A Parallel Open Source Data Linkage System
http://datamining.anu.edu.au/linkage.html

Peter Christen!, Tim Churches? and Markus Hegland?

! Department of Computer Science, Australian National University,
Canberra ACT 0200, Australia, peter.christen@anu.edu.au
2 Centre for Epidemiology and Research, New South Wales Department of Health,
Locked Mail Bag 961, North Sydney NSW 2059, Australia,
tchur@doh.health.nsw.gov.au
3 Centre for Mathematics and its Applications, Mathematical Sciences Institute,
Australian National University, Canberra ACT 0200, Australia,
markus.hegland@anu.edu.au

Abstract. In many data mining projects information from multiple
data sources needs to be integrated, combined or linked in order to allow
more detailed analysis. The aim of such linkages is to merge all records re-
lating to the same entity, such as a patient or a customer. Most of the time
the linkage process is challenged by the lack of a common unique entity
identifier, and thus becomes non-trivial. Linking todays large data collec-
tions becomes increasingly difficult using traditional linkage techniques.
In this paper we present an innovating data linkage system called Febrl,
which includes a new probabilistic approach for improved data cleaning
and standardisation, innovative indexing methods, a parallelisation ap-
proach which is implemented transparently to the user, and a data set
generator which allows the random creation of records containing names
and addresses. Implemented as open source software, Febrl is an ideal
experimental platform for new linkage algorithms and techniques.

Keywords: record linkage, data matching, data cleaning and standard-
isation, parallel processing, data mining preprocessing.

1 Introduction

Data linkage can be used to improve data quality and integrity, to allow re-use
of existing data sources for new studies, and to reduce costs and efforts in data
acquisition for research studies. In the health sector, for example, linked data
might contain information which is needed to improve health policies, informa-
tion that is traditionally collected with time consuming and expensive survey
methods. Linked data can also help in health surveillance systems to enrich data
that is used for pattern detection in data mining systems. Businesses routinely
deduplicate and link their data sets to compile mailing lists, while in taxation of-
fices and departments of social security data linkage can be used to catch people
who register for benefits multiple times or who work and collect unemployment



money. Another application of current interest is the use of data linkage in crime
and terror detection. Security agencies and crime investigators increasingly rely
on the ability to quickly bring up files for a particular individual which may
help to prevent crimes or terror by early intervention. As such, data linkage is
an important preprocessing step for further data analysis and mining.

If a unique entity identifier or key is available in all the data sets to be
linked, then the problem of linking at the entity level becomes trivial, a simple
join operation in SQL or its equivalent in other data management systems is all
that is required. However, in most cases no unique key is shared by all of the
data sets, and more sophisticated linkage techniques need to be applied. These
techniques can be broadly classified into deterministic or rules-based approaches
(in which sets of often very complex rules are used to classify pairs of records as
links, i.e. relating to the same person or entity, or as non-links), and probabilistic
approaches (in which statistical models are used to classify record pairs). Proba-
bilistic methods can be further divided into those based on classical probabilistic
record linkage theory as developed by Fellegi €& Sunter [8], and newer approaches
using maximum entropy, clustering and other machine learning techniques [3, 6,
7,13,15,17,22,23].

Computer-assisted data linkage goes back as far as the 1950s. At that time,
most linkage projects were based on ad hoc heuristic methods. The basic ideas of
probabilistic data linkage were introduced by Newcombe & Kennedy [18] in 1962
while the theoretical foundation was provided by Fellegi & Sunter [8] in 1969.
The basic idea is to link records by comparing common attributes, which include
person identifiers (like names, dates of birth, etc.) and demographic information.
Pairs of records are classified as links if their common attributes predominantly
agree, or as non-links if they predominantly disagree. If two data sets A and B
are to be linked, record pairs are classified in a product space A x B into M,
the set of true matches, and U, the set of true non-matches. Fellegi & Sunter [8]
considered ratios of probabilities of the form

n_ PeTiM

~ P(yeI|U)

where -y is an arbitrary agreement pattern in a comparison space I". For example,
I" might consist of six patterns representing simple agreement or disagreement,
on (1) given name, (2) surname, (3) date of birth, (4) street address, (5) suburb
and (6) postcode. Alternatively, some of the v might additionally account for the
relative frequency with which specific values occur. For example, a surname value
“Miller” is normally much more common than a value “Dijkstra”, resulting in a
smaller agreement value. The ratio R or any monotonically increasing function
of it (such as its logarithm) is referred to as a matching weight. A decision rule
is then given by

if R > typper, then designate a record pair as link
if tiower < R < typper, then designate a record pair as possible link
if R < tjower, then designate a record pair as non-link



