’ attribute). Candidate record pairs are
then generated only from the records within the same block. Assuming there are
no duplicate records in the databases to be linked, then the majority of candi-
date pairs will likely be non-matches, as the maximum possible number of true
matches corresponds to the number of records in the smaller of the databases.
Classifying record pairs is therefore often an imbalanced classification problem.

Candidate record pairs are compared using various similarity functions ap-
plied to selected record attributes. These functions can be as simple as an exact
string or a numerical comparison, can take variations into account [3], or they
can be specialised for attributes that contain dates, times, or even geographic
locations. Each comparison returns a numerical similarity value (called match-
ing weight), often in normalised form between 0.0 (for totally different attribute
values) and 1.0 (for exactly matching values). A weight vector is formed for
each compared record pair (as shown in Fig. 1) containing all matching weights
calculated when comparing the pair’s attribute values. Using these weight vec-
tors, candidate record pairs are then classified into matches, non-matches, and
possible matches, depending upon the decision model used [8].

It can generally be assumed that a record pair that has the same or very
similar values in all its record attributes will likely refer to the same entity, as it
is very unlikely that two entities have very similar or even the same values in all
their attributes. The matching weights in the vector calculated when comparing
such a pair will be 1 (or close to 1) in all vector elements. On the other hand,
weight vectors that contain matching weights of only 0 (or values close to 0)
in all vector elements were with high likelihood calculated when two different
entities were compared, as it is highly unlikely that two records that refer to the
same entity have different values in all their record attributes.

Based on these observations, it is usually easy to accurately classify a record
pair as a match when its corresponding weight vector contains mainly matching
weights close to or equal to 1, and as a non-match when its matching weights



Name Address

R1 : Christine Smith 42 Main Street
R2 : Christina Smith 42 Main St
R3 : Bob O’Brian 11 Smith Rd
R4 : Robert Bryce 12 Smythe Road

WV(R1,R2): [0.9, 1.0, 1.0, 1.0, 0.9]
WV(R1,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R1,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R2,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R2,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]

Fig. 1. The left side shows four example records and the right side the corresponding
weight vectors resulting from their comparisons (based on Fig. 2 from [6]).

are mainly close to or equal to 0. It is however much more difficult to correctly
classify a pair that contains some attribute values that are similar while others
are not (i.e. its weight vector contains some matching weights close to 1 and
others close to 0). In the examples shown in Fig. 1, records R1 and R2 are very
similar, with only small differences in their given name and street type values
(and thus have matching weights close to or equal to 1), and thus very likely refer
to the same person. Records R3 and R4, on the other hand, are more different
from each other, and it is not obvious if they refer to the same person.

It follows that it is possible to automatically select in a first step weight vec-
tors as match training examples of good quality that very likely were generated
when two records that refer to the same entity were compared, and similarly
to select non-match training examples from the many weight vectors that were
generated when records that refer to two different entities were compared. For
example, of the weight vectors shown in Fig. 1, WV(R1,R2) can be selected
as a match training example, and WV(R1,R3), WV(R2,R3), WV(R1,R4) and
WV(R2,R4) as non-match examples. These training examples can then be used
in a second step to train a classifier for classification of all weight vectors.

This two-step approach to unsupervised classification of record pairs has
first been proposed by the author in [6], with initial experiments indicating its
feasibility. The contributions of this paper are the investigation and evaluation
of a potential improvement to the basic approach, namely to randomly include
additional weight vectors for training; and an evaluation of the scalability of the
approach. First, in Sect. 2, related work is summarised. Section 3 then presents
the proposed approach in detail, and in Sect. 4 both its accuracy and scalability
are evaluated. The paper is concluded by an outlook to future work in Sect. 5.

