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Abstract

Temporal record linkage is the process of identifying
groups of records which are collected over long
periods of time, such as census databases or voter
registration databases, that represent the same
real-world entities. These datasets often contain
temporal information for each record, such as the
time when a record was created, or the time when
it was modified. Unlike traditional record linkage,
which treats differences between records from the
same entity as errors or variations, temporal record
linkage aims to capture records from entities where
the details of these entities change over the time.
This paper proposes a temporal record linkage
approach that learns the probabilities for attribute
values of records to change within different periods of
time, which extends an existing temporal approach
decay model. The proposed method uses a regression
based machine learning model to predict decay with
sets of attributes, where attribute values in each set
could affect the decay of others. Our experimental
results show that the proposed approach results in
generally better recall than baseline approaches on
real-world datasets.

Keywords: Data matching, entity resolution,
record linkage, temporal data

1 Introduction

Record linkage (also known as data matching, entity
resolution, and duplicate detection) identifies records
that refer to the same real-world entity (Christen
2012a). Record linkage is being used in many ap-
plication domains, such as linking patient data for
disease outbreak detection or clinical trails in the
health industry, credit checking and fraud detection
in the finance industry, and constructing population
databases for social science research (Kum et al.
2014). Challenges in record linkage are caused by
the lack of unique identifiers (such as national iden-
tifier number), dirty data (such as misspellings and
missing values), legitimate updates over time (such
as changes in last name and address), and the lack
of informative attributes (many datasets do not have
gender and/or date of birth. e.g. no gender or date
of birth in publication datasets).
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Record linkage generally involves the following
steps: data preprocessing (such as unifying data
structure and cleansing datasets), blocking/indexing
(grouping records into blocks, where records with a
certain similarity are grouped into the same block),
comparison and classification (comparing pairs of
records in each block to decide if they are a match),
and evaluation (Christen 2012a). This paper focuses
on record pair comparison and classification, but we
will also briefly discuss blocking/indexing.

Record linkage has been studied extensively in the
past few decades. However, until recently, most works
in this field did not use any temporal information
available in datasets (Li et al. 2012). Records of
the same entity can be collected over a long period of
time (multiple years or even decades, such as census
data in Australia collected every five years). Dur-
ing such periods the attribute values of an entity are
likely to change, such as job position, living address,
and potentially last name. Traditional record linkage
methods often assume records that are highly simi-
lar are most likely to be belonged to the same entity.
These techniques do not perform well on temporal
records, because many entities have changed some of
their attribute values over time. For example, when a
person has changed his or her last name and address
over a few years, their earlier records can be linked
by mistake to records of a different person who has
the same last name and/or address.

Temporal record linkage tries to address the above
issues by using temporal information (such as the
time-stamp when a record was created) from each
record as a special type of attribute. These time-
stamps can be used to sort records by time order, cal-
culate time distance between records, and therefore
provide potential for new record linkage approaches
(examples to be discussed in Section 2). To be used
in temporal record linkage, a dataset should contain
temporal data for each record, such as date entered
(for registration dataset), date being published (for
publication datasets), and date being collected (for
datasets collected by taking snapshots of databases
at different times).

This paper extends an existing temporal linkage
approach called decay model (Li et al. 2012). The
decay model learns the probability for an attribute
to change over time (disagreement decay), and
the probability for an attribute to share the same
value among different entities over time (agreement
decay), and then uses these decays to compute and
adjust the weight given to each attribute. The
sum of the adjusted attribute weights is used to
calculate the similarity between a pair of records and
decide if they are a match or non-match based on a
similarity threshold (Christen 2012a). We integrate
a regression model (such as linear regression) into



the decay model. The regression model uses multiple
support attributes to calculate the decay of a main
attribute whose decay is affected by the values of
those support attributes. The calculated decays are
more reflective to each entity’s specific situation. For
example, a person’s gender can affect the likelihood
of changes in their last name, so when we calculate a
decay of last name with gender as additional input,
we can produce a gender sensitive decay for last
name. We choose linear regression model because
it is commonly used in parameter estimation and
prediction (Krueger et al. 2015).

2 Related Works

We discuss related works in three areas: generic
record linkage techniques, temporal models, and tem-
poral linkage techniques.