The thresholds tjoyer and typper are determined by a-priori error bounds on false
links and false non-links. If v € I" mainly consists of agreements then the ratio
R would be large and thus the record pair would more likely to be designated as
a link. On the other hand for a v € I' that primarily consists of disagreements
the ratio R would be small. The class of possible links are those record pairs for
which human oversight, also known as clerical review, is needed to decide their
final linkage status. In theory, the person undertaking this clerical review has
access to additional data (or may be able to seek it out) which enables them to
resolve the linkage status. In practice, often no additional data is available and
the clerical review process becomes one of applying human intuition, experience
or common sense to the decision based on available data.

In this paper we present some key aspects of our parallel open source data
linkage system Febrl (for “Freely extensible biomedical record linkage”), which
is implemented in the object-oriented open source scripting language Python!
and freely available from the project web page (see URL on the title page). Due
to the availability of its source code, Febrl is an ideal platform for the rapid
development and implementation of new and improved data linkage algorithms
and techniques.

After an overview of related work in Section 2, we discuss in Section 3 a
newly developed probabilistic data cleaning and standardisation method based
on hidden Markov models (HMM). The important task of blocking (or indexing),
which aims in reducing the computational complexity of the linkage process, is
the topic of Section 4, and in Section 5 we present the parallelisation techniques
used within Febrl. A random data set generator is described in Section 6, and
we conclude this paper by giving an outlook on future work in Section 7.

2 Related Work

The processes of data cleaning, standardisation and data linkage have various
names in different user communities. While statisticians and epidemiologists
speak of record or data linkage [8,10], the same process is often referred to as
data or field matching, data scrubbing, data cleaning, preprocessing, or as the
object identity problem [9,14,21] by computer scientists and in the database
community, whereas it is sometimes called merge/purge processing [12], data in-
tegration [6], list washing or ETL (extraction, transformation and loading) in
commercial processing of customer databases or business mailing lists. Histori-
cally, the statistical and the computer science community have developed their
own techniques, and until recently few cross-references could be found.
Improvements [23] upon the classical Fellegi & Sunter [8] approach include
the application of the expectation-maximisation (EM) algorithm for improved
parameter estimation [24], and the use of approximate string comparisons [19]
to calculate partial agreements when attribute values have typographical errors.
Fuzzy techniques and methods from information retrieval have recently been

! http://www.python.org



Fig. 1. Example name and address standardisation.

Name Address Date of Birth

| Doc Peter Miller || 42 Main Rd. App.3a CanberraA.C.T. 2600| | 29/4/1986 |

14 v ' r A ' \ ]
Title Givenname Surname Geocode Locality Day Month  Year

[ doctor | |peter | [ miller | | 42 Main Rd. App.3a|canberraA.CT.2600| [29] [4 ] [1986]

- - . ’
Wayfare Wayfare Wayfare » Unit 4 14 1
name type Unittype no. Localityname Territory ~Postcode

used to address the data linkage problem [3]. One approach is to represent records
as document vectors and compute the cosine distance [6] between such vectors.
Another possibility is to use an SQL like language [9] that allows approximate
joins and cluster building of similar records, as well as decision functions that
decide if two records represent the same entity. Other methods [14] include sta-
tistical outlier identification, pattern matching, clustering and association rules
based approaches.

In recent years, researchers have also started to explore the use of machine
learning and data mining techniques to improve the linkage process. The authors
of [7] describe a hybrid system that in a first step uses unsupervised clustering
on a small sample data set to create data that can be used in the second step
to classify record pairs into links or non-links. Learning field specific string-
edit distance weights [17] and using a binary classifier based on support vector
machines (SVM) is another approach. A system that is capable to link very
large data sets with billions of records — using special sorting and preprocessing
techniques — is presented in [25].

