Automatic Record Linkage using Seeded Nearest Neighbour and SVM Classification

Peter Christen

Department of Computer Science, ANU College of Engineering and Computer Science, The Australian National University, Canberra, Australia

Contact: peter.christen@anu.edu.au

Funded by the Australian National University, the New South Wales Department of Health, and the Australian Research Council (ARC) under Linkage Project 0453463.

Outline

- Record linkage and its challenges
- The record linkage process
- Record pair comparison and classification
- Records and weight vectors example
- Two-step classification approach
- Experimental results
- Outlook and future work

Record linkage and its challenges

- The process of linking and aggregating records that represent the same entity (such as a patient, a customer, a business, etc.)
- Also called data matching, data scrubbing, entity resolution, object identification, merge-purge, etc.
- Has several major challenges
 - Real world data is dirty (typographical errors and variations, missing and out-of-date values, etc.)
 - Scalability (naive comparison of all record pairs is $O(n^2)$, so some form of blocking or indexing is required)
 - No training data available in many application areas (no data sets with known true match status)

The record linkage process

- Pairs of records are compared field (attribute) wise using various field comparison functions
 - Such as exact or approximate string (edit-distance, q-gram, Winkler), numeric, age, date, time, etc.
 - Return 1.0 for exact similarity, 0.0 for total dissimilarity
- For each compared record pair, a weight vector containing matching weights is calculated
- Record pairs are then classified into matches, non-matches (and possible matches)
- Various techniques have been explored: Summing and threshold based, decision trees, SVM, clustering, etc.

Record pair comparison and classification

- Database A
- Cleaning and standardisation
- Blocking / indexing
- Weight vector classification
- Field comparison
- Matches
- Non-matches
- Possible matches
- Clerical review
- Evaluation

Records and weight vectors example

<table>
<thead>
<tr>
<th>R1</th>
<th>Christine</th>
<th>Smith</th>
<th>47</th>
<th>Main</th>
<th>Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>Christina</td>
<td>Smith</td>
<td>47</td>
<td>Main</td>
<td>St</td>
</tr>
<tr>
<td>R3</td>
<td>Bob</td>
<td>O'Brian</td>
<td>11</td>
<td>Smith</td>
<td>Rd</td>
</tr>
<tr>
<td>R4</td>
<td>Robert</td>
<td>Bryce</td>
<td>12</td>
<td>Smythe</td>
<td>Road</td>
</tr>
</tbody>
</table>

WV(R1,R2): [0.9, 1.0, 1.0, 1.0, 0.9]
WV(R1,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R1,R4): [0.0, 0.0, 0.5, 0.0, 0.0]
WV(R2,R3): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R2,R4): [0.0, 0.0, 0.0, 0.0, 0.0]
WV(R3,R4): [0.7, 0.3, 0.5, 0.7, 0.9]
Two-step classification approach

1. Select weight vectors into seed training sets
 - Weight vectors closest to the exact match vector into the match seed training set
 - Weight vectors closest to the total dissimilarity weight vector into the non-match seed training set
2. Start binary classification using seed training sets
 - Nearest neighbor: Iteratively add not yet classified weight vector closest to a training set into it
 - Iterative SVM: Train an SVM, then add the weight vectors furthest away from the decision boundary into the training sets, then train a new SVM

Experimental results

- All techniques are implemented in the Febri open source record linkage system (available from: https://sourceforge.net/projects/febrli/
- Experiments using both real and synthetic data (Secondstring repository and Febri data set generator)
- The proposed two-step approach is compared with two other classifiers
 - Support vector machine (SVM) (supervised)
 - Hybrid TAILOR approach (k-means followed by SVM)
- F-measure used to evaluate classifier results
 (minimum, average and maximum values shown in graphs)

Classification results for ‘Cora’

- 'Cora' data set (1295 records)

Classification results for ‘Restaurant’

- 'Restaurant' data set (664 records)

Results for synthetic data sets

- Average of the four ‘DS-Gen’ data sets

Outlook and future work

- The proposed two-step record pair classification approach shows promising results
- Can automatically select good quality training examples
- Can achieve better results than other unsupervised classification techniques
- Improvements for second step (classification)
 - Implement data reduction and fast indexing techniques to improve performance and scalability
 - Investigate how this approach can be combined with active learning
- Conduct more experiments on larger data sets