2 Related Work

In recent years, various techniques have been explored in record linkage for the
classification of record pairs. The traditional probabilistic approach has been
improved by applying the expectation-maximisation (EM) algorithm for better
parameter estimation [17]. Various supervised learning approaches have been in-
vestigated, among them decision trees [9, 15] and support vector machines [13].
Another approach is to learn string similarity measures, such as the costs for



edit distance operations [3], in order to adapt similarity calculations to a certain
domain. While supervised techniques normally achieve better linkage quality
than unsupervised approaches, their major drawback is the lack of training data
(record pairs with known true match and non-match status) in many real world
situations. Manual preparation of training examples is time consuming, cumber-
some and expensive. Active learning is an approach that aims to overcome this
problem [15]. Only the record pairs most difficult to classify automatically are
provided for manual classification, and subsequent re-training of a classifier.

Three classification approaches were presented in [9]: decision tree induc-
tion; unsupervised k-means clustering with a cluster each for matches, possible
matches and non-matches; and a hybrid approach that first clusters a sub-set
of all weight vectors (again into three clusters), and then uses the match and
non-match clusters for decision tree induction learning. The supervised and hy-
brid approaches both outperformed clustering. K-means clustering was also used
in [10] to cluster weight vectors into matches and non-matches, with the possi-
bility to select the weight vectors in the region half-way between the match and
non-match centroids as possible matches, using a selectable threshold.

In recent years, unsupervised techniques have been developed for collective
entity resolution of relational data [2], i.e. data that contains relational infor-
mation linking different types of entities (like publications, authors, and confer-
ences). For such data, relational entity resolution outperforms techniques that
only use pairwise similarities between records. In the real world, there are how-
ever large amounts of data that do not allow relational entity resolution. The aim
of this paper is to improve unsupervised classification for non-relational data.

Methods similar to the approach presented here have recently been developed
for text and Web page classification [12, 14, 18], where besides many unlabeled
documents often only a small number of positive labeled training examples is
available. In such situations, the aim is to learn a binary classifier from positive
and unlabeled examples. PEBL [18] iteratively trains a support vector machine
using the positive and the strongest negative examples (i.e. the documents fur-
thest away from the decision boundary), while the S-EM [12] approach includes
‘spy’ documents, positive labeled examples, into the set of unlabeled documents
to get a more realistic model of their distribution to be used in the EM algo-
rithm. This is similar to the idea of randomly including additional weight vectors
into the training sets as presented and evaluated in this paper. The EM algo-
rithm and a Näıve Bayes classifier have been combined in [14] for the situation
where only a small number of all available documents are labeled as positive or
negative training examples. The training is initially based on only the labeled
examples, but then iteratively refined using unlabeled documents as well.

3 Two-step Classification

In the first step of the proposed classification approach, weight vectors are se-
lected as training examples that with high likelihood correspond to true matches
and true non-matches. For match training examples, weight vectors containing



only exact or high similarity values are selected, while for non-match examples
vectors containing only low similarity or total dissimilarity values are chosen. In
the second step, these training examples are used to train a classifier, which is
then employed to classify all weight vectors into matches and non-matches.

3.1 Training Example Selection

There are two different approaches on how to select training examples: threshold
or nearest based [6]. In the first approach, weight vectors that have all their vector
elements within a certain distance to the exact similarity or total dissimilarity
values, respectively, will be selected. For example, using the weight vectors from
Fig. 1 and a distance threshold of 0.2, only vector WV(R1,R2) will be selected
as match training example, and WV(R1,R3) and WV(R2,R3) as non-match
training examples. The remaining three weight vectors will not be selected as at
least one of their vector elements is larger than the 0.2 distance threshold.

The second approach is to sort weight vectors according to their distances
from the vectors containing only exact similarities and only total dissimilarities,
respectively, and to then select the respectively nearest vectors. In Fig. 1, vector
WV(R1,R2) is closest to the exact similarities vector, followed by WV(R3,R4).
Vectors WV(R1,R3) and WV(R2,R3) only contain total dissimilarity values,
and WV(R1,R4) and WV(R2,R4) are the vectors next closest to them.