3 Probabilistic Data Cleaning and Standardisation

As most real world data collections contain noisy, incomplete and incorrectly
formatted information, data cleaning and standardisation are important pre-
processing steps for successful data linkage, and before such data can be loaded
into data warehouses or used for further analysis [21]. Data may be recorded or
captured in various, possibly obsolete, formats and data items may be missing,
out of date, or contain errors. The cleaning and standardisation of names and ad-
dresses is especially important for data linkage, to make sure that no misleading
or redundant information is introduced (e.g. duplicate records).

The main task of data cleaning and standardisation is the conversion of
the raw input data into well defined, consistent forms and the resolution of
inconsistencies in the way information is represented or encoded. The example
record shown in Figure 1 consisting of three input components is cleaned and



Fig. 2. Simple example hidden Markov model for names.

. Givenname 25% 5%
55% 85%
5%

\?/o 65% /
15% 10% 100%

Surname 75%

(end]

standardised into 14 output fields (the dark coloured boxes). Comparing these
output fields individually with the corresponding output fields of other records
results in a much better linkage quality than just comparing the whole name or
the whole address as a string with the name or address of other records.

Rule-based data cleaning and standardisation as currently done by many
commercial systems is cumbersome to set up and maintain, and often needs
adjustments for new data sets. We have recently developed (and implemented
within Febrl) new probabilistic techniques [4, 5] based on hidden Markov models
(HMMSs) [20] which showed to achieve better standardisation accuracy and are
easier to set-up and maintain compared to popular commercial linkage software.

Our approach is based on the following three steps. First, the input strings are
cleaned. This involves converting input into lower-case characters, and replacing
certain words and abbreviations with others (these replacements are listed in
look-up tables that can be edited by the user). In the second step, the input
strings are split into a list of words, numbers and characters, which are then
tagged using look-up tables (mainly for names and addresses) and some hard-
coded rules (e.g. for numbers, hyphens or commas). Thirdly, these tagged lists
are segmented into output fields using a HMM (like the one shown in Figure 2).

Let’s assume for example an input record contains the name component ’Doc
Peter Paul MILLER’. In the cleaning step the input is converted into lower-case
and the title *doc’ is replaced with the standard word ’doctor’ (as found in a
title replacement look-up table). Then, using tagging look-up tables, the input
is split into a list and each element (word) is tagged:

[’doctor’, ’peter’, ’paul’, ’miller’]
[TI?, GM2,  ceMe, SN ]

with *TI’ being the tag for title words, >GM’ the tag for male given names and
SN’ the tag for surnames. In the third step the tag list is given to a HMM (like
the one shown in Figure 2) and using the Viterbi algorithm [20] the most likely
path through the HMM gives us the corresponding output fields (the states of
the HMM):

[’doctor’, ’peter’, ’paul’, ‘miller’ ]
[’Title’, ’Givenname’, ’Middlename’, ’Surname’]

Details about how to efficiently train the HMMs for name and address stan-
dardisation, and experiments with real-world data are given in [4,5]. Training



of the HMM s is quick and does not require any specialised skills. For addresses,
our HMM approach produced equal or better standardisation accuracies than a
widely-used rule-based system. However, accuracies were worse when used with
simpler name data [4, 5].

4 Blocking, Indexing and Classification

Data linkage considers the distribution of record pairs in the product space
A x B and determines which of these pairs are links. The number of possi-
ble pairs equals the product of the sizes of the two data sets A and B. The
straight-forward approach would consider all pairs and model their distribution.
As the performance bottleneck in a data linkage system is usually the expensive
evaluation of a similarity measure between pairs of records [1], this approach
is computationally not feasible for large data sets, it is non-scalable. Linking
two data sets each with 100,000 records would result in ten billion potential
links (and thus comparisons). On the other hand, the maximum number of links
that are possible corresponds to the number of records in the smaller data set
(assuming a record can be linked to only one other record). Thus, the space
of potential links becomes sparser with increasing number of records, while the
computational efforts increase exponentially.

To reduce the huge amount of possible record comparisons, traditional data
linkage techniques [8,10,23] work in a blocking fashion, i.e. they use one or
more record attributes (e.g. the postcode and the year of birth) to split the
data sets into blocks. Only records having the same value in such a blocking
variable are then compared (as they will be in the same block). This technique
becomes problematic if a value in a blocking variable is recorded wrongly, as the
corresponding record is inserted into a different block. To overcome this problem,
several iterations with different blocking variables are normally performed.

