
A Comparison of Fast Blocking Methods for Record
Linkage

Rohan Baxter
CSIRO Mathematical and

Information Sciences
GPO Box 664

Canberra ACT 2601, Australia

Rohan.Baxter@csiro.au

Peter Christen
∗

Dept. of Computer Science
Australian National University
Canberra ACT 0200, Australia

christen@cs.anu.edu.au

Tim Churches
Centre for Epidemiology

and Research
NSW Department of Health

Locked Bag 961
North Sydney 2059, Australia

tchur@doh.health.nsw.gov.au

ABSTRACT
Blocking methods are used in record linkage systems to re-
duce the number of candidate record comparison pairs to
a feasible number whilst still maintaining linkage accuracy.
Blocking methods partition the data sets into blocks or clus-
ters of records which share a blocking attribute or are oth-
erwise similar with respect to a defined criterion.

We compare two new blocking methods, bigram indexing
and canopy clustering with TFIDF (Term Frequency/Inverse
Document Frequency), with two older methods of standard
traditional blocking and sorted neighbourhood blocking. The
results show that recently blocking methods such as bigram
indexing and canopy clustering provide scalable blocking
methods while maintaining or improving upon record link-
age accuracy. There is a potential for large performance
speed-ups and better accuracy to be achieved by these new
blocking methods.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering; H.3.3 [Information
Storage and Retrieval]: Information Storage and Re-
trieval—clustering

General Terms
Performance Evaluation

Keywords
Record linkage, object reconciliation, data integration

∗The development of the Febrl record linkage system was
funded by the Australian National University (ANU) and
the NSW Department of Health under contract AICS #1-
2001. Additional funding was provided by the Australian
Partnership for Advanced Computing (APAC).

1. INTRODUCTION
Record linkage techniques are used to link together records
which relate to the same entity (e.g. patient or customer)
in one or more data sets where a unique identifier is not
available. As potentially each record in one data set has to
be compared to all records in a second data set, the num-
ber of record pair comparisons grows quadratically with the
number of records to be matched. This approach is compu-
tationally infeasible for large data sets. To reduce the num-
ber of possible record pair comparisons, traditional record
linkage techniques work in a blocking fashion, i.e. they use a
record attribute (or sub-set of attributes) to split the data
sets into blocks.

We focus on comparing the speed and accuracy of new block-
ing methods with established blocking method implementa-
tions. The performance bottleneck in a record linkage sys-
tem is usually the evaluation of a similarity measure between
pairs of records. The choice of a good blocking method
can greatly reduce the number of record pair evaluations to
be performed and so achieve significant performance speed-
ups. We consider alternative clustering methods for forming
blocks in the record linkage process. Recent work by Mc-
Callum, Nigam and Unger[7], Cohen and Richman[2], and
others have proposed the use of high-dimensional similar-
ity indexing to improve the efficiency of blocking methods.
The similarity of blocking to clustering has been observed
previously [2, 7].

We compare Standard Blocking [6], the Sorted Neighbour-
hood method [5], Bigram Indexing [1] and Canopy Cluster-
ing with TFIDF [7]. This paper’s contribution is to empir-
ically compare the speed-up and accuracy (sensitivity and
specificity) performance of these blocking methods. Block-
ing methods directly affect sensitivity (if record pairs of true
matches are not in the same block, they will not be compared
and can never be matched) and indirectly affect specificity
(as a better reduction ratio of the number of record pair com-
parisons allows more computationally intensive comparators
to be employed).

2. BLOCKING METHODS
The Standard Blocking (SB) method clusters records into
blocks where they share the identical blocking key [6]. A

blocking key is defined to be composed from the record
attributes in each data set. Assuming two data sets with
n records each are to be linked, and the blocking method
resulted in b blocks (all of the same size containing n/b
records), the resulting number of record pair comparisons

is O(n2

b
) [3]. This is of course the ideal case, hardly ever

achievable with real data. Thus, the number of record pair
comparisons can be dominated by the the largest block.

The Sorted Neighbourhood (SN) method [5] sorts the records
based on a sorting key and then moves a window of fixed
size w sequentially over the sorted records. Records within
the window are then paired with each other and included
in the candidate record pair list. The use of the window
limits the number of possible record pair comparisons for
each record to 2w− 1. The resulting total number of record
pair comparisons (assuming two data sets with n records
each) of the sorted neighbourhood method is O(wn) [3].

2.1 Bigram Indexing
The Bigram Indexing (BI) method as implemented in the
Febrl [1] record linkage system allows for fuzzy blocking. The
basic idea is that the blocking key values are converted into a
list of bigrams (sub-strings containing two characters) and
sub-lists of all possible permutations will be built using a
threshold (between 0.0 and 1.0). The resulting bigram lists
are sorted and inserted into an inverted index, which will
be used to retrieve the corresponding record numbers in a
block.

The number of sub-lists created for a blocking key value both
depends on the length of the value and the threshold. The
lower the threshold the shorter the sub-lists, but also the
more sub-lists there will be per blocking key value, resulting
in more (smaller blocks) in the inverted index. In the infor-
mation retrieval field, bigram indexing has been found to be
robust to small typographical errors in documents [2]. Like
standard blocking, the number of record pair comparisons
with two data sets with n records each, b blocks all contain-

ing the same number of records is O(n2

b
) [3]. However, as

discussed above the number of blocks b will much larger in
bigram indexing.

2.2 Canopy Clustering with TFIDF
Canopy Clustering with TFIDF (Term Frequency/Inverse
Document Frequency) forms blocks of records based on those
records placed in the same canopy cluster. A canopy cluster
is formed by choosing a record at random from a candi-
date set of records (initially, all records) and then putting
in its cluster all the records within a certain loose thresh-
old distance of it. The record chosen at random and any
records within a certain tight threshold distance of it are
then removed from the candidate set of records. We use the
TFIDF distance metric, where bigrams are used as tokens.
The algorithm and details are found in [2, 7].