Both approaches are presented more formally below. First, the notation used
in this paper is provided. It is assumed that candidate record pairs are compared
using d comparison functions (with d ≥ 1), resulting in a set W of weight vectors
wi (1 ≤ i ≤ |W|) of length d containing matching weights (similarity values),
with | · | denoting the number of elements in a set. It is also assumed that
all comparison functions return normalised similarity values between 0 (total
dissimilarity) and 1 (exact similarity), i.e. 0.0 ≤ wi[j] ≤ 1.0, 1 ≤ j ≤ d, ∀wi ∈
W. The weight vector containing exact similarities in all vector elements (i.e.
corresponding to an exact match) is denoted by m (with m[j] = 1.0, 1 ≤ j ≤ d),
and the vector with only dissimilarities by n (with n[j] = 0.0, 1 ≤ j ≤ d).

The aim of the training example selection step is to chose weight vectors
from W and insert them into two sets: the match training examples, WM , and
the non-match training example, WN , such that weight vectors in WM with
very high likelihood correspond to true matches, and weight vectors in WN to
true non-matches. In general, not all weight vectors from W will be selected for
training, thus it is likely that (|WM | + |WN |) < |W| holds.

Threshold-based Selection One distance threshold for matches, tM , and one
for non-matches, tN (with 0.0 < tM , tN < 1.0), are used in this approach to
select weight vectors that have all their similarity values either within tM of the
exact match value m, or within tN of the total dissimilarity value n. Formally,
weight vectors from W will be inserted into WM and WN , according to:

WM = {wi ∈ W : (m[j] − wi[j]) ≤ tM , 1 ≤ j ≤ d},

WN = {wi ∈ W : (n[j] + wi[j]) ≤ tN , 1 ≤ j ≤ d}.



In a situation where (tM +tN) ≥ 1.0 it is possible that weight vectors could be
included into both WM and WN . If this happens, these vectors will be removed
from both sets, as they cannot be used as training example for both matches
and non-matches. This would for example happen if tM = tN = 0.6 for a vector
with similarity values 0.5 in all its elements, i.e. wi[j] = 0.5, 1 ≤ j ≤ d.

Nearest-based Selection In this approach the xM weight vectors closest to m

are selected into WM , and the xN weight vectors closest to n are selected into
WN . Both xM > 0 and xN > 0 must hold. If, for example, Manhattan distance
is used to calculate the distance between two weight vectors wi and wk, then
the training example sets WM and WN are formed according to:

WM = {wi ∈ W,wk /∈ WM : dist(m,wi) < dist(m,wk)} ,

WN = {wi ∈ W,wk /∈ WN : dist(wi,n) < dist(wk,n)} ,

with xM = |WM |, xN = |WN |, and dist(wi,wk) =
∑d

j=1
|wi[j]−wk[j]|. Other

distance functions, such as Euclidean distance, can be used alternatively.
In most linkage situations, there will be a large number of record pairs that

contain only totally different attribute values, resulting in weight vectors with
only dissimilarity values (such as WV(R1,R3) and WV(R2,R3) in Fig. 1). In the
worst case, all weight vectors selected into WN could be equal to n. Similarly,
a number of record pairs might be exact matches, resulting in several weight
vectors being equal to m. Such a situation would not be very useful for training
a classifier. Assuring that only the xM and xN unique nearest vectors will be
selected into WM and WN should therefore improve the classification accuracy.
Thus, the two variations of the nearest based approach are to either select the
xM and xN nearest vectors, regardless if some of them contain the same values
in all of their vector elements; or to select the xM and xN unique nearest vectors.

A question that arises is how to choose the numbers xM and xN of near-
est weight vectors to select. One option is to select the same number into
WM and WN , so that xM = xN , leading to a balanced classification prob-
lem. Given that the number of non-matches in W is often much larger than the
number of matches [8], alternatively selecting imbalanced numbers of training
examples should result in more realistic training data. The danger with bal-
anced training set selection is that weight vectors that more likely don’t refer
to true matches might be selected into WM . An estimation of the ratio r of
matches to non-matches can be calculated using the number of records in the
two data sets to be linked, A and B, and the number of weight vectors |W|:
r = min(|A|, |B|)/(|W| − min(|A|, |B|)).

