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What is record (or data) linkage?

The process of linking and aggregating records
from one or more data sources representing the
same entity (such as a patient, customer, or business)

Also called data matching, data scrubbing, entity

resolution, object identification, merge-purge, etc.

Challenging if no unique entity identifiers available
For example, which of these three records refer to the

same person?

Dr Smith, Peter 42 Miller Street 2602 O’Connor

Pete Smith 42 Miller St, 2600 Canberra A.C.T.

P. Smithers 24 Mill Street; Canberra ACT 2600
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Record linkage challenges

Real world data is dirty
(typographical errors and variations, missing and
out-of-date values, different coding schemes, etc.)

Scalability
Naïve comparison of all record pairs is O(n2)

Some form of blocking, indexing or filtering required

No training data in many linkage applications
No data sets with known true match status

Possible to manually prepare training data (but, how

accurate will manual classification be?)
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The record linkage process
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Record pair comparison

Pairs of records are compared field (attribute)
wise using different field comparison functions

Such as exact or approximate string (e.g. edit-distance,

q-gram, Winkler), numeric, age, date, time, etc.

Return 1.0 for exact similarity, 0.0 for total dissimilarity

For each compared record pair a weight vector
containing matching weights is calculated

Record 1: [‘dr’, ‘peter’, ‘paul’, ‘miller’]

Record 2: [‘mr’, ‘john’, ‘’, ‘miller’]

Matching weights: [0.5, 0.0, 0.0, 1.0 ]

Weight vectors (record pairs) are classified into
matches, non-matches (and possible matches)
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Record pair classification

Traditionally, matching weights are summed, and
two thresholds are use for classification

Various machine learning techniques have been
investigated

Supervised: SVM, decision trees, neural networks,

learnable string comparisons, active learning, etc.

Un-supervised: Different clustering algorithms

Recently, collective entity resolution techniques
have been investigated

Rather than classifying each record pair independently

Using relational attributes (i.e. graph based)

However, not all data is relational
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Two-step record pair classification

Assumptions
Weight vectors that have exact or high similarity values

in all elements were most likely generated when two

records were compared that refer to the same entity

Weight vectors with mostly low similarity values were

with high likelihood generated when two records were

compared that refer to different entities

Idea: Automatically select such weight vectors as
training examples in a first step, and then use
them to train a binary classifier in a second step

Combined, this will allow fully automated unsupervised

record pair classification
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Records and weight vectors example

R1: Christine Smith 42 Main Street

R2: Christina Smith 42 Main St

R3: Bob O’Brian 11 Smith Rd

R4: Robert Bryce 12 Smythe Road

WV(R1,R2): 0.9 1.0 1.0 1.0 0.9

WV(R1,R3): 0.0 0.0 0.0 0.0 0.0

WV(R1,R4): 0.0 0.0 0.5 0.0 0.0

WV(R2,R3): 0.0 0.0 0.0 0.0 0.0

WV(R2,R4): 0.0 0.0 0.5 0.0 0.0

WV(R3,R4): 0.7 0.3 0.5 0.7 0.9
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Step 1: Training example selection

Weight vectors can be selected using either
thresholds or nearest based

Training examples are likely linearly separable

Idea: randomly add more training examples
(from gap between match and non-match examples)
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Step 2: Classification of record pairs

Any binary classifier can be used (in the following
experiments, a linear SVM has been employed)

Question investigated here: Does the random
inclusion of additional weight vectors improve
classification accuracy?

Related work: Similar approaches have been
developed for text and Web page classification

Called semi-supervised or partially supervised learning

PEBL (positive example based learning): train a SVM

only on positive labeled examples, improve iteratively

S-EM (seed expectation-maximisation): add ‘spy’

documents from positive examples into unlabeled data
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Experimental evaluation

All techniques are implemented in the Febrl open
source record linkage system
(available from: https://sourceforge.net/projects/febrl/ )

Experiments using both real and synthetic data
(Secondstring repository and Febrl data set generator)

Evaluation of step 1 (training example selection)
Percentage of true matches and true non-matches

in the training example sets

Evaluation of step 2 (record pair classification)
F -measure (harmonic mean of precision and recall)

(average and standard-deviation are shown in graphs)
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Quality of weight vectors selected

Data sets Thresholds Nearest

0.3 0.5 1% 10%

Census 100/– 96.2/100 100/100 100/100

Restaurant 98.5/– 4.5/100 100/100 58.6/100

Gen-1,000 100/100 100/100 100/100 100/95.5

Gen-2,500 100/100 100/100 100/99.0 100/98.2

Gen-5,000 100/100 100/100 100/99.7 100/99.6

Gen-10,000 100/99.7 100/100 100/99.8 100/99.7

Results given here are percentage values for match/non-match
sets
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Record pair classification for Census
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’Census’ data set (449 + 392 records, 2093 weight vectors)
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Record pair classification for
Gen-10,000
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Outlook and future work

The proposed two-step record pair classification
approach shows promising results

Can automatically select good quality training examples

Random inclusion of additional weight vectors does not
improve classification accuracy (unlike improvements in

Web and text classification)

Improvements for second step (classification)
Apply classifier iteratively (as done in PEBL approach)

Investigate nearest-neighbour based classification

More experiments on different data are needed
Also investigate the scalability of this approach
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