
ANU MLSS 2010:
Data Mining

Part 2: Association rule
mining

Lecture outline

• What is association mining?
• Market basket analysis and association rule examples

• Basic concepts and formalism
• Basic rule measurements

• The Apriori algorithm

• Performance bottlenecks in Apriori
• Multi-level and multi-dimensional association mining

• Quantitative association mining
• Constraint based mining

• Visualising association rules

What is association mining?

• Association mining is the task of finding frequent rules /
 associations / patterns / correlations / causual structures within
 (large) sets of items in transactional (relational) databases

• Unsupervised learning techniques (descriptive data
 mining, not predictive data mining)

• The main applications are
• Market basket analysis (customers who buys X also buys Y)

• Web log analysis (click-stream)

• Cross-marketing

• Sale campaign analysis

• DNS sequence analysis

Market basket analysis

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Association rules examples
• Rules form: body Þ head [support, confidence]
• Market basket:
 buys(X, `beer') Þ buys(X, `snacks') [1%, 60%]

• If a customer X purchased `beer', in 60% she or he also purchased
`snacks'

• 1% of all transactions contain the items `beer' and `snacks'

• Student grades:
 major(X, `MComp') and takes(X, `COMP8400') Þ
 grade(X, `D') [3%, 60%] *

• If a student X, who's degree is `MComp', took the course `COMP8400' she
 or he in 60% achieved a grade `D'

• The combination `MComp', `COMP8400' and `D' appears in 3% of all
 transactions (records) in the database

Basic concepts

• Given:
• A (large) database of transactions

• Each transaction contains a list of one or more items (e.g. purchased by a
 customer in a visit)

• Find the rules that correlate the presence of one set of
 items with that of another set of items

• Normally one is only interested in rules that are frequent
• For example, 70% of customers who buy tires and car accessories also get
 their car service done

 Question: How can this be improved to 80%? Possibly offer special deals
 like a 15% reduction of tire costs when the service is done

Formalism

• Set of items X = {x
1
, x

2
, ..., x

k
}

• Database D containing transactions

• Each transaction T is a set of items, such that T is a subset of X

• Each transaction is associated with a unique identifier,
 called TID (for example, a unique number)

• Let A be a set of items (a subset of X)

• An association rule is an implication of the form A Þ B,
 where A is a subset of X and B is a subset of X, and the
 intersection of A and B is empty

• No item in A can be in B, and vice versa

• No rule of the form: {`beer', `chips'} Þ {`chips', `peanuts'}

Basic rule measurements

• A rule A Þ B holds in a database D with support s,
 with s being the percentage of transactions in D that
 contain A and B

 support(A Þ B) = P(A U B)

• The rule A Þ B has a confidence c in a database D if c is
 the percentage of transactions in D containing A that also
 contain B

 confidence(A Þ B) = P(B|A) = P(A U B) / P(A)
 confidence(A Þ B) = support(A Þ B) / support(A)

Rule measurements example

• Find all the rules {X, Y} Þ Z with
 minimum confidence and support
• Support, s, is the probability that a
 transaction contains {X, Y, Z}
• Confidence, c, is the conditional
 probability that a transaction having
 {X, Y} also contains Z

Let minimum support = 50%, and
minimum confidence = 50%, so
we have ([s, c]):

• a Þ c [50%, 66.67%]

• c Þ a [50%, 100%]

Customer
buys diaper

Customer
buys both

Customer
buys beer

Source: Han and Kamber, DM Book, 1st Ed.

