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Abstract. This paper describes a flexible and efficient toolbox based
on the scripting language Python, capable of handling common tasks in
data mining. Using either a relational database or flat files the toolbox
gives the user a uniform view of a data collection. Two core features
of the toolbox are caching of database queries and parallelism within
a collection of independent queries. Our toolbox provides a number of
routines for basic data mining tasks on top of which the user can add
more functions – mainly domain and data collection dependent – for
complex and time consuming data mining tasks.
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1 Introduction

Due to the availability of cheap disk space and automatic data collection mech-
anisms huge amounts of data in the Terabyte range are becoming common in
business and science [7]. Examples include the customer databases of health
and car insurance companies, financial and business transactions, chemistry and
bioinformatics databases, and remote sensing data sets. Besides being used to
assist in daily transactions, such data may also contain a wealth of information
which traditionally has been gathered independently at great expense. The aim
of data mining is to extract useful information out of such large data collec-
tions [3].

There is much ongoing research in sophisticated algorithms for data min-
ing purposes. Examples include predictive modelling, genetic algorithms, neural
networks, decision trees, association rules, and many more. However, it is gen-
erally accepted that it is not possible to apply such algorithms without careful
data understanding and preparation, which may often dominate the actual data
mining activity [5, 11]. It is also rarely feasible to use off-the-shelf data mining
software and expect useful results without a substantial amount of data insight.
In addition, data miners working as consultants are often presented with data
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sets from an unfamiliar domain and need to get a good feel for the data and the
domain prior to any ”real” data mining. The ease of initial data exploration and
preprocessing may well hold the key to successful data mining results later in a
project.

Using a portable, flexible, and easy to use toolbox can not only facilitate
the data exploration phase of a data mining project, it can also help to unify
data access through a middleware library and integrate different data mining
applications through a common interface. Thus it forms the framework for the
application of a suite of more sophisticated data mining algorithms. This paper
describes the design, implementation, and application of such a toolbox in real-
life data mining consultancies.

1.1 Requirements of a Data Mining Toolbox

It has been suggested that the size of databases in an average company dou-
bles every 18 months [2] which is akin to the growth of hardware performance
according to Moore’s law. Yet, results from a data mining process should be
readily available if one wants to use them to steer a business in a timely fashion.
Consequently, data mining software has to be able to handle large amounts of

data efficiently and fast.

On the other hand, data mining is as much an art as a science, and real-life
data mining activities involve a great deal of experimentation and exploration
of the data. Often one wants to ”let the data speak for itself”. In these cases
one needs to conduct experiments where each outcome leads to new ideas and
questions which in turn require more experiments. Therefore, it is mandatory
that data mining software facilitates easy querying of the data.

Furthermore, data comes in many disguises and different formats. Examples
are databases, variants of text files, compact but possibly non-portable binary
formats, computed results, data downloaded from the Web and so forth. Data
will usually change over time – both with respect to content and representation
– as will the demands of the data miner. It is desirable to be able to access and
combine all these variants uniformly. Data mining software should therefore be

as flexible as possible.

Finally, data mining is often carried out by a group of collaborating re-
searchers working on different aspects of the same dataset. A suitable software
library providing shared facilities for access and execution of common opera-
tions leads to safer, more robust and more efficient code because the modules
are tested first by the developer and then later by the group. A shared toolbox
also tends to evolve towards efficiency because the best ideas and most useful
routines will be chosen among all tools developed by the group.

This paper describes such a toolbox – called DMtools – developed by and aimed
at a small data mining research group for fast, easy, and flexible access to large
amounts of data.



The toolbox is currently under development and a predecessor has success-
fully been applied in health data mining projects under the ACSys CRC1. It
assists our research group in all stages of data mining projects, starting from
data preprocessing, analysis and simple summaries up to visualisation and re-
port generation.

2 Related Work

Database and data mining research are two overlapping fields and there are many
publications dealing with their intersection. An overview of database mining is
given in [6]. According to the authors the efficient handling of data stored in
relational databases is crucial because most available data is in a relational form.
Scalable and efficient algorithms are one of the challenges, as is the development
of high-level query languages and user interfaces. Another key requirement is
interactivity.

