Lecture outline

- Mining data streams
 - Characteristics of data streams
 - Stream data applications
 - Data stream management system
 - Challenges and methodologies of data stream processing
 - Stream data mining versus stream querying

- Link mining
 - Common link mining tasks
 - Link based object ranking and object classification
 - Link prediction

- Privacy aspects of data mining
 - Privacy and confidentiality
 - Some scenarios
 - Privacy-preserving data mining

- References and resources

Characteristics of data streams

- Data streams
 - Continuous, ordered, changing, fast, huge amount
 - In a traditional DBMS, data is stored in finite, well-defined and persistent tables
 - Characteristics
 - Huge volumes of continuous data, possibly infinite
 - Fast changing and requires fast, real-time response
 - Data stream captures nicely our data processing needs of today
 - Random access is expensive — single scan algorithm are required (can only have one look at each record)
 - Store only the summary of the data seen thus far
 - Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level (ML) and multi-dimensional (MD) processing

Stream data applications

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply and manufacturing
- Sensor, monitoring & surveillance: video streams, RFID's
- (Radio Frequency Identification)
- Security monitoring
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

Architecture: Stream query processing

- DSMS (Data Stream Management System)
- Continuous query
- Results
- Multiple streams
- Scratch Space (Main memory and/or Disk)

Challenges of stream data processing

- Multiple, continuous, rapid, time-varying, ordered streams
- Main memory computations
- Queries are often continuous
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries are often complex
 - Beyond element-at-a-time processing
 - Beyond stream-at-a-time processing
 - Beyond relational queries
- Approximate query answering
 - With bounded memory, it is not always possible to produce exact answers (high quality approximate answers are desired)
Methodologies for stream data processing

- Major challenge
 - Keep track of a large universe (e.g., IP address, not ages)

- Methodology
 - Synopses (trade-off between accuracy and storage)
 - Use synopsis data structure, much smaller (O(log kN) space) than their base data set (O(N) space), with k the number of elements in the stream data.
 - Compute an approximate answer within a small error range (factor of the actual answer)

- Major methods
 - Random sampling (maintain a set of candidates in memory)
 - Histograms (approximate frequency distribution of values in stream)
 - Sliding windows (make decision based on only recent data)
 - Multi-resolution models (balanced trees, wavelets, micro-clusters)
 - Sketches (summarises data, can be done in one pass)
 - Randomised algorithms (Monte Carlo algorithm, bound on run time)

Stream data mining versus stream querying

- Stream mining is a more challenging task in many cases
 - It shares most of the difficulties with stream querying
 - But often requires loss of precision; for example, no join, grouping, sorting
 - Patterns are hidden and more general than querying
 - It may require exploratory analysis (not necessarily continuous queries)
 - Change in data characteristics: Concept drift

- Stream data mining tasks
 - Frequent patterns in data streams (approximate frequent patterns only)
 - Mining outliers and unusual patterns in stream data
 - Classification of stream data (approximate decision trees, classifier ensemble)
 - Clustering data streams

Multi-dimensional stream analysis: Examples

- Analysis of Web click streams
 - Raw data at low levels: seconds, Web page addresses, user IP addresses, IP port numbers, etc.
 - Analysts want: changes, trends, unusual patterns, at reasonable levels of details
 - For example: Average clicking traffic in North America on sports in the last 15 minutes is 40% higher than that in the last 24 hours

- Analysis of power consumption streams
 - Raw data: power consumption flow for every household, every minute
 - Patterns one may find: average hourly power consumption surge up 30% for manufacturing companies in Chicago in the last 2 hours today than that of the same day a week ago

Link / Network mining

- Heterogeneous, multi-relational data is represented as a graph or network
 - Nodes are objects
 - May have different kinds of objects
 - Objects have attributes
 - Objects may have labels or classes
 - Edges are links
 - May have different kinds of links
 - Links may have attributes
 - Links may be directed, are not required to be binary

 - Links represent relationships and interactions between objects - rich content for data mining

What is new for link mining?