While such blocking (or indexing) techniques should reduce the number of
comparisons made as much as possible by eliminating comparisons between
records that obviously are not links, it is important that no potential link is
overlooked because of the indexing process. Thus there is a trade-off between
(a) the reduction in number of record pair comparisons and (b) the number of
missed true matches (accuracy).

Febrl currently contains three different indexing methods, with more to be
included in the future. In fact, the exploration of improved indexing methods
is one of our major research areas [1]. The first indexing method is the stan-
dard blocking method [8, 10,23] applied in traditional data linkage systems. The
second indexing method is based on the sorted neighbourhood [13] approach,
where records are sorted alphabetically according to the values of the blocking
variable, then a sliding window is moved over the sorted records, and record
pairs are formed using all records within the window. The third method uses
g-grams (sub-strings of length ¢) and allows for fuzzy blocking (in the current
implementation we use bigrams, i.e. ¢ = 2). The values of the blocking vari-
able are converted into lists of bigrams, and permutations of sub-lists are built



using a threshold (a value between 0.0 and 1.0) of all possible permutations.
The resulting bigram sub-lists are converted back into strings and used as keys
in an inverted index (into which record numbers are stored). Such an inverted
index will then be used to retrieve the blocks. Let’s assume for example a block-
ing variable value ’peter’, and a bigram threshold set to 0.8. The bigram list
will be [’pe’,’et’,’te’,’er’] with four elements, and using the 0.8 threshold re-
sults in 4 x 0.8 = 3.2, rounded to 3, which means all sub-list permutations of
length 3 are calculated, which are: [’pe’,’et’,’te’], ['ve’,’et’,’er’], ['pe’,’te’,’er’],
and [’et’,’te’,’er’]. The record numbers of all records with a blocking variable
value ’peter’ will therefore be inserted into the four inverted index blocks with
keys ’peette’, ’‘peeter’, ‘peteer, and ’etteer’.

Initial experiments [1] showed that innovative indexing methods can im-
proved upon the traditional blocking used in data linkage, but further research
needs to be conducted. Other research groups have also investigated the use of
g-grams [3] as well as high-dimensional approximate distance metrics to form
overlapping clusters [15].

For each record pair in the index a vector containing matching weights is calcu-
lated using field comparison functions. This vector is then used to classify the
pair as either a link, non-link, or possible link (in which case the decision should
be done by a human review). While the classical Fellegi & Sunter [8] simply
sums all the weights in the vector into one matching weight, alternative classi-
fiers are possible which improve upon this. For example, separate weights can be
calculated for names and addresses [10], or machine learning techniques can be
used for the classification task. In the Febrl system currently two classifiers are
implemented. The first is the classical Fellegi & Sunter [8] classifier described
earlier, and the second is a flexible classifier that allows a flexible calculation of
the matching weights using various functions.

5 Parallelisation

Although computing power has increased tremendously in the last few decades,
large-scale data cleaning, standardisation and data linkage are still resource-
intensive processes. There have been relatively few advances over the last decade
in the way in which probabilistic data linkage is undertaken, particularly with
respect to the tedious clerical review process which is still needed to make deci-
sions about pairs of records whose linkage status is doubtful. In order to be able
to link large data sets, parallel processing becomes essential. Issues that have to
be addressed are efficient data distribution, fault tolerance, dynamic load bal-
ancing, portability and scalability (both with the data size and the number of
processors used).

Confidentiality and privacy have to be considered as data linkage deals with
partially identified data, and access restrictions are required. The use of high-
performance computing centers (which traditionally are multi-user environments)
becomes problematic. An attractive alternative are networked personal comput-



Fig. 3. Speedups for parallel internal linkage processes.