3.2 Random Inclusion of Additional Training Examples

The training data automatically selected in the first step will likely be linearly
separable, because the two training sets, WM and WN , only contain weight
vectors that are either close to the exact match vector m or close to the total



Matchesmatches
Non−

0.0 1.0

Matchesmatches
Non−

0.0 1.0

Matchesmatches
Non−

0.0 1.0

a) No random sampling

Matchesmatches
Non−

0.0 1.0

b) Uniform random sampling

d) Exponential random samplingc) Linear random sampling

Fig. 2. Possible methods for random sampling of additional weight vectors (assumed
to be 1-dimensional vectors).

dissimilarity vector n, and also because usually not all weight vectors from W

will be selected for training. This will likely result in a ‘gap’ between the train-
ing sets, as illustrated in Fig. 2 a). Similar to the inclusion of ‘spy’ documents
for semi-supervised text classification [12], adding a small number of randomly
selected weight vectors from this ‘gap’ into the training example sets should
help to improve classification accuracy, because the training sets will then have
a more realistic distribution of weight vectors.

The random sampling of weight vectors should be done in such a way that
vectors closer to m are more likely included into WM , while vectors closer to n

should more likely be selected for WN . Besides no random sampling, the three
different sampling methods illustrated in parts b) to d) of Fig. 2 are to use either
uniform sampling, or a linear or exponential mapping function to randomly sam-
ple weight vectors. Intuitively, exponential should outperform linear sampling,
which in turn should be better than uniform and no sampling.

3.3 Weight Vector Classification

In the second step of the proposed record pair classification approach, the train-
ing sets WM and WN , as generated in the first step, will be used to train
a binary classifier. Once trained, this classifier is then employed to classify all
weight vectors in W. In the experiments presented below, a support vector ma-
chine (SVM) classifier [4] will be evaluated, because this technique can handle
high-dimensional data and is known to be robust to noisy data.

While training a classifier once to classify all weight vectors in W is the
basic approach in this second step, related work in Web page classification has
shown that an iterative approach can improve classification accuracy [18]. The
idea is to train a classifier first using only the training sets WM and WN , and
to then iteratively include the strongest classified matches and non-matches, i.e.
the weight vectors furthest away from the decision boundary, into the training
sets. The improved training sets are then used in the following iteration, and
this process is repeated until a stopping criteria is fulfilled. This approach is
currently being implemented and results will be reported in the near future.



Table 1. Data sets used in experiments. See Sect. 4.1 for more details.

Data set Number of Task Pairs Reduction Number of
records completeness ratio weight vectors

Census 449 + 392 Link 1.000 0.988 2,093
Restaurant 864 Dedup 1.000 0.713 106,875
Cora 1,295 Dedup 0.924 0.793 173,769

DS-Gen-A 1,000 Dedup 0.957 0.995 2,475
DS-Gen-B 2,500 Dedup 0.940 0.997 9,878
DS-Gen-C 5,000 Dedup 0.953 0.997 35,491
DS-Gen-D 10,000 Dedup 0.948 0.997 132,532

4 Experimental Evaluation

The proposed two-step approach to automatic record pair classification will be
compared with three other classification methods. The first is an ‘optimal thresh-
old’ classifier that has access to the true match status of all weight vectors in W

and can thus find an optimal classification threshold. For each weight vector, all
its vector elements are summed into one matching weight, and the classification
threshold that minimises both false matches and false non-matches is calculated
over all summed matching weights. The second classification method is a super-
vised SVM which also has access to the true match status of all weight vectors.
Nine SVM variations were evaluated (three kernels: linear, polynomial and RBF;
and three values for the cost parameter, C [4]: 0.1, 1, 10). The third method is
k-means clustering that has previously been used for record pair classification [9,
10]. Weight vectors were grouped into a match and a non-match cluster, with the
initial centroids set to m and n, respectively. Three distance measures (Manhat-
tan, Euclidean and Linf) were evaluated. All experiments were conducted using
10-fold cross validation.