Generic record linkage techniques: Generic
record linkage techniques refer to the class of algo-
rithms that do not consider temporal information ex-
plicitly. Record-wise or cluster-wise similarity com-
parison functions are sometimes treated as black-box.
The similarities produced by these function are used
to conduct linkage tasks.

Benjelloun et al. (2009) proposed three variations
of the Swoosh algorithms (G-Swoosh, R-Swoosh, and
F-Swoosh), which handle the record linkage problem
by merging each pair of matched records into a new
record. Merged records are removed and the newly
created record is added to the input dataset. The
matching and merging behaviors and criteria are de-
fined by the user. We use F-Swoosh in our approach
to link records.

Kim & Lee (2010) proposed an algorithm which
uses Locality-sensitive hashing (LSH) (Indyk & Mot-
wani 1998) to iteratively group records to clusters.
LSH approximately compares the Jacarrd similarity
between records, and place records that are similar
to each other to the same cluster (so that any pair of
records from that cluster will have a similarity higher
than a certain threshold). Records placed into the
same cluster are merged into a new record, and the
algorithm conducts LSH again in an attempt to merge
more records, until an user defined termination con-
dition is met. We use a LSH based blocking technique
which we will explain in Section 4.1.

Li et al. (2012) proposed a clustering technique,
which computes the similarity between a record and
a cluster of records. If a record has higher similarity
to another cluster than its current one, this record will
be reassigned to the new cluster. In the case where a
record’s similarity to any cluster is lower than a user-
defined threshold, a new cluster is created with this
record as its member. The adjustment process is re-
peated until the result converges or oscillates on the
number of clusters.

Temporal models in record linkage: Temporal
models are used to adjust attribute-wise or record-
wise similarities with temporal information. A tem-
poral model is often learned from a training dataset
(which is the case for all of the approaches below).
The learned model is then applied in attribute or
record pair comparison process, to adjust the finial
similarity score.

Li et al. (2012) proposed a similarity measure
which considers the probability of an attribute’s value
to change over a certain time period (the probability
is learned from training data). The algorithm calcu-
lates a disagreement rate (the probability for an at-
tribute to change within a certain time interval) and

an agreement rate (the probability for an entity’s at-
tribute value to be the same with a different entity
within a time interval). The two rates are used to
adjust the weight of each attribute.

More recently, Li et al. (2015) proposed a temporal
model which learns the probability for each attribute
value to be changed to another attribute value over
a certain time period. However, this approach is re-
stricted to attributes whose values might change, such
as job positions (for example, the position ‘technician’
can be changed to ‘manager’).

Christen & Gayler (2013) adapted the approach
by Li et al. (2012), which adjusts the temporal model
iteratively using linkage results produced. The dif-
ference between this algorithm and the original one
is that the original algorithm only learns the tempo-
ral model from training data, whereas this algorithm
continuously trains the temporal model using linkage
results produced by itself.

Chiang et al. (2014a) proposed an algorithm which
learns the probability of an attribute’s value to recur
at different time intervals. For each value of an at-
tribute, the algorithm constructs a transition history
and uses the history to calculate the probability for
a value to recur. These recurrence probabilities are
used to adjust similarity weighting of record pairs to
improve entity resolution quality.

Temporal linkage techniques: Unlike generic
record linkage techniques, temporal linkage tech-
niques use temporal information that is available in
a dataset. Unlike temporal models, temporal linkage
techniques do not adjust the way in which similari-
ties are calculated between records, but they adjust
record comparisons such as the order of comparisons
between records, or between clusters of records.

Chiang et al. (2014b) proposed a clustering algo-
rithm which processes records in two phases using dif-
ferent temporal models. In the first phase, the algo-
rithm greedily groups records into clusters and creates
temporal signatures for each of the clusters. In the
second phase, the algorithm calculates the similarities
between clusters, and adjusts these similarities using
the temporal signatures, to decide if two clusters need
to be merged.

Li et al. (2015) recently proposed a temporal clus-
tering algorithm which identifies data-sources that
are likely to be well-updated (accurately describe the
current state of entities), and then uses these well-
updated sources to create the initial clustering before
using other data-sources that are not fresh.

3 Notation and Problem Statement

We now provide the notation we use in this paper and
define the problem we aim to tackle.

Entity: Given a domain with a set of entities E,
where each entity e ∈ E is described by a set of at-
tributes A.