A classification of frameworks for integrating data mining applications and
database systems is presented in [4]. Three classes are presented: (1) Conven-
tional – also called loosely coupled – where there is no integration between the
database system and the data mining applications. Data is read tuple by tuple
from a database, which is very time consuming. The advantage of this method is
that any application previously running on data stored in a file system can eas-
ily be changed, but the disadvantage is that no database facilities like optimised
data access or parallelism are used. (2) In the tightly coupled class data in-
tensive and time-consuming operations are mapped to appropriate SQL queries
and executed by the database management system. All applications that use
SQL extensions or propose such extensions to improve data mining algorithms
are within this class. (3) In the black box approach complete data mining algo-
rithms are integrated into the database system. The main disadvantage of such
an approach is its lack of flexibility. Following this classification, our DMtools

belong to the tightly-coupled approach, as we generate simple SQL queries and
retrieve the results for further processing in the toolbox. As the results are often
aggregated data or statistical summaries, communication between the database
and data mining contexts can be reduced significantly.

Several research papers address data mining based on SQL databases and
propose extensions to the SQL standard to simplify data mining and make it
more efficient. In [8] the authors propose a new SQL operator that enables effi-
cient extraction of statistical information which is required for several classifica-
tion algorithms. The problem of mining general association rules and sequential
patterns with SQL queries is addressed in [13], where it is shown that it is pos-
sible to express complex mining computations using standard SQL. Our data
mining toolbox is currently based on relational databases, but can also integrate

1 ACSys CRC stands for ’Advanced Computational Systems Collaborative Research
Centre’ and the data mining consultancies were conducted at the Australian National
University (ANU) in collaboration with the Commonwealth Scientific and Industrial
Research Organisation (CSIRO).



flat files. No SQL extension is needed, instead we put a layer on top of SQL
where most of the ”intelligent” data processing is done. Database queries are
cached to improve performance and re-usability.

Other toolbox approaches to data analysis include the IDEA (Interactive
Data Exploration and Analysis) system [12], where the authors identify five gen-
eral user requirements for data exploration: Querying (the selection of a subset
of data according to the values of one or more attributes), segmenting (splitting
the data into non-overlapping sub-sets), summary information (like counts or av-
erages), integration of external tools and applications, and history mechanisms.
The IDEA framework allows quick data analysis on a sampled sub-set of the
data with the possibility to re-run the same analysis later on the complete data
set. IDEA runs on a PC, with the user interacting on a graphical interface.

Yet another approach used in the Control [9] project is to trade quality and
accuracy for interactive response times, in a way that the system quickly returns
a rough approximation of a result that is refined continuously. The user can
therefore get a glimpse at the final result very quickly and use this information
to change the ongoing process. The Control system, among others, includes tools
for interactive data aggregation, visualisation and data mining.

An object-oriented framework for data mining is presented in [14]. The de-
scribed Data Miner’s Arcade provides a collection of APIs for data access,
plug’n’play type tool integration with graphical user interfaces, and for com-
munication of results. Access to analysis tools is provided without requiring the
user to become proficient with the different user interfaces. The framework is
implemented in Java.

3 Choice of Software

The DMtools are based on the scripting language Python [1], an excellent tool for
rapid code development that meets all of the requirements listed in Section 1.1
very well. Python handles large amounts of data efficiently, it is very easy to write
scripts as well as general functions, it can be run interactively (interpretable)
and it is flexible with regards to data types because it is based on general lists
and dictionaries (associative arrays), of which the latter are implemented as very
efficient hash-tables. Functions and routines can be used as templates which can
be changed and extended as needed by the user to do more customised analysis
tasks. Having a new data exploration idea in mind the data miner can implement
a rapid prototype very easily by writing a script using the functions provided by
our toolbox.

Databases using SQL are a standardised tool for storing and accessing trans-
actional data in a safe and well-defined manner. The DMtools are accessing a
relational database using the Python database API 2. Currently, we are using
MySQL [15] for the underlying database engine, but modules for other database
servers are available as well. Both MySQL and Python are freely available, li-

2 Available from the Python homepage at http://www.python.org/topics/database/
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censed as free software and enjoy very good support from a large user community.
In addition, both products are very efficient and robust.

3.1 Toolbox Architecture

In our toolbox the ease of SQL queries and the safety of relational databases
are combined with the efficiency of flat file access and the flexibility of object-
oriented programming languages in an architecture as shown in Figure 1. Based
on relational databases, flat files, the Web, or any other data source a Data

Manager deals with retrieval, caching and storage of data. It provides routines
to execute an arbitrary SQL query and to read and write binary and text files.
The two important core components of this layer are its transparent caching
mechanism and its parallel database interface which intercepts SQL queries and
parallelises them on-the-fly. The Aggregation module implements a library of
Python routines taking care of simple data exploration, statistical computa-
tions, and aggregation of raw data. The Modelling module contains functions
for parallel predictive modelling, clustering, and generation of association rules.
Finally, the Report module provides visualisation and allows facilities for simple
automatic report generation.