The discussed techniques were implemented in the Febrl [7] open source
record linkage system, which is written in the Python programming language.
The libsvm library was used for the SVM classifier [4]. All experiments were
conducted on a Dell Optiplex GX280 with an Intel Pentium 3 GHz CPU and
2 GBytes of main memory, running Linux 2.6.20 and using Python 2.5.1.

4.1 Data Sets and Linkage Setup

The proposed approach was evaluated using the data sets summarised in Table 1.
Three real data sets from the SecondString toolkit1 were used, and artificial data
sets of various sizes containing names and addresses were created randomly us-
ing the Febrl data set generator [5]. This data was created based on real-world
frequency tables, with duplicates generated randomly using modifications like

1 http://secondstring.sourceforge.net



Table 2. Quality of training example selection, adapted from [6]. Each pair of result
values shows the quality of WM/WN as percentages of correctly selected training
examples. ‘–’ denotes an empty training set. Nearest-based selection was imbalanced.
‘NU’ stands for non-unique selection of weight vectors, and ‘U’ for unique selection.

Data sets Thresholds Nearest NU Nearest U

0.3 0.5 0.7 1% 10% 1% 10%

Census 100/– 96.2/100 73.4/100 100/100 100/100 100/100 100/100
Restaurant 98.5/– 4.5/100 0.19/100 100/100 90.8/100 100/100 58.6/100
Cora 99.7/100 99.9/97.0 99.5/99.0 100/96.8 100/97.6 100/98.2 99.2/98.4

DS-Gen-A 100/100 100/100 100/99.0 100/100 100/95.5 100/100 100/95.5
DS-Gen-B 100/100 100/100 99.8/99.4 100/99.0 100/98.3 100/99.0 100/98.2
DS-Gen-C 100/100 100/100 98.0/99.7 100/100 100/99.5 100/99.7 100/99.6
DS-Gen-D 100/99.7 100/100 95.5/99.9 100/99.9 100/99.7 100/99.8 100/99.7

character inserts, deletes or substitutions; and swapping, removing, inserting,
splitting or merging of words. All artificial data sets generated for the experi-
ments in this paper contained 60% original and 40% duplicate records.

Standard blocking [1] was applied to reduce the number of record pair com-
parisons, and the Winkler approximate string comparison technique [16] was
used for comparing name and address values. Additionally, character difference
comparison was used on attributes such as postcode, year, or street number.

In Table 1, the quality and complexity of the compared record pairs is shown
using the measures pairs completeness (the number of true matched record pairs
generated by blocking divided by the total number of true matched pairs) and
reduction ratio (number of record pairs generated by blocking divided by all
possible record pairs) [8, 9]. Accuracy, as commonly used for measuring classifier
performance, is not suitable for assessing the quality of the classified record pairs
due to the normally imbalanced distribution of matches and non-matches in the
weight vector set W [8]. The F-measure, F = 2PR/(P +R), the harmonic mean
of precision (P = TP/(TP + FP )) and recall (R = TP/(TP + FN)) is used
instead, with TP and FP being the number of true and false positives (matches),
and TN and FN the number of true and false negatives (non-matches).

The quality of the training example sets generated in step one of the pro-
posed approach, as shown in Table 2, is calculated as the percentage of cor-
rectly selected weight vectors in the training example sets, i.e. (|true matches in
WM |/|WM |) and (|true non-matches in WN |/|WN |).