Transaction ID Items Bought

2000 a, b, c

1000 a, c

4000 a, d

5000 b, e, f

Rule measurements example (2)

• Minimum support = 50% and confidence = 50%
• Rule a Þ c

• support (a Þ c): 50%
• confidence (a Þ c) = support(a Þ c) / support(a) =
 50% / 75% = 66.67%

Transaction ID Items Bought

2000 a, b, c

1000 a, c

4000 a, d

5000 b, e, f

Itemset Support

a 75.00%

b 50.00%

c 50.00%

a, c 50.00%

Mining frequent item sets
• Key step: Find the frequent sets of items that have
 minimum support (appear in at least xx% of all transactions in a database)

• Basic principle (Apriori principle): A sub-set of a frequent
 item set must also be a frequent item set

• For example, if {a,b} is frequent, both {a} and {b} have to be frequent
 (if `beer' and 'chips' are purchased frequently together, then `beer' is
 purchased frequently and `chips' are also purchased frequently)

• Basic approach: Iteratively find frequent item sets with
 cardinality from 1 to k (k-item sets), k > 1

• Use the frequent item sets to generate association rules
• For example, frequent 3-item set {a,b,c} contains rules:
 a Þ c, b Þ c, a Þ b, {a,b} Þ c, {a,c} Þ b, {b,c} Þ a, etc.

• We are normally only interested in longer rules (with all except
 one element on the left-hand side)

The Apriori algorithm (Agrawal & Srikant, VLDB'94)

• Ck : Candidate item set of size k
 Lk : Frequent item set of size k

• Pseudo-code:

L1 = {frequent items};
for (k = 1; Lk � != { }; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1

 that are contained in t
 Lk+1 = candidates in Ck+1 with min_support
 end do
return � k Lk;

The Apriori algorithm – An example (sup=50%)

TID Items
100 a,c,d
200 b,c,e
300 a,b,c,e
400 b,e

Database D sup.
{a} 2
{b} 3
{c} 3
{d} 1
{e} 3

itemset
itemset sup.

{a} 2
{b} 3
{c} 3
{e} 3

Scan D

C1
L1

itemset

{a, b}

{a, c}

{a, e}

{b, c}
{b, e}

{c, e}

itemset sup

{a, b} 1

{a, c} 2

{a, e} 1

{b, c} 2

{b, e} 3

{c, e} 2

sup
{a, c} 2
{b, c} 2
{b, e} 3
{c, e} 2

itemset
L2

C2 C2

Scan D

C3

L3

{b, c, e}
itemset Scan D itemset sup

{b, c, e} 2
sup

{b, c, e} 2
itemset

C3

The Apriori algorithm – An example (2)

TID Items
100 a,c,d
200 b,c,e
300 a,b,c,e
400 b,e

Database D
itemset sup
{b, c, e} 2

L3

• Minimum support = 50% and minimum
 confidence = 50%
• Rules:

• b Þ c [50%, 66.67%]

• b Þ e [75%, 100%]

• c Þ e [50%, 66.67%]

• {b, c} Þ e [50%, 100%]

• {b, e} Þ c [50%, 66.67%]

• {c, e} Þ b [50%, 100%]

Important details of the Apriori algorithm

• How to generate candidate sets?
• Step 1: Self-joining L

k
 (Ck is generated by joining Lk-1with itself)

• Step 2: Pruning (any (k-1)-item set that is not frequent cannot be a
 subset of a frequent k-item set)

• Example of candidate generation:
• L3

 = {{a,b,c}, {a,b,d}, {a,c,d}, {a,c,e}, {b,c,d}}

• Self-joining: L
3
 * L

3
 ({a,b,c,d} from {a,b,c} and {a,b,d}, and {a,c,d,e} from

 {a,c,d} and {a,c,e})

• Pruning: {a,c,d,e} is removed because {a,d,e} is not in L
3

• C4
 = {{a,b,c,d}}

• How to count supports for candidates?

How to generate candidate item-sets?

• Suppose the items in Lk-1 are listed in an order (e.g. a < b)

• Step 1: Self-joining Lk-1
insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1= q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

•Step 2: Pruning
forall item sets c in Ck do

forall (k-1)-sub-sets s of c do
if (s is not in Lk-1) then delete c from Ck

Apriori performance bottlenecks

� The core of the Apriori algorithm is to
� Use frequent (k-1) item sets to generate candidate frequent k item sets
� Use database scan and pattern matching to collect counts for candidate

item sets

� Candidate generation is the main bottleneck
� 104 frequent 1-item sets (sets of length 1) will generate 107 candidate

