
Febrl – A parallel open sour ce
data linka ge system

Peter Christen, Tim Churches and Markus Hegland

Data Mining Group, Australian National University

Centre for Epidemiology and Research, New South Wales Department of Health

Contact: peter .christen@an u.edu.au

Project web page: http://datamining.an u.edu.au/linka ge.html

Funded by the ANU, the NSW Department of Health and the

Australian Partnership for Advanced Computing (APAC)

Peter Christen, May 2004 – p.1/15

Outline

Data cleaning and standardisation

Data linkage

Febrl overview

Probabilistic data cleaning and standardisation

Blocking / indexing

Record pair classification

Parallelisation in Febrl

Data set generation

Outlook

Peter Christen, May 2004 – p.2/15

Data cleaning and standar disation

Real world data is often dirty
Missing values

Typographical and other errors

Different coding schemes / formats

Out-of-date data

Names and addresses are especially prone to
data entry errors

Cleaned and standardised data is needed for
Loading into databases and data warehouses

Data mining and other data analysis studies

Data linkage and data integration

Peter Christen, May 2004 – p.3/15

Data cleaning and standar disation (II)

42 Main 3a 2600

26003a

App.Rd.

Miller 3a 29/4/198642 MainPeter Rd. App.

198629 4

AddressName

Geocode Locality

Doc 2600A.C.T.Canberra

Canberra A.C.T.

Title Givenname Surname YearMonthDay

PostcodeTerritoryLocalitynameno.
Unit

Unittype

42

type
WayfareWayfare

nameno.
Wayfare

peter miller

main canberra actapartmentroad

doctor 

Date of Birth

Remove unwanted characters and words

Expand abbreviations and correct misspellings

Segment data into well defined output fields

Peter Christen, May 2004 – p.4/15



Data linka ge and data integration

The task of linking together information from one
or more data sources representing the same entity

If no unique identifier is available, probabilistic
linkage techniques have to be applied

Applications of data linkage
Remove duplicates in a data set (internal linkage)

Merge new records into a larger master data set

Create customer or patient oriented statistics

Compile data for longitudinal studies

Data cleaning and standardisation are important first
steps for successful data linkage

Peter Christen, May 2004 – p.5/15

Data linka ge techniques

Deterministic or exact linkage
A unique identifier is needed, which is of high quality

(precise, robust, stable over time, highly available)

For example Medicare number (?)

Probabilistic linkage (Fellegi & Sunter, 1969)
Apply linkage using available (personal) information

Examples: name, address, date of birth

Other techniques
(rule-based, fuzzy approach, information retrieval)

Peter Christen, May 2004 – p.6/15

Febrl – Freely extensib le biomedical
recor d linka ge

An experimental platform for new and improved
linkage algorithms

Modules for data cleaning and standardisation,
data linkage, deduplication, and geocoding

Open source https://sour ceforge.net/pr ojects/f ebrl/

Implemented in Python http://www .python.or g

Easy and rapid prototype software development

Object-oriented and cross-platform (Unix, Win, Mac)

Can handle large data sets stable and efficiently

Many external modules, easy to extend

Peter Christen, May 2004 – p.7/15

Probabilistic data cleaning and
standar disation

Three step approach
1. Cleaning

– Based on look-up tables and correction lists

– Remove unwanted characters and words

– Correct various misspellings and abbreviations

2. Tagging

– Split input into a list of words, numbers and separators

– Assign one or more tags to each element of this list

(using look-up tables and some hard-coded rules)

3. Segmenting

– Use either rules or a hidden Markov model (HMM)

to assign list elements to output fields

Peter Christen, May 2004 – p.8/15



Probabilistic data cleaning and
standar disation – Example

Middlename End

Surname

Start Title

Givenname

15%

85%
5%

65%

10%

5%

5%25%

100%

20%

5%

75%

30%

55%

Uncleaned input string: ’Doc. peter Paul MILLER’

Cleaned into string: ’dr peter paul miller’

Word and tag lists:
[’dr’, ’peter’, ’paul’, ’miller’]

[’TI’, ’GM/SN’, ’GM’, ’SN’ ]