- Traditional machine learning and data mining approaches assume:
 - A random sample of homogeneous objects from a single relation

- Real world data sets:
 - Multi-relational, heterogeneous and semi-structured

- Link Mining
 - Newly emerging research area at the intersection of research in social network and link analysis, hypertext and web mining, graph mining, and relational learning

Common link mining tasks

- Object-Related Tasks
 - Link-based object ranking
 - Link-based object classification
 - Object clustering (group detection)
 - Object identification (entity resolution)

- Link-Related Tasks
 - Link prediction

- Graph-Related Tasks
 - Subgraph discovery
 - Graph classification
 - Generative model for graphs
What is a link in link mining?

- Link: relationship among data
- Two kinds of linked networks
 - Homogeneous vs. Heterogeneous
- Homogeneous networks
 - Single object type and single link type
 - Single model social networks (e.g., friends)
 - WWW: a collection of hyper-linked Web pages
- Heterogeneous networks
 - Multiple object and link types
 - Medical network: patients, doctors, disease, contacts, treatments
 - Bibliographic network: publications, authors, venues, affiliations; co-authorship relations, published in/at relations

Link-based object ranking (LBR)

- LBR: Exploit the link structure of a graph to order or prioritize the set of objects within the graph
 - Focused on graphs with single object type and single link type
- This is a primary focus of link analysis community
- Web information analysis
 - PageRank (Google) and Hits (Hyperlink-Induced Topic Search) are typical LBR approaches
- In social network analysis (SNA), LBR is a core analysis task
 - Objective: rank individuals in terms of “centrality”
 - Rank objects relative to one or more relevant objects in the graph vs. ranks object over time in dynamic graphs

Link-based object classification (LBC)

- Predicting the category of an object based on its attributes, its links and the attributes of linked objects
- Web: predict the category of a web page, based on words that occur on the page, links between pages, anchor text, HTML tags, etc.
- Citation: predict the topic of a paper, based on word occurrence, citations, co-citations
- Epidemics: Predict disease type based on characteristics of the patients infected by the disease
- Communication: Predict whether a communication contact is by email, phone call or mail

Link prediction

- Predict whether a link exists between two entities, based on attributes and other observed links
- Applications
 - Web: predict if there will be a link between two pages
 - Citation: predicting if a paper will cite another paper
 - Epidemics: predicting who a patient’s contacts are
- Methods
 - Often viewed as a binary classification problem
 - Local conditional probability model, based on structural and attribute features
 - Difficulty: sparseness of existing links
 - Collective prediction, e.g., Markov random field model

Use of labeled and unlabeled data

- In link-based domains, unlabeled data provide three sources of information:
 - Links between unlabeled data allow us to make use of attributes of linked objects
 - Links between labeled data and unlabeled data (training data and test data) help us make more accurate inferences
 - Knowledge is power, but knowledge is hidden in massive links

Privacy and confidentiality

- Privacy of individuals
 - Identifying information: Names, addresses, telephone numbers, dates-of-birth, driver license, racial/ethnic origin, family histories, political and religious beliefs, trade union memberships, health, sexual orientation, income, ...
 - Some of this information is publicly available, other is not
 - Individuals are happy to share some information with others (to various degrees)
- Confidentiality in organisations
 - Trade secrets, corporate plans, financial status, planned collaborations, ...
 - Collect and store information about many individuals (customers, patients, employees)
- Conflict between individual privacy and information collected by organisations
 - Privacy-preserving data mining and data sharing main ingredient when applied between organisations (businesses, government agencies)
More real world scenarios (data sharing)

- Data sharing between companies
 - Two pharmaceutical companies are interested in collaborating on the development of new drugs.
 - Companies wish to identify how much overlap of confidential research data there is in their databases (but without having to reveal any confidential data to each other).
 - Techniques are needed that allow sharing of large amounts of data in such a way that similar data items are found (and revealed to both companies) while all other data is kept confidential.

- Geocoding cancer register addresses
 - Limited resources prohibit the register to invest in an in-house geocoding system.
 - Alternative: The register has to send their addresses to an external geocoding service/company (but regulatory framework might prohibit this).
 - Complete trust needed in the capabilities of the external geocoding service to conduct accurate matching, and to properly destroy the register's address data afterwards.