4.2 Training Example Quality

As can be seen from Table 2, the quality of the training example sets WM and
WN is very good in most cases. For the threshold based approach, a threshold
of 0.5 achieved the best results, while a lower threshold can produce empty



 0

 0.2

 0.4

 0.6

 0.8

 1

TS-ne, RS-E

TS-ne, RS-L

TS-ne, RS-U

TS-ne, no RS

TS-th, RS-E

TS-th, RS-L

TS-th, RS-U

TS-th, no RS

K-m
eans

SVM
Opt-Thres

F
-m

ea
su

re

’Census’ data set (449 + 392 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

TS-ne, RS-E

TS-ne, RS-L

TS-ne, RS-U

TS-ne, no RS

TS-th, RS-E

TS-th, RS-L

TS-th, RS-U

TS-th, no RS

K-m
eans

SVM
Opt-Thres

F
-m

ea
su

re

’DS-Gen-A’ data set (1,000 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

TS-ne, RS-E

TS-ne, RS-L

TS-ne, RS-U

TS-ne, no RS

TS-th, RS-E

TS-th, RS-L

TS-th, RS-U

TS-th, no RS

K-m
eans

SVM
Opt-Thres

F
-m

ea
su

re

’DS-Gen-B’ data set (2,500 records)

 0

 0.2

 0.4

 0.6

 0.8

 1

TS-ne, RS-E

TS-ne, RS-L

TS-ne, RS-U

TS-ne, no RS

TS-th, RS-E

TS-th, RS-L

TS-th, RS-U

TS-th, no RS

K-m
eans

SVM
Opt-Thres

F
-m

ea
su

re

’DS-Gen-D’ data set (10,000 records)

Fig. 3. F-measure results (averages and standard deviations). ‘RS’ stands for random
selection, ‘U’ for uniform, ‘L’ for linear and ‘E’ for exponential, while ‘ne’ stands for
nearest and ‘th’ for threshold based selection. Nearest-based selection was imbalanced.

training sets (denoted by ‘–’), if all weight vectors have at least one matching
weight with a similarity value above the selected threshold (i.e. the two records
in the corresponding pair had at least one attribute with a similar value).

Nearest-based selection overcomes this problem, and generally results in very
good quality training sets. With balanced nearest selection [6] (not shown here)
too many weight vectors are included into the match training set WM , signif-
icantly reducing its quality in certain cases. There is no significant difference
between unique and non-unique training example selection.

4.3 Classification Performance

Figure 3 show the F-measure results for four data sets (due to space limita-
tions not all results can be shown) and over the parameter settings described
in Sect. 4 (nine variations for SVM and two-step, and three for k-means). The
four random selection methods described in Sect. 3.2 are shown for the two-step
classifier approach. As can be seen, both supervised classifiers (optimal thresh-
old and SVM) achieved the highest linkage quality. With the exception of the
‘DS-Gen-B’ data set, the two-step classification approach outperformed k-means,
achieving significantly better results for the ‘Census’ and ‘DS-Gen-D’ data sets.
While for data sets ‘DS-Gen-A’ and ‘DS-Gen-B’ random selection using the lin-
ear or exponential methods achieves slightly better classification results, for the



 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

3,027,004 / 50,000

785,905 / 25,000

132,532 / 10,000

35,491 / 5,000

9,878 / 2,000

2,475 / 1,000

T
im

e 
in

 s
ec

on
ds

Combined training and classification time

SVM
K-means

TS-threshold
TS-nearest B

TS-nearast IB

Fig. 4. Timing results for synthetic data sets of various sizes.

other data sets all random inclusion methods worsen the quality of the training
sets and result in significantly reduced classification performance. This indicates
that, unlike the random inclusion of ‘spy’ documents for semi-supervised text
classification [12], inclusion of additional randomly selected weight vectors is not
a technique suitable for record pair classification.

4.4 Timing and Scalability

In order to evaluate the scalability of the proposed record pair classification
approach, a series of experiments with synthetic data sets of increasing sizes
were conducted. Euclidean distance was used for k-means clustering, while a
RBF kernel was selected for the SVM and two-step classifiers. Nearest-based
training example selection was used with 5% of weight vectors included into
each training set (no random inclusion of additional vectors). As Fig. 4 shows,
the SVM and two-step approaches are of similar complexity, with the latter being
one magnitude faster, as only 10% of all weight vectors were used for training.