Two example paths through HMM
1: Start -> Title (TI) -> Givenname (GM) -> Middlename (GM) ->

Surname (SN) -> End

2: Start -> Title (TI) -> Surname (SN) -> Givenname (GM) ->

Surname (SN) -> End
Peter Christen, May 2004 – p.9/15

Bloc king / inde xing

Number of possible links equals the product of the
sizes of the two data sets to be linked

Performance bottleneck in a data linkage system is
usually the (expensive) evaluation of similarity
measures between record pairs

Blocking / indexing techniques are used to reduce
the large amount of record comparisons

Febrl contains (currently) three indexing methods
Standard blocking

Sorted neighbourhood approach

Fuzzy blocking using �-grams (e.g. bigrams)

Peter Christen, May 2004 – p.10/15

Recor d pair classification

For each record pair compared a vector containing
matching weights is calculated
Example:
Record A: [’dr’, ’peter’, ’paul’, ’miller’]

Record B: [’mr’, ’pete’, ’’, ’miller’]

Matching weights: [0.2, 0.8, 0.0, 2.4]

Matching weights are used to classify record pairs
as links, non-links, or possible links

Fellegi & Sunter classifier simply sums all the
weights, then uses two thresholds to classify

Improved classifiers are possible
(for example using machine learning techniques)

Peter Christen, May 2004 – p.11/15

Parallelisation

Implemented transparently to the user

Currently using MPI via Python module PyPar

Use of supercomputing centres is problematic
(privacy) � Alternative: In-house office clusters

Some initial performance results (on Sun SMP)

1

1.5

2

2.5

3

1 2 3 4

S
pe

ed
up �

Number of processors

Step 1 - Loading and indexing

20,000 records
100,000 records
200,000 records

1

1.5

2

2.5

3

3.5

4

1 2 3 4

S
pe

ed
up �

Number of processors

Step 2 - Record pair comparison and classification

20,000 records
100,000 records
200,000 records

Peter Christen, May 2004 – p.12/15



Data set generation

Difficult to acquire data for testing and evaluation
(as data linkage deals with names and addresses)

Also, linkage status is often not known
(hard to evaluate and test new algorithms)

Febrl contains a data set generator

Uses frequency table for given- and surnames, street

names and types, suburbs, postcodes, etc.

Duplicate records are created via random introduction of

modifications (like insert/delete/transpose characters,

swap field values, delete values, etc.)

Peter Christen, May 2004 – p.13/15

Data set generation – Example

Data set with 4 original and 6 duplicate records

REC_ID, ADDRESS1, ADDRESS2, SUBURB

rec-0-org, wylly place, inverpine ret vill, taree

rec-0-dup-0, wyllyplace, inverpine ret vill, taree

rec-0-dup-1, inverpine ret vill, wylly place, taree

rec-0-dup-2, wylly place, inverpine ret vill, tared

rec-0-dup-3, wylly parade, inverpine ret vill, taree

rec-1-org, stuart street, hartford, menton

rec-2-org, griffiths street, myross, kilda

rec-2-dup-0, griffith sstreet, myross, kilda

rec-2-dup-1, griffith street, mycross, kilda

rec-3-org, ellenborough place, kalkite homestead, sydney

Each record is given a unique identifier, which allows the

evaluation of accuracy and error rates for data linkage

Peter Christen, May 2004 – p.14/15

Outlook

Several research areas
Improving probabilistic data standardisation

New and improved blocking / indexing methods

Apply machine learning techniques for record pair

classification

Improve performances (scalability and parallelism)

Project web page
http://datamining.an u.edu.au/linka ge.html

Febrl is an ideal experimental platform to develop,
implement and evaluate new data standardisation and

data linkage algorithms and techniques

Peter Christen, May 2004 – p.15/15


	Outline
	Data cleaning and standardisation
	Data cleaning and standardisation (II)
	Data linkage and data integration
	Data linkage techniques
	Febrl -- Freely extensible biomedical record linkage
	Probabilistic data cleaning and standardisation
	Probabilistic data cleaning and standardisation -- Example
	Blocking / indexing
	Record pair classification
	Parallelisation
	Data set generation
	Data set generation -- Example
	Outlook