Functions defined in the toolbox layer are designed to deal with issues specif-
ically for a given data mining project, which means they use knowledge about
a given database structure and return customised results and plots. This layer
contains routines that are not available in standard data analysis or data mining
packages.

Example 1. Dictionary of Mental Health Medications
A central object within the domain of health statistics is a cohort, defined here
as a Python dictionary of entities like customers or patients fulfilling a given
criterion. As one task in a data mining project might be the analysis of a group
of entities (e.g. all patients taking certain medication), one can use the function
get cohort to extract such a cohort once and cache the resulting dictionary
so it is readily available for subsequent invocations. Being interested in mental



health patients, one might define a dictionary like the one shown below and use
it to get a cohort.

mental_drugs = {’Depression’: [32654, 54306, 12005, 33421],

’Anxiety’: [10249, 66241],

’Schizophrenia’: [99641, 96044, 39561]}

depressed = get_cohort(mental_drugs[’Depression’],1998)

Several kinds of analyses can be performed using a cohort as a starting point.
For example the function plot age gender(depressed) provides barplots of the
given cohort with respect to age groups and gender incorporating denominator
data if available. Another function list drug usage(depressed) gives a list
of all medication prescribed to patients in the given cohort. This list includes
description of the drug, number of patients using it, the total number of pre-
scriptions and the total cost of each drug. Routines from all modules can either
be used interactively or added to other Python scripts to build more complex
analysis tasks.

4 Caching

Caching of function results is a core technology used throughout DMtools in order
to render the database approach feasible. We have developed a methodology for
supervised caching of function results as opposed to the more common (and also
very useful) automatic disk caching provided by most operating systems and
Web browsers.

Like automatic disk caching, supervised caching trades space for time, but
the approach we use is one where time consuming operations such as database
queries or complex functions are intercepted, evaluated and the resulting ob-
jects are made persistent for rapid retrieval at a later stage. We have observed
that many of these time consuming functions tend to be called repetitively with
the same arguments. Thus, instead of computing them every time, the cached
results are returned when available, leading to substantial time savings. The
repetitiveness is even more pronounced when the toolbox cache is shared among
many users, a feature we use extensively. This type of caching is particularly
useful for computationally intensive functions with few frequently used combi-
nations of input arguments. Supervised caching is invoked in the toolbox by
explicitly applying it to chosen functions. Given a Python function of the form
T = func(arg1,...,argn) caching in its simplest form is invoked by replacing
the function call with T = cache(func,(arg1,...,argn)).

Example 2. Function Caching
Caching of a simple SQL query using the toolbox function execquery can be
done as follows:

database = ’CustomerData’

query = ’select distinct CustomerID, count(*) from %s;’ %database

customer_list = cache(execquery,(query))



Table 1. Function Caching Statistics

Function Name Hits Time (sec) Gain(%) Size (MB)
Exec Cache

execquery 4,149 130 6 91.43 4.53
get mbs patients 172 1,281 76 93.92 48.53
get selected transactions 420 1,507 5 99.33 6.67
multiquery 46 133 0 99.69 0.76
simplequery 5 50 0 99.86 0.08
get cohort 168 489 0 99.92 0.20
get drug usage 95 1,388 0 99.99 0.02

The user can take advantage of this caching technique by applying it to
arbitrary Python functions. However, this technique has already been employed
extensively in the Data Manager module so using the high level toolbox routines
will utilise caching completely transparently with no user intervention – the
caching supervision has been done in the toolbox design. For example, most of
the SQL queries that are automatically generated by the toolbox are cached
in this fashion. Generating queries automatically increases the chance of cache
hits as opposed to queries written by the end user because of their inherent
uniformity. In addition to this, caching can be used in code development for
quick retrieval of precomputed results. For example if a result is obtained by
automatically crawling the Web and parsing HTML or XML pages, caching
will help in retrieving the same information later – even if the Web server is
unserviceable at that point.