Step 1 - Loading and indexing Step 2 - Record pair comparison and classification
3 T T T 4 T T T
20,000 records —+— 20,000 records —+—
4 L
25 L 200,000 records —*— / 1 35 200,000 records —*—
3 L
£y £y
2L
3 g 2s
[ [
=% & Pas
@ 15t
15
1r 16
1 2 3 4 1 2 3 4
Number of processors Number of processors
Step 3 - One-2-one assignment and saving Total
1.5 T T T 4 T T T
20,000 records —+— 20,000 records —+—
200,000 records —k— 3571 200,000 records —k—
3l
Ey Ey
3 g 25
17 17
Q. Q.
(2 w27
15 ¢
1 b
1 2 3 4 1 2 3 4
Number of processors Number of processors

ers or workstations which are available in large numbers in many businesses and
organisations. Such office based clusters can be used as virtual parallel comput-
ing platforms to run large scale linkage tasks over night or on weekends.

Parallelism within Febrl is currently in its initial stages. Based on the well
known Message Passing Interface (MPI) [16] standard, and the Python module
Pypar? which provides bindings to an important subset of the MPI routines,
parallelism is implemented transparently to the user of Febrl.

To give an idea on the parallel performance of Febrl some initial timing re-
sults of experiments made on a parallel computing platform (a SUN Enterprise
450 shared memory (SMP) server with four 480 MHz Ultra-SPARC' II proces-
sors and 4 Giga Bytes of main memory) are presented in this section. Three
internal linkage (deduplication) processes were performed with 20,000, 100,000
and 200,000 records, respectively, from a health data set containing midwife
data records provided by the NSW Department of Health. This data set had
earlier been standardised into a clean form and was stored as a CSV (comma
separated values) text file. Six field comparison functions were used and the
classical blocking index technique with three indexes (passes) was applied. The
standard Fellegi & Sunter [8] classifier was used to classify the record pairs, and
finally a one-to-one assignment procedure [2] was applied, in order to restrict a
record in the data set to be linked to maximal one other record.

2 http://datamining.anu.edu.au/pypar/



Table 1. Memory usage for internal linkage processes (in Mega Bytes).

Number of processors 1 2 3 4

20, 000 records 60 134 188 242
100, 000 records 238 603 820 1,005
200, 000 records 906 2,130 2,829 3,495

These internal linkage processes were run using 1, 2, 3 and 4 processors,
respectively. In Figure 3 speedup (which is defined as the time on one processor
divided by the time on 2, 3, or 4 processors, respectively) results are shown
scaled by the number of records (i.e. the total elapsed run times divided by the
number of records were used to calculate the speedup). The results show that
the record comparison and classification step (which takes between 94% and 98%
of the total run times) is scalable, while building the blocking indexes and the
one-to-one assignment steps result in low speedup values and are not scalable.
As most time is spent in the record pair comparison and classification (step 2),
the overall parallel performance is quite scalable. Communication times can be
neglected as they were less than 0.35% of the total run times in all experiments.

Table 1 shows the maximal amount of memory used by these internal linkage
experiments. The amount of memory used increases more than linearly compared
with the number of records (a ten-fold increase in the number of records results
in an around fifteen-fold increase in the amount of memory needed). Addition-
ally, parallel processing in Febrl also results in an increased amount of memory
needed, which is due to the replication of various data structures on the parallel
Febrl processes.

6 Data Set Generation

As data linkage is dealing with data sets that contain partially identified data,
like names and addresses, it can be very difficult to acquire data sets for testing
and evaluating newly developed linkage algorithms and techniques. For the user
it can be difficult to learn how to apply, evaluate and customise data linkage
algorithms effectively without example data sets where the linkage status of
record pairs is known.

To overcome this we have developed a database generator based on ideas by
Hernandez & Stolfo [12]. This generator can create data sets that contain names
(based on frequency look-up tables for surnames and given names), addresses
(based on frequency look-up tables for suburbs, postcodes, street numbers and
names, and state/territory names), dates (like dates of birth), and identifier
numbers (to randomly create for example social security numbers).