The number of record pair comparisons resulting from canopy

clustering is O(fn2

c
) [7] where n is the number of records in

each of the two data sets, c is the number of canopies and f
is the average number of canopies a record belongs to. The
threshold parameter should be set so that f is small and
c is large, in order to reduce the amount of computation.

●

● ● ●

Data Size (# records)

P
ai

rs
 C

om
pl

et
en

es
s

● Bigram−0.3
Bigram−0.6
Bigram−0.9
Canopy−1.5
Canopy−2
Canopy−6

1013 1983 5083 9974

0.
7

0.
75

0.
8

0.
85

0.
9

0.
95

1

Figure 1: Pairs completeness for bigram indexing
and canopy clustering methods

However, if f is too small, then the method will not be able
to detect typographical errors.

3. EXPERIMENTAL RESULTS
Written in Python and published as open source software,
Febrl is a useful platform for performing empirical compar-
isons for record linkage. Febrl (version 0.2) [1] implements
standard blocking and bigram indexing. We implemented
sorted neighbourhood and canopy clustering with TFIDF.
We used DBGen [4] to artificially generate mailing list data
containing surnames, given names and other attributes.

We evaluate three performance metrics for the blocking meth-
ods [3]. The three evaluation metrics used are reduction
ratio (RR), pairs completeness (PC) and F score. Their
definitions can be found in [3] and the longer version of this
paper [1].

We calibrated our experimental methods by reproducing the
standard blocking and sorted neighbourhood results pro-
duced by TAILOR [3] under a similar experimental frame-
work. For bigram indexing and canopy clustering with TFIDF
Figure 1 shows the pairs completeness results, Figure 2 the
reduction ratio results and Figure 3 the F score results.
Both bigram indexing and canopy clustering outperform the
two earlier blocking methods with the right parameter set-
tings. The increased performance is very significant. For
example, pairs completeness with the two earlier methods
had a maximum of about 0.96, whereas the maximum for
canopy clustering with TFIDF (with optimal parameter set-
tings) is 0.98. For the data set with n = 9974 records, that
amounts to missing (0.98 − 0.96) × 9974 = 200 (2%) true
matches at the end of the blocking stage of record linkage.

Bigram indexing performs best with a threshold parameter
of t = 0.3. This parameter results in blocking attributes
made by concatenating 3 bigrams.

●

●

● ●

Data Size (# records)

R
ed

uc
tio

n
R

at
io

● Bigram−0.3
Bigram−0.6
Bigram−0.9
Canopy−1.5
Canopy−2
Canopy−6

1013 1983 5083 9974

0.
9

0.
92

0.
94

0.
96

0.
98

1
1.

02

Figure 2: Reduction ratio for bigram indexing and
canopy clustering methods

●

● ● ●

Data Size (# records)

F
 S

co
re

● Bigram−0.3
Bigram−0.6
Bigram−0.9
Canopy−1.5
Canopy−2
Canopy−6

1013 1983 5083 9974

0.
84

0.
86

0.
88

0.
9

0.
92

0.
94

0.
96

0.
98

1

Figure 3: F score for bigram indexing and canopy
clustering methods

Data set Canopy cluster Canopy cluster
size n average size maximum size
1013 1.9 9
1983 2.3 21
5084 3.9 65
9974 45 571

Table 1: Canopy cluster average and maximum sizes
for different data set size n and loose threshold = 1.5

Canopy clustering performs best with the loose threshold set
to 1.5. A loose threshold of 1.0 leads to a very poor reduction
ratio and huge run times. Canopy clustering reduction ratio
drops to around 0.90 for the data set with n = 9974 records.
A smaller reduction ratio for larger data sets causes very
slow linkage performance. We looked more closely at what
causes this degradation by tracking the size of the canopy
clusters produced for loose threshold of 1.5. This is shown
in Table 1. For a fixed threshold, the cluster size is growing,
leading to more record pairs being generated. The jump
from cluster size average 3.9 for the data set with n = 5083
records to 45 for the data set with n = 9974 records is
significant.

4. CONCLUSIONS AND FUTURE WORK
This paper describes work in progress. We wish to consider
other promising fast indexing methods. The main contribu-
tion of this paper has been the direct evaluation of reduc-
tion ratio and pairs completeness for some diverse blocking
methods on artificial data sets from a widely used database
generator.

5. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers
for their valuable suggestions and comments.

6. REFERENCES
[1] P. Christen and T. Churches. Febrl: Freely extensible

biomedical record linkage Manual, V0.2,
http://datamining.anu.edu.au/linkage.html, April 2003.

[2] W. Cohen and J. Richman. Learning to Match and
Cluster Large High-Dimensional Data Sets for Data
Integration. In SIGKDD’02, 2002.

[3] M. Elfeky, V. Verykios, and A. Elmagarmid. TAILOR:
A Record Linkage Toolbox. In ICDE, 2002.

[4] M. Hernandez and S. Stolfo. The Merge/Purge
Problem for Large Databases. In Proc. of 1995 ACT
SIGMOD Conf., pages 127–138, 1995.

[5] M. Hernandez and S. Stolfo. Real-world data is dirty:
data cleansing and the merge/purge problem. J.
DMKD, 1(2), 1998.

[6] M. A. Jaro. Advances in Record Linkage Methodology
as Applied to Matching the 1985 Census of Tampa,
Florida. JASA, 84(406):414–420, 1989.

[7] A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In ACM SIGKDD,
pages 169–178, 2000.