5 Conclusions and Future Work

A novel two-step approach to record pair classification has been presented and
evaluated in this paper. In a first step high-quality training examples are selected
automatically, to be used in a second step to train a binary classifier. Together,
these two steps allow unsupervised classification of record pairs with often better
linkage quality than k-means clustering. Contrary to expectations, the inclusion
of randomly selected additional weight vectors did not result in increased clas-
sification performance. Timing experiments showed that the proposed approach
can be a magnitude faster than a supervised SVM classifier.

Future work includes the implementation and evaluation of an approach that
iteratively refines the training example sets by including the strongest classified
matches and non-matches, followed by re-training of the classifier, similar to the
PEBL approach developed for text and Web page classification [18].



Acknowledgements

This work is supported by an Australian Research Council (ARC) Linkage Grant
LP0453463 and partially funded by the New South Wales Department of Health.
The author would like to thank Paul Thomas for proof-reading.

References

1. R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking methods
for record linkage. In ACM KDD’03 workshop on Data Cleaning, Record Linkage
and Object Consolidation, pages 25–27, Washington DC, 2003.

2. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data.
ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2007.

3. M. Bilenko and R.J. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In ACM KDD’03, pages 39–48, Washington DC, 2003.

4. C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. Man-
ual, Department of Computer Science, National Taiwan University, 2001. Software
available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

5. P. Christen. Probabilistic data generation for deduplication and data linkage. In
IDEAL’05, Springer LNCS 3578, pages 109–116, Brisbane, 2005.

6. P. Christen. A two-step classification approach to unsupervised record linkage. In
AusDM’07, CRPIT. 70, Gold Coast, Australia, 2007.

7. P. Christen, T. Churches, and M. Hegland. Febrl – A parallel open source data
linkage system. In PAKDD’04, Springer LNAI 3056, pages 638–647, Sydney, 2004.

8. P. Christen and K. Goiser. Quality and complexity measures for data linkage
and deduplication. In F. Guillet and H. Hamilton, editors, Quality Measures in
Data Mining, volume 43 of Studies in Computational Intelligence, pages 127–151.
Springer, 2007.

9. M.G. Elfeky, V.S. Verykios, and A.K. Elmagarmid. TAILOR: A record linkage
toolbox. In ICDE’02, pages 17–28, San Jose, 2002.

10. L. Gu and R. Baxter. Decision models for record linkage. In Selected Papers from
AusDM, Springer LNCS 3755, pages 146–160, 2006.

11. C.W. Kelman, J. Bass, and D. Holman. Research use of linked health data – A
best practice protocol. Aust NZ Journal of Public Health, 26:251–255, 2002.

12. B. Liu, W.S. Lee, P.S. Yu, and X. Li. Partially supervised classification of text
documents. In ICML’02, pages 387–394, Sydney, Australia, 2002.

13. U.Y. Nahm, M. Bilenko, and Mooney R.J. Two approaches to handling noisy
variation in text mining. In TextML’02, pages 18–27, Sydney, 2002.

14. K. Nigam, A. Mccallum, S. Thrun, and T. Mitchell. Text classification from labeled
and unlabeled documents using EM. Machine Learning, 39(2):103–134, 2000.

15. S. Tejada, C.A. Knoblock, and S. Minton. Learning domain-independent string
transformation weights for high accuracy object identification. In ACM KDD’02,
pages 350–359, Edmonton, 2002.

16. W.E. Winkler. Methods for evaluating and creating data quality. Elsevier Infor-
mation Systems, 29(7):531–550, 2004.

17. W.E. Winkler. Overview of record linkage and current research directions. Tech-
nical Report RR2006/02, US Bureau of the Census, 2006.

18. H. Yu, J. Han, and K.C.C. Chang. PEBL: positive example based learning for
Web page classification using SVM. In ACM KDD’02, pages 239–248, Edmonton,
2002.