To generate a data set, a user must provide the number of original and
duplicate records to be created, the maximal number of duplicates that can be
created for one original record, a probability distribution of how duplicates are
created (possible are uniform, Poisson and zipf), and the probabilities that one



10

Fig. 4. Randomly generated example data set.

rec_id, streetnum, addressl, address2, suburb, postcode
rec-0-org, 11, wylly place, inverpine ret vill, taree, 4860
rec-0-dup-0, 11, wyllyplace, inverpine ret vill, taree, 4860
rec—0-dup-1, 11, inverpine ret vill, wylly place, taree, 4860
rec-0-dup-2, 3, wylly place, inverpine ret vill, tared, 4860
rec-0-dup-3, 11, wylly parade, inverpine ret vill, taree, 4680
rec-1-org, 15, stuart street, hartford, menton, 3135
rec-2-org, 20, griffiths street, myross, kilda, 2756
rec—2-dup-0, 20, griffith sstreet, myross, kilda, 2576
rec-2-dup-1, 20, griffith street, mycross, kilda,
rec-3-org, 5, ellenborough place, elura homestead, sydney, 2212

or more of the following random modifications are introduced into duplicate
records:

— Insert a new character at a random position into a field (attribute).

— Delete a character at a random position from a field.

— Substitute a character in a field with another character (with the possibility
to set probabilities for randomly choosing a neighbouring key in the same
keyboard row or column).

— Transpose two characters at a random position in a field.

— Swap (replace) the value in a field with another value (randomly selected
from a look-up table of possible values).

— Insert a space into a field and splitting a word.

— Delete a space (if available) in a field and merging two words.

— Set a field value to missing (with a user definable missing value).

— Swap the values of two fields (e.g. surname with given name) in a record.

In a first step the original records are generated, and in a second step duplicates
of these original records are created using randomly introduced modifications.
Each of these records is given a unique identifier, which allows the evaluation of
accuracy and error rates (false linked record pairs and un-linked true matches)
for data linkage procedures.

Figure 4 shows a small example data set containing 10 records (4 originals
and 6 duplicates), randomly created using Australian address frequency look-up
tables.

7 Conclusions and Future Work

Written in an object-oriented open source scripting language, the Febrl data
linkage system is an ideal experimental platform for researchers to develop, im-
plement and evaluate new data linkage algorithms and techniques. While the
current system can be used to perform simple data cleaning, standardisation
and linkage tasks, further work needs to be done to allow the efficient linkage of
large data sets. We plan to improve Febrl in several areas.



11

For data cleaning and standardisation, we will be improving upon our re-
cently developed probabilistic techniques [4, 5] based on hidden Markov mod-
els (HMMs), by using the Baum-Welch forward-backward algorithm [20] to re-
estimate the probabilities in the HMMs, and we will explore techniques that can
be used for developing HMMs without explicitly specifying the hidden states.

We aim to further explore alternative techniques for indexing based on high-
dimensional clustering [15], inverted indexes, or fuzzy g¢-gram indexes [1,3], in
terms of their applicability for indexing as well as their scalability both in data
size and parallelism.

Current methods for record pair classification based on the traditional Fellegi
& Sunter [8] approach apply the semi-parametric mixture models and the EM al-
gorithm [24] for the estimation of the underlying densities and the clustering and
classification of links and non-links [23]. We will investigate the performance of
data mining or non-parametric techniques including tree-based classifiers, sparse
grids [11] and Bayesian Nets. An advantage of these methods is that they allow
adaptive modelling of correlated data and can deal with complex data and the
curse of dimensionality. For all these methods current fitting algorithms will be
adapted and new ones developed.

We will continue to improve upon the parallel processing functionalities of
Febrl with an emphasis on running large linkage processes on clusters of personal
computers and workstations as available in many businesses and organisations.
Such office based PC clusters (with some additional software installed) can be
used as virtual parallel computing platforms to run large scale linkage tasks
over night or on weekends. Confidentiality and privacy aspects will need to be
considered as well, as data linkage in many cases deals with identified data.

Acknowledgments

This project is funded by the Australian National University (ANU) and the New
South Wales Department of Health under an AICS (ANU-Industry Collaboration
Scheme) grant AICS #1-2001. Additional funding is provided by the Australian
Partnership for Advanced Computing (APAC).

References

1. Baxter, R., Christen, P. and Churches, T.: A Comparison of Fast Blocking Meth-
ods for Record Linkage. ACM SIGKDD ’03 Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, August 27, 2003, Washington, DC, pp. 25-27.

2. Bertsekas, D.P.: Auction Algorithms for Network Flow Problems: A Tutorial Intro-
duction. Computational Optimization and Applications, vol. 1, pp. 7-66, 1992.