2-item sets!
� To discover a frequent pattern of size 100 (for example {a

1
, a

2
, ..., a

100
})

one needs to generate 2100 = 1030 candidates
� Multiple scans of the database are needed (n+1 scans if the longest

pattern is n items long)

Methods to improve Apriori's efficiency

• Reduce the number of scans of the database
• Any item set that is potentially frequent in the database must be frequent in
 at least one of the partitions of the database

• Scan 1: Partition database and find local frequent patterns

• Scan 2: Consolidate global frequent patterns

• Shrink number of candidates
• Select a sample of the database, mine frequent patterns within sample
 using Apriori

• Scan database once to verify frequent item sets found in sample

• Scan database again to find missed frequent patterns

• Facilitate support of counting candidates
• For example, use special data structures like Frequent-Pattern tree
 (FP-tree)

Multi-level association mining
• Items often form hierarchies

• Items at lower levels are expected to have lower support
• Flexible support setting (uniform, reduced, or group-based (user specific))

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Multi-level association mining (2)

• Some rules may be redundant due to ancestor
 relationships between items

• For example:
 buys(X, `milk') Þ buys(X, `bread') [8%, 70%]
 buys(X, `skim milk') Þ buys(X, `bread') [2%, 72%]

• The first rule is said to be an ancestor of the second rule

• A rule is redundant if its support is close to the “expected”
 value, based on the rule’s ancestor

• For example, if around 25% of all milk purchased is `skim milk', then the
 second rule above is redundant, as it has a ¼ of the support of the first,
 more general rule (and similar confidence)

Multi-dimensional association mining

� Single-dimensional rules: buys(X, `milk') Þ buys(X, `bread')
� Multi-dimensional rules: Two or more dimensions or
 predicates (or attributes)

� Inter-dimension association rules (no repeated predicates):
age(X, `19-25') and occupation(X, `student') Þ buys(X, `coke')

� Hybrid-dimension association rules (repeated predicates):
age(X, `19-25') and buys(X, `popcorn') Þ buys(X, `coke')

� Categorical Attributes: finite number of possible values,
 no ordering among values (data cube approach)
� Quantitative Attributes: numeric, implicit ordering among
 values (discretisation, clustering, etc.)

Quantitative association mining

� Techniques can be categorised by how numerical
 attributes, such as age or income, are treated
� Static discretisation based on predefined concept
 hierarchies
� Dynamic discretisation based on data distribution

� A
quant1

 and A
quant2

 Þ A
cat

� Example: age(X, `19-25') and income(X, `40K-60K') Þ� buys(X, `HDTV')

� For quantitative rules, do discretisation such that (for
 example) the confidence of the rules mined is maximised

Mining interesting correlation patterns

• Flexible support
• Some items might be very rare but are valuable (like diamonds)

• Customise support
min

 specification and application

• Top-k frequent patterns
• It can be hard to specify support

min
, but top-k rules with length

min
 are

 more desirable

• Achievable using special data structures, like Frequent-Pattern (FP) tree

• Dynamically raise support
min

during FP-tree construction phase, and

 select most promising to mine

Constraint based data mining

• Finding all the frequent rules or patterns in a database
 autonomously is unrealistic

• The rules / patterns could be too many and not focussed

• Data mining should be an interactive process

• The user directs what should be mined using a data
 mining query language or a graphical user interface

• Constraint-based mining
• User flexibility: provides constraints on what to be mined (and what not)

• System optimisation: explores such constraints for efficient mining

Constraints in data mining

• Knowledge type constraint
• Correlation, association, etc.

• Data constraint (use SQL like queries)
• For example: Find product pairs sold frequently in both stores in Sydney
 and Melbourne

• Dimension / level constraint
• In relevance to region, price, brand, customer category, etc.

• Rule or pattern constraint
• Small sales (price < $10) trigger big sales (sum > $200)

• Interestingness constraint
• Strong rules only: support

min
 > 3%, confidence

min
 > 75%

Visualisation of association rules (1) Visualisation of association rules (2)

Visualisation of association rules (3)

•Click to add an outline

