Probabilistic Data Generation for Deduplication and Data Linkage

Peter Christen

Data Mining Group, Australian National University Contact: peter.christen@anu.edu.au

Project web page: http://datamining.anu.edu.au/linkage.html

Funded by the ANU, the NSW Department of Health, and the Australian Research Council (ARC) (LP #0453463)

Outline

- Data linkage and deduplication
- Data linkage techniques
- Test data for data linkage
- Artificial data
- Probabilistic data set generator
- Example data generated
- Experimental study
- Conclusions and outlook

Data linkage and deduplication

- The task of linking together records representing the same entity from one or more data sources (patient, customer, business, etc.)
- Real world data is *dirty*, so cleaning and standardisation is important
- Applications of data linkage
 - Remove duplicates in a data set (internal linkage)
 - Merge new records into a larger master data set
 - Create customer or patient oriented statistics
 - Compile data for longitudinal studies
 - Geocode data (match addresses with geographic reference data)

Data linkage techniques

- Computer assisted linkage goes back to 1950s
- Deterministic linkage
 - Exact linkage (if a *unique identifier* of high quality precise, robust, stable over time – is available)
 - Rules based linkage (complex to build and maintain)
- Probabilistic linkage (Fellegi & Sunter, 1969) Apply linkage using available (personal) information (which can be missing, wrong, coded differently, or out-of-date)
- Modern approaches
 Based on machine learning, data mining, or information retrieval techniques (clustering, decision trees, active learning, learnable string metrics, graphical models, etc.)

Test data for data linkage

- Various data sets are used in recent publications (restaurant, cora, citeseer, census, etc.)
 - Usually very small (less than 2,000 records)
 - Proprietary and even confidential data has been used
- There is a lack of standard test data
- Hard to compare new algorithms and to learn how to use and customise data linkage systems
- Recent small repository: *RIDDLE*

http://www.cs.utexas.edu/users/ml/riddle/ (Repository of Information on Duplicate Detection, Record Linkage, and Identity Uncertainty)

Artificial data

- Privacy issues prohibit publication of real data (for example of names, addresses, dates of birth, etc.)
- De-identified or encrypted data cannot be used (as linkage algorithms work on name and address strings)
- Artificial data as alternative to real data
 - Based on real data (frequency and misspellings tables)
 - Must model content and statistical properties of real data
- Advantages
 - Content and error modifications can be controlled
 - Data can be published
 - Easy to repeat and verify experiments

A probabilistic data set generator

- First data generator by Hernandez & Stolfo (1996)
- Improved by Bertolazzi et.al. (2003) (no details given, not publicly available)
- Our generator
 - Open source (Python)
 - Part of the Febrl data linkage system (<u>Freely extensible biomedical record linkage</u>)
 - Easy to modify and improve by a user
 - Based on real world frequency look-up tables for names, addresses, date of birth, etc.
 - Includes look-up tables with real typographical errors and name variations (for example 'Gail' and 'Gayle')

Data generation

- Step 1: Create original records Randomly select values from various frequency look-up tables, or from a user specified range (e.g. for *date of birth*)
- Step 2: Create duplicates based on original records by introducing modifications
 - Single errors (insert, delete, substitute a character; transpose two characters)
 - Insert or delete a whitespace (split or merge a word)
 - Set to missing (empty string), or insert new value
 - Swap with another value from a look-up table
 - Swap two attribute values (e.g. given name ↔ surname)

Example data generated

Data set with 4 original and 6 duplicate records

REC_ID,	ADDRESS1,	ADDRESS2,	SUBURB
rec-0-org,	wylly place,	pine ret vill,	taree
rec-0-dup-0,	wyllyplace,	pine ret vill,	taree
rec-0-dup-1,	pine ret vill,	wylly place,	taree
rec-0-dup-2,	wylly place,	pine ret vill,	tared
rec-0-dup-3,	wylly parade,	pine ret vill,	taree
rec-l-org,	stuart street,	hartford,	menton
rec-2-org,	griffiths street,	myross,	kilda
rec-2-dup-0,	griffith sstreet,	myross,	kilda
rec-2-dup-1,	griffith street,	mycross,	kilda
rec-3-org,	ellenborough place,	kalkite homestead,	sydney

Each record is given a unique identifier, which allows the evaluation of accuracy and error rates

- NSW Midwifes Data Collection (MDC)
 - Extracted years 1999 and 2000 (175,211 records)
 - Contained 5,331 twin and 177 triplet births
- Linkage done by AutoMatch resulted in 8,442 duplicate record pairs
- Extracted frequency tables for mother's name, address and date of birth attributes
- Created 3 data sets with 175,211 records each, containing 5%, 10%, and 20% duplicates
- Then performed deduplication using Febrl data linkage system

Sorted attribute frequencies

Deduplication matching weights

- Several possible improvements
 - Relax independence assumption (based on real world frequency tables), for example a change of address results in new street name, number and type, as well as postcode and locality
 - Allow generation of groups of records, for example for households (census)
 - Fine tune error modifications (scanning, typing, etc.)
- Do further comparison studies with real data sets
- See project web page for more information

http://datamining.anu.edu.au/linkage.html