Record: Let R be a set of records, r ∈ R refers to a
record with a time-stamp t. Each record r has a list
of attribute values [a1, a2, ..., ak], where the value of
an attribute A ∈ A in a record r is denoted as r.A.
Every record r ∈ R must belong to exactly one entity
e ∈ E. The entity that associated with a record r is
denoted as r.e.

Attribute values of an entity e can change over
time, where each change (update) is represented by a
record r with a time-stamp t and attribute value(s)
that is different from the previous record. For ex-
ample, let r1, r2 be two records belonging to e (in
another word, r1.e = r2.e). If r1.t < r2.t and



∃A ∈ A : r1.A 6= r2.A, then we say that the value
of attribute A of entity e was changed between two
time-stamps r1.t and r2.t.

Training dataset: Given a training dataset C in
the form of a set of clusters of records. Each cluster
C ∈ C contains a set of records {r1, r2, ...} that rep-
resents an entity e from the domain. All records in
a cluster C represent the same entity, and all records
referring to the same entity are in the same cluster
C.

Problem statement: Temporal record linkage is
the problem of grouping a set of records R into a
set of clusters C′. Ideally, for each created cluster
C ′ = {r1, r2, ...}, and C ′ ∈ C′, C ′ represents an en-
tity ej ∈ E. All records in a cluster C ′ ∈ C′ belong
to the same entity: ∀r ∈ C ′ → r.e = ej , ej ∈ E. All
records that are belonging to the same entity are in
the same cluster: ∀r1 ∈ R, ∀r2 ∈ R, r1.e = r2.e ↔
∃C ′ ∈ C′(r1 ∈ C ′ ∧ r2 ∈ C ′).

Our work addresses the temporal record linkage
problem using a weighting strategy which adjusts the
weight of each attribute. The objective of our work
is to improve the quality of linkage. Such a weight-
ing strategy is also called a temporal model, which is
trained by a training dataset C.

Temporal model training: Given a training
dataset C with ground truth, the problem of training
a temporal model is to build a statistical model for at-
tribute weighting. This model can adjust the weight
of each attribute A when a pair of records are being
compared. The adjusted weights reflect the temporal
characteristics of the whole dataset.

Our work addresses the temporal model training
problem with a machine learning approach, by using
a regression model to train and predict parameters for
temporal model. Given an attribute A from a record
r, and a time distance ∆t, there exists a probabil-
ity p 6= that A changes its current value within time
distance ∆t. Records used to train the model can
thus be created with two class values: changed or un-
changed using training data C.

Training data generation: Given a cluster C ∈ C
where C = {r1, r2, ...}. Given a record ri in C and a
time distance ∆t, we can find all records r′ ∈ C−{ri}
where r′.t − ri.t ≤ ∆t holds. If there exists a record
r′ such that r′.A 6= ri.A, a record for training can
be created with class value changed, with ∆t and at-
tribute values of ri as features. Similarly, if every
record r′ satisfies the condition: r′.A = ri.A, a record
for training with class value unchanged is created.

4 Framework

Figure 1 presents a high-level overview of our record
linkage process. With a set of records R as input, a
blocking method first places records into smaller sets,
and only compares records within each set (there can
be overlaps between these sets, i.e. each record can
be inserted into more than one set). The reason for
using a blocking method is to cluster records that are
similar to each other into smaller sets, therefore im-
prove the scalability and reduce computational cost
for linkage approaches that have a running time grow-
ing exponentially by the size of dataset. The similar-
ity threshold for threshold based blocking methods
is usually defined by the user (Christen 2012b). The
linkage technique computes the similarities between
the records within those blocks (Christen 2012a). The
criteria for two records (or clusters of records) to link
are defined by specific linkage technique, such as by

Figure 1: Overview of our linkage approach. Given a
set of records as input, our blocking approach places
the records in blocks (each record can be placed in
multiple blocks). For each block, a linkage framework
calculates similarities of record pairs and links records
according to certain criteria, such as a user defined
similarity threshold.

Figure 2: Temporal and non-temporal similarity val-
ues of a given pair of records. The difference is that a
temporal model combines temporal information with
attribute similarities to calculate the record-wise sim-
ilarity.

a user-defined similarity threshold. In this paper, we
use LSH (Locality Sensitive Hashing) (Indyk & Mot-
wani 1998) for blocking, and F-Swoosh (Benjelloun
et al. 2009) as linkage technique. Both will be further
explained in detail in the following sections.