The function get cohort used in a particular project required on the average
489 seconds worth of CPU time on a Sun Enterprise server and the result took
up about 200 Kilobytes of memory. Subsequent loading takes 0.22 seconds –
more than 2,000 times faster than the computing time. This particular function
was hit 168 times in a fortnight saving four users a total of 23 hours of waiting.
Table 1 shows some caching statistics from a real-life data mining consultancy
in health services obtained from four users over two weeks. The table has one
entry for each Python function that was cached. The second column shows how
many times a particular instance of that function was hit, i.e. how many times
results were retrieved from the cache rather than being computed. The third
column shows the average CPU time which was required by instances of each
function when they were originally executed, and the fourth column shows the
average time it took to retrieve cached results for each function. The fifth column
then shows the average percentile gain ((Exec − Cache)/Exec ∗ 100) achieved
by caching instances of each function, and the sixth column shows the average
size of the cached results for each function. The table is sorted by average gain.

If the function definition changes after a result has been cached or if the
result depends on other files wrong results may occur when using caching in it
simplest form. The caching utility therefore supports specification of explicit de-
pendencies in the form of a file list, which, if modified, triggers a recomputation.



Other options include forced recomputation of functions, statistics regarding
time savings, sharing of cached results, clean-up routines and data compression.
Note that if the inputs or outputs are very large, caching might not save time
because disk access may dominate the execution time. This is due to overheads
consisting mainly of input checks, hashing and comparisons of argument list,
as well as writing and reading cache files. If caching does not lead to any time
savings, a warning is given. Very large datasets are dealt with through blocking
into manageable chunks and separate caching of these.

Example 3. Caching of XML Documents
Supervised caching is used extensively in the toolbox for database querying but
is by no means restricted to this. Caching has proven to be useful in other aspects
of the data mining toolbox as well. An example is a Web application built on top
of the toolbox which allows managers to explore and rank branches according
to one or more user-defined features such as Annual revenue, Number of cus-

tomers serviced relative to total population, or Average sales per customer. The
underlying data is historical sales transaction data which is updated monthly,
so features need only be computed once for new data when it is added to the
database. Because the data is static, cached features are never recomputed and
the application can therefore make heavy use of the cached database queries.
Moreover, no matter how complicated a feature is, it can be retrieved as quickly
as any other feature once it has been cached. In addition, the Web application
is configured through an XML document defining the data model and describ-
ing how to compute the features. The XML document must be read by the
toolbox, parsed and converted into appropriate Python structures prior to any
computations. Because response time is paramount in an interactive application,
parsing and interpretation of XML is prohibitive, but by using the caching mod-
ule, the resulting Python structures are cached and retrieved quickly enough for
the interactive application. The caching function was made dependent on the
XML file itself, so that all structures are recomputed whenever the XML file has
been edited – for example to modify an existing feature-definition, add a new
month, or change the data description. Below is a code snippet from the Web
application. The XML configuration file is assumed to reside in sales.xml. The
parser which builds Python structures from XML is called parse config and
it takes the XML filename as input. To cache this function, instead of the call
(feature list, branch list) = parse config(filename) we write:

filename = ’sales.xml’

(feature_list, branch_list) = cache(parse_config, (filename),

dependencies = filename)

5 Database Access and Parallelism

The toolbox provides powerful and easy-to-use access to an SQL database using
the Python database API. We are using MySQL but any SQL database known
to Python will do. In its simplest form it allows execution of any valid SQL



query. If a list of queries is given, they are executed in parallel by the database
server if a multiprocessor architecture is available and the results are returned
in a list.

The achievable speedup of this procedure will naturally depend on factors
such as the amount of communication and the load balancing. For large results
communication time will dominate the execution time thus reducing the speedup.
In addition, the total execution time of a parallel query is limited by the slowest
query in the list, so if the queries are very different in their complexity, speedup
will only be modest. However, a well balanced parallel query where results are of
a reasonable size can make very good use of a parallel architecture. For example,
executing a parallel query over five tables of size varying from 250 thousand to 13
million transactions took 2,280 seconds when run sequentially and 843 seconds
when run in parallel. This translates into a speedup of 2.7 on five processors or
an parallel efficiency of 0.54.

The database interface makes use of supervised caching technology and caches
the results of queries as described in the previous section. This can be en-
abled or disabled through a keyword argument in the function execquery. The
data manager module also contains a number of functions to perform standard
queries across several tables. One example is the function standardquery which
takes as input two attribute names, A1 and A2, a list of (conforming) database
tables, and an optional list of criteria to impose simple restrictions on the query.
The function returns all occurrences of attribute A2 for each distinct value of
A1 from all tables where all the given criteria are met (using conjunction). For
example, the call

standardquery(’Company’, ’Customer’, tables,

[(’Year’, 1997), (’Qtr’, 1)])

yields a count of customers for each company in the first quarter of 1997. Another
example is the function joinquery which improves the performance of of normal
SQL joins. It takes as arguments a list of fields, a list of tables, a list of joins of
the form ’table1 name.field = table2 name.field’ and a list of conditions,
and returns a dictionary of results.