3. Chaudhuri, S., Ganjam, K., Ganti, V. and Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. Proceedings of the 2003 ACM SIGMOD intern.
conference on on Management of Data, ASan Diego, USA, 2003, pp. 313-324.

4. Christen, P., Churches, T. and Zhu, J.X.: Probabilistic Name and Address Clean-
ing and Standardisation. Proceedings of the Australasian Data Mining Workshop,
Canberra, Dec. 2002.



12

5. Churches, T., Christen, P., Lim, K. and Zhu, J.X.: Preparation of name and
address data for record linkage using hidden Markov models. BioMed Cen-
tral Medical Informatics and Decision Making, Dec. 2002. Available online at:
http://www.biomedcentral.com/1472-6947/2/9/

6. Cohen, W.: Integration of heterogeneous databases without common domains using
queries based on textual similarity. Proceedings of SIGMOD, Seattle, 1998.

7. Elfeky, M.G., Verykios, V.S. and Elmagarmid, A.K.: TAILOR: A Record Linkage
Toolbox. Proceedings of the ICDE’ 2002, San Jose, USA, 2002.

8. Fellegi, I. and Sunter, A.: A theory for record linkage. In Journal of the American
Statistical Society, 1969.

9. Galhardas, H., Florescu, D., Shasha, D. and Simon, E.: An Extensible Framework
for Data Cleaning. Proceedings of the Inter. Conference on Data Engineering, 2000.

10. Gill, L.: Methods for Automatic Record Matching and Linking and their use in
National Statistics. National Statistics Methodology Series No. 25, London, 2001.

11. Hegland, M.: Adaptive sparse grids. ANZIAM J., vol. 44, 2003, pp. C335-C353.

12. Hernandez, M.A. and Stolfo, S.J.: The Merge/Purge Problem for Large Databases.
Proceedings of the ACM-SIGMOD Conference, 1995.

13. Hernandez, M.A. and Stolfo, S.J.: Real-world data is dirty: Data cleansing and
the merge/purge problem. In Data Mining and Knowledge Discovery 2, Kluwer
Academic Publishers, 1998.

14. Maletic, J.I. and Marcus, A.: Data Cleansing: Beyond Integrity Analysis. Proceed-
ings of the Conference on Information Quality (IQ2000), Boston, October 2000.
15. McCallum, A., Nigam, K. and Ungar, L.H.: Efficient clustering of high-dimensional
data sets with application to reference matching. Knowledge Discovery and Data

Mining, pp. 169-178, 2000.

16. Gropp, W., Lusk, E. and Skjellum, A.: Using MPI — 2nd Edition, Portable Parallel
Programming with the Message Passing Interface, MIT Press, 1999.

17. Nahm, U.Y, Bilenko M. and Mooney, R.J.: Two Approaches to Handling Noisy
Variation in Text Mining. Proceedings of the ICML-2002 Workshop on Text Learn-
ing (TextML’2002), pp. 18-27, Sydney, Australia, July 2002.

18. Newcombe, H.B. and Kennedy, J.M.: Record Linkage: Making Maximum Use of
the Discriminating Power of Identifying Information. Communications of the ACM,
vol. 5, no. 11, 1962.

19. Porter, E.H. and Winkler, W.E.: Approximate String Comparison and its Effect
on an Advanced Record Linkage System. Research Report RR 1997-02, US Bureau
of the Census, 1997.

20. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, vol. 77, no. 2, Feb. 1989.

21. Rahm,; E. and Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Engineering Bulletin, 2000.

22. Verykios, V.S., Elmagarmid, A.K., Elfeky, M.G., Cochinwala, M. and Dalal, S.:
On the Completeness and Accuracy of the Record Matching Process. Proceedings
of the MIT Conference on Information Quality, Boston, MA, October 2000.

23. Winkler, W.E.: The State of Record Linkage and Current Research Problems.
Research Report RR 1999-04, US Bureau of the Census, 1999.

24. Winkler, W.E.: Using the EM algorithm for weight computation in the Fellegi-
Sunter model of record linkage. Research Report RR 2000-05, US Bureau of the
Census, 2000.

25. Yancey, W.E.: BigMatch: A Program for Extracting Probable Matches from a
Large File for Record Linkage. Research Report RR 2002-01, Statistical Research
Division, US Bureau of the Census, March 2002.