Figure 2 shows how a pair-wise record similarity is
produced with and without a temporal model, as well
as the problem domain this paper will address. The
temporal model takes attribute-wise similarities of a
record pair as input, as well as temporal information
related to the record pair (such as the dates when the
records were added to the dataset). Same as the a
non-temporal model, the final output of a temporal
model is a similarity score for a pair of records, where
these similarity scores are adjusted by the temporal
information.

4.1 Blocking: Locality-Sensitive Hashing

Blocking methods create smaller record sets based
on the original dataset, where records in each block
possibly refer to similar entities. Only those records
within the same blocks are compared with each other.
Conceptually, a blocking method can be understood
as a linkage method with a low threshold which is
only concerned with recall and not precision.

We use LSH to create blocks. LSH is an approx-
imation algorithm used to cluster similar texts. The
texts in the same cluster will have a high Jaccard
similarity (computed by shingling a text into a set of
q-grams) above a user defined threshold (Rajaraman
& Ullman 2011). We use LSH as the blocking method
based on the observation that a single attribute value



Algorithm 1 Blocking with LSH
Input:

- A set of records: R
- A list of lists that contains attributes for blocking: LA

- A similarity threshold ts
- Maximum block size sizemax

Output:
- Sets of record ids, each set is a block: B

1: B = set()
2: //For each list from LA, produce a set of blocks
3: for lA in LA do
4: //Create a hashtable where each
5: //record-reference links to a list of block keys
6: DI = hashtable()
7: //Generate block-keys for each record
8: for r in R do
9: gramset = set()
10: for A in lA do
11: //Get the q-grams of the attribute value
12: //q is defined by the user for each attribute
13: for gram in GetQGrams(r .A, q) do
14: gramset.add(gram)

15: blockkeys = LSHBucketKeys(gramset, ts)
16: DI [r.recordid] = blockkeys

17: Db = hashtable()
18: //Group record-references by block-keys
19: for recordid, blockkeys in DI do
20: for key in blockkeys do
21: if key not in Db then
22: Db[key] = set()

23: Db[key].add(recordid)

24: //Remove over-sized blocks
25: for block in Db.values() do
26: if length(block) >= sizemax then
27: Db.remove(block)

28: B = B ∪Db.values()

29: return B

(such as first name), or the concatenation of a list of
attribute values (such as the string concatenation of
first name, last name, and zip code), can be consid-
ered as a text string. If we consider a string value as
a blocking key value of a record, we can put similar
records into the same block by comparing their block-
ing key values using LSH. LSH is chosen as our block-
ing approach because it is scalable and efficient, per-
forming reasonably good when comparing it to other
blocking approaches (Wang et al. 2016).

After blocks of records are produced by LSH, we
remove the over-sized blocks by a user defined maxi-
mum block size (sizemax), to further reduce the com-
putational cost. sizemax was introduced as we ob-
served that some blocks can be very large due to
commonly shared attribute values (such as first name
‘David’). As a result, these large blocks significantly
increased the overall run-time of the algorithm. A
similar approach was used in suffix array based block-
ing (de Vries et al. 2011).

Algorithm 1 describes the way we use LSH for
blocking in our work. From lines 8 to 16, a list of
blocking keys is created for each record and hashed
into the hashtable DI by its record ID. The func-
tion GetQGrams() takes a text input value and an
integer q (Ukkonen 1992). The value of q decides
the length of q-grams which will be created by shin-
gling the text input into q-grams. The function
LSHBucketKeys() takes a set of q-grams and a sim-
ilarity threshold to produce LSH buckets. We treat
the LSHBucketKeys() function as a blackbox in this
work as its internal mechanism is dependent on the
implementation of LSH. Each bucket key uniquely
identifies a block. For example, if the hashing of a
record results in ten keys, this record is hashed into

Algorithm 2 The Swoosh algorithm (conceptual)
Input:

- A set of records: R
Output:

- A set of records, each record represents an entity: E

1: E = ∅
2: while R 6= ∅ do
3: currentRecord = R.getFirstItem()
4: R.removeFirstItem()
5: buddy = null
6: for r′ in E do
7: if IsMatched(currentRecord ,r′) then
8: buddy = r′

9: break
10: if buddy == null then
11: E.append(currentRecord)
12: else
13: merged = Merge(currentRecord , buddy)
14: E.remove(buddy)
15: R.append(merged)

16: return E

ten blocks by LSH. From lines 19 to 23, DI is con-
verted to another hashtable Db where each blocking
key is mapped to a list of record IDs (each list is a
block). In lines 25 to 27, the algorithm applies the
sizemax parameter and removes over-sized blocks.