6 Applications

To illustrate the application of the DMtools we give two examples designed and
used for a health services data mining consultancy. The data collection we had to
our disposal consisted of two tables, one containing medication prescriptions and
the other containing doctor consultancies by patients. In addition, we had spe-
cialty information about doctors and geographical information that associated
each post code with one of seven larger area codes (like capital, metropolitan or
rural). All patient and doctor identifiers were coded to protect individual pri-
vacy. Finally, we had data describing different drugs and different treatments
obtained from the Web.



Example 4. Doctors Prescription Behaviour
In this example, we describe how we analysed prescription patterns of specialist
doctors. The aim was to find unusual behaviour such as over-prescribing. In
particular, we wanted to know for each specialist how many patients he or she
serviced and how many of these were prescribed a particular type of medication.

For this task, we linked medication prescription information with patient
information for a user given doctor specialty. The domain specific function

get_doctor_behaviour(items, years, specialty_code)

takes as input a list of drug code items, a list of years (as we are interested in
the temporal changes in prescription behaviour over a time period) and a doctor
specialty code.

The toolbox is used as follows: First, the cohort of all patients taking med-
ications in the given items list is extracted from the medication prescription
database and the cohort of all patients seeing doctors with the particular spe-
cialty code is extracted from the doctor consultancy database. These lists are
then matched resulting in the desired table (see example below). Sorting this
table gives the highest ratio of prescriptions per patients which can lead to the
detection procedure for over-prescribing.

The first run of get doctor behaviourwith items being psycho tropic drugs
and specialty code being psychiatrists, over a five years period, required a
run time of about two hours, extracting about 115 psychiatrists, almost 10,000
patients and more than half a million transactions to analyse. Subsequent stud-
ies with different medication groups were each processed in less than a minute
thanks to caching.

Doctor Code | 1995 | 1996 | 1997 | 1998

----------------------------------------------------------------

x42r19$ | Total Patients: 424 | 450 | 241 | 199

| Mental Patients: 167 | 198 | 142 | 131

| Ratio: 39% | 44% | 59% | 66%

----------------------------------------------------------------

7%w#t0q | Total Patients: 372 | 336 | 335 | 389

| Mental Patients: 101 | 115 | 121 | 156

| Ratio: 27% | 34% | 36% | 40%

Example 5. Episode Extraction
Episodes are units of health care related to a particular type of treatment for a
particular problem. An episode may last anywhere from one day to several years.
Analysing temporal episodic data from a transactional database is a hard task
not only because there are very many episodes within a large database but also
because episodes are complex objects with different lengths and contents. To
facilitate better understanding and manipulation, the DMtools contain routines
to examine their basic characteristics, like length, number of transactions, aver-
age cost, etc. One example is the timelines diagram which displays all medical
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Fig. 2. Timelines: Medical services for two patients

transactions for a single patient split up for different groups of items as is shown
in Figure 2. Detecting and extracting episodes from a transactional database is
very time consuming and caching of such a functions is very helpful. It is feasible
to cache several hundred thousand episodes – even if the resulting cache file has
a size of hundred Megabytes – because the access time to get all these episodes
is reduced from hours to minutes.

7 Outlook and Future Work

The DMtools is a project driven by the needs of a group of researches who are
doing consultancies in health data mining. With this toolbox we try to improve
and facilitate routine tasks in data analysis, with an emphasis on the exploration
phase of a data mining project. It is important to have tools at hand that help
to analyse and get a ”feel” for the data interactively in the early stages of a data
mining project, especially if the data is provided from external sources. This is in
contrast to many data mining and knowledge discovery algorithms that aim at
extracting information automatically from the data without any guidance from
the user.

Ongoing work on the DMtools includes the extension of the toolbox with more
analysis routines and the integration of algorithms like clustering, predictive
modelling and association rules. As these processes are time consuming we are
exploring methods to integrate external parallel applications (optimised C code
using communication libraries like MPI [10]). Building graphical user interfaces
(GUI) on top of our toolbox, Web enabling interfaces and exporting results via
XML are on our wish list as is the publication of the DMtools as a package under
a free software licence.
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