Goals of privacy-preserving data mining

- Privacy and confidentiality issues normally do not prevent data mining
 - Aim is often summary results (clusters, classes, frequent rules, etc.)
 - Results often do not violate privacy constraints (they contain no identifying information)
 - But, certain rules or classification outcomes might compromise confidentiality
 - But: Certain techniques (e.g. outlier detection) aim to find specific records (fraudulent customers, potential terrorists, etc.)
 - Also, often detailed records are required by data mining algorithms
 - The problem is: How to conduct data mining without accessing the identifying data
 - Legislation and regulations might prohibit access to data (especially between organisations or countries)
 - Main aim is to develop algorithms to modify the original data in some way, so that private data and private knowledge remain private even after the mining process.

Privacy-preserving data mining techniques (1)

- Many approaches to preserve privacy while doing data mining
 - Distributed data: Either horizontally (different records reside in different locations) or vertically (values for different attributes reside in different locations)

- Data modifications and obfuscation
 - Perturbation (changing attribute values, e.g. by specific new values – mean, average – or randomly)
 - Blocking (replacement of values with for example a *)
 - Aggregation (merging several values into a coarser category, similar to concept hierarchies)
 - Swapping (interchanging values of individual records)
 - Sampling (only using a portion of the original data for mining)

- Problems: Does this really protect privacy? Still good quality data mining results?
Privacy-preserving data mining techniques (2)

- Data summarisation
 - Only the needed facts are released at a level that prohibits identification of individuals.
 - Provide overall data collection statistics
 - Limit functionality of queries to underlying databases (statistical queries)
 - Possible approach: k-anonymity (L. Sweeney, 2001): any combination of values appears at least k times

- Problems
 - Can identifying details still be deducted from a series of such queries?
 - Is the information accessible sufficient to perform the desired data mining task?

Privacy-preserving data mining techniques (3)

- Data separation
 - Original data held by data creator or data owner
 - Private data is only given to a trusted third party
 - All communication is done using encryption
 - Only limited release of necessary data
 - Data analysis and mining done by trusted third party

- Problems
 - This approach secures the data sets, but not the potential results!
 - Mining results can still disclose identifying or confidential information
 - Can and will the trusted third party do the analysis?
 - If several parties involved, potential of collusion by two parties

Privacy-preserving approaches for association rule mining, classification, clustering, etc. have been developed

Secure multi-party computation

- Aim: To calculate a function so that no party learns the values of the other parties, but all learn the final result
 - Assuming semi-honest behaviour: Parties follow the protocol, but they might keep intermediate results

- Example: Simple secure summation protocol (Alan F. Karr, 2005)
 - Consider $K > 2$ cooperating parties (businesses, hospitals, etc.)
 - Aim: to compute $v = \sum_{i=1}^{K} v_i$ so that no party learns other parties v_i
 - Step 1: Party 1 generates a large random number R, with $R \gg v$
 - Step 2: Party 1 sends $(v_1 + R)$ to party 2
 - Step 3: Party 2 adds v_2 to $v_1 + R$ and sends $(v_1 + v_2 + R)$ to party 3 (and so on)
 - Step $K+1$: Party K sends $(v_1 + v_2 + \ldots + v_K + R)$ back to party 1
 - Last step: Party 1 subtracts R and gets final v, which it then sends to all other parties

References and resources (1)

- Data mining books:

- Web resources:
 - www.kdnuggets.com (Email newsletter, courses, jobs, conferences)
 - www.kmimining.com (conference calendar, people)
 - www.togaware.com (Graham Williams, Australian Taxation Office)

References and resources (2)

- Open source data mining software:
 - Rattle (R based): www.togaware.com/rattle (Graham Williams, Australian Taxation Office)
 - Weka (Java based): http://www.cs.waikato.ac.nz/ml/weka/ (University of Waikato, NZ and Pentaho)
 - KNIME (Java based): www.knime.org (University of Konstanz, Germany)

- Conferences and journals
 - ACM SIGKDD: www.sigkdd.org (also Explorations news letter)
 - IEEE ICDM: http://www.cs.uvm.edu/~icdm/
 - Springer Data Mining and Knowledge Discovery: http://www.springerlink.com/content/100254
 - Springer Knowledge and Information Systems: http://springerlink.metapress.com/content/105441/
 - IEEE Transactions on Knowledge and Data Engineering: http://www.computer.org/tkde