4.2 Linkage: F-Swoosh

Swoosh is an entity resolution approach which
compares records according to features (a feature is
a set of attributes) selected by the user (Benjelloun
et al. 2009). A pair of records are merged into a new
record when one of their features meets the matching
criteria provided by the user. The two original
records are removed after a new record is created
by merging. Algorithm 2 is a basic description of
the algorithm. As a version of Swoosh algorithm,
F-Swoosh is optimised with various hashtables and
feature operations. In practice we use F-Swoosh
for matching, but here we use the algorithm of
R-Swoosh to present this approach as R-Swoosh is
simpler and more straightforward. The function
IsMatched(r, r′) in line 7 is a function provided by
the user which compares two records and decides if
they are a match. The Merge(r, r′) function in line
13 is provided by the user as well, which decides
how to merge each attribute of two records r and r′

(possible ways to handle attribute merging include
keeping the latest value, or creating a list of all values
(Benjelloun et al. 2009)).

4.2.1 Tracking Merged Records

While F-Swoosh merges records that likely belong to
the same entity, we also keep track of the time (which
can be a year, such as 2012, or a date, such as 20-10-
2011) when each attribute value was originally gen-
erated. Each attribute value is stored in the form of
a tuple: (attribute value, updated date), and each at-
tribute can have one-to-many attribute values for a
given record after multiple merges.

Example: Let record r1 = [‘Tom’, ‘Bruce’, ‘21
May Street’, ‘2012-12’] (in the format of [first
name, last name, address, time-stamp]), record
r2 = [‘Tom’, ‘Steven’, ‘21 May Street’, ‘2013-
06’]. The new record created by merging r1 and
r2 will be: [[(‘Tom’,‘2012-12’), (‘Tom’,‘2013-06’)],
[(‘Bruce’,‘2012-12’), (‘Steven’,‘2013-06’)], [(‘21 May
Street’,‘2012-12’), (‘21 May Street’,‘2013-06’)]].



4.3 Temporal Models

Temporal models refer to the models that adjust
record pair similarity using temporal information
(such as time related rules and patterns) learned from
a dataset. In this paper, all temporal models used are
built from a training dataset.

The decay model calculates disagreement decay
and agreement decay of each attribute, and uses them
to calculate the similarity of a record pair (Li et al.
2012). Disagreement decay and agreement decay both
describe attribute characteristics learned from train-
ing data, indicating the probability for an attribute to
change within a time distance, and the probability for
an attribute to be shared by multiple entities within
a time distance, respectively. Time distance refers to
the difference between two time-stamps. Time dis-
tance is measured by a time unit which is defined by
the user, such as days, years, or hours.
A life span l refers to the time distance between the
time-stamps of two values. An attribute value’s life
span is full when the value has a date when it is start
to be used, and another date when it is changed to an-
other value. The time distance between the first date
and the second date is a full life span, denoted as
lf . Similarly, if the attribute’s value does not change
between two time-stamps, the time distance between
the two time-stamps is a partial life span, denoted lp.

For example, assume an entity with three different
last names over five records, with time-stamps in the
form of [year-month]: ‘Taylor’ (2011-10) → ‘Taylor’
(2011-12) → ‘Spire’ (2012-12) → ‘Spire’ (2013-10) →
‘Wright’ (2015-10). The time distance between the
first and the third record is one full life span with a
length of 14 months (2011-10 to 2012-12), and the dis-
tance between the third and the fifth record is another
full life span with a length of 34 months (2012-12 to
2015-10). Note in this example, month is being used
as a time unit but it is not necessary for all datasets.
From the example above, the time distance between
the first and the second record is a partial life span
with a length of 2 months (the time distance between
2011-10 and 2011-12), and the time distance between
the third record and the forth record is another par-
tial life span with a length of 10 months.

L̄f denotes the list of all full life spans of an at-
tribute A for all entities. Similarly, L̄p denotes the
list of all partial life spans of an attribute A for all
entities.

Definition 4.1. (Disagreement Decay d 6=): Let ∆t
be a time distance, A ∈ A be a single valued at-
tribute. The disagreement decay of A over time ∆t,
is the probability that an entity changes its value of
A within a time distance ∆t (Li et al. 2012).

d 6=(A,∆t) =
|{l ∈ L̄f |l ≤ ∆t}|

|L̄f |+ |{l ∈ L̄p|l ≥ ∆t}|
(1)

Equation 1 calculates the disagreement decay d 6=

given an attribute A and a time distance ∆t. L̄f is the
set of full life spans of attributes values of attribute
A. The time unit of ∆t, is defined by the user, which
can be days, months, or years.

Definition 4.2. (Agreement Decay d=): Let ∆t be
a time distance, A ∈ A be a single valued attribute.
The agreement decay of A over a time distance ∆t,
is the probability that two different entities share the
same value for A within ∆t. (Li et al. 2012)

d=(A,∆t) =
|{l ∈ L̄|l ≤ ∆t}|

|L̄|
(2)

Equation 2 calculates the agreement decay d=. L̄
is a list of life spans. For each record from a training
dataset, if it has the same attribute value with an-
other record which belongs to a different entity, the
time distance between the two records is added to L̄.
If no entity has the same attribute value, a life span
with length ∞ is added to L̄.

We use agreement decay and disagreement decay
to calculate wA (weight per attribute), as shown in
Equation 3. Then, weights are used to calculate the
pair-wise similarity between two records. As shown
in Equation 4, sd(r, r′) denotes the decay adjusted
similarity between two records r and r′. sa refers to
the similarity between a pair of attribute values.

wA(sa,∆t) = 1− sa · d=(A,∆t)− (1− sa) · d 6=(A,∆t)
(3)

sd(r, r′) =∑
A∈A wA(sa(r.A, r′.A), |r.t− r′.t|) · sa(r.A, r′.A)∑

A∈A wA(sa(r.A, r′.A), |r.t− r′.t|)
(4)

5 Our Approach

This section discusses our temporal model and train-
ing strategy in detail.

5.1 Disagreement Probability

Disagreement probability is a concept introduced in
this work. It has a similar definition as disagreement
decay (as shown in Equation 1), but is modified to
make it easier to be used with a machine learning
model. From Equation 5, we can see that the only

difference between d6=prob and d6= is that the divisor
no longer decreases with an increasing ∆t. We use

d 6=prob instead of d 6= because the equation of d 6=prob has
a divisor that is fixed for each entity. This problem is
therefore intuitively easier to fit into a machine learn-
ing classifier that when a life span l is encountered, we
can immediately decide if it is lower than a ∆t and
create a training instance with the attribute values
associated to the life span l.

d6=prob(A,∆t) =
|{l ∈ L̄f |l ≤ ∆t}|
|L̄f |+ |L̄p|

(5)

d6=prob is normalized into the range [0, 1], and then
used as weights to adjust respective attribute-wise
similarities, as shown in Equation 6. sp denotes the
adjusted similarity between a pair of records, and the
function sa(a, a′) returns the similarity between a pair
of attribute values. The specific value comparison
function for an attribute is defined by the user, which
returns a similarity measure in the range [0,1]. These
comparison functions can be approximate string sim-
ilarity functions, such as edit-distance, Jaro-Winkler,
etc. (Christen 2012a).

sp(r, r′) =∑
A∈A

1− d 6=prob(A, |r.t− r′.t|)∑
A′∈A 1− d6=prob(A

′, |r.t− r′.t|)
· sa(r.a, r′.a)

(6)



Figure 3: Disagreement probability training and pre-
diction with decay model (left) and regression model
(right). We can see the model on the right takes a
value from one support attributes as input, gender in
this case, and calculates a disagreement probability
value for a specific subset of entities (males in this
example). Whereas the model on the left side calcu-
lates a disagreement probability value regardless to
the entity’s gender. The number in the black circle
shows that a different disagreement probability value
is calculated for attribute last name.

5.2 A Regression Model

From the previous equations we can see that agree-
ment decay, disagreement decay, and disagreement
probability are calculated with only one attribute in-
dependently each time. For example, when the dis-
agreement decay of attribute last name is calculated,
the temporal model calculates the overall probability
for an entity to change its last name within a given
interval ∆t. However, the probability of an entity to
change its last name is often associated with gender
and age. The disagreement decay for last name, cal-
culated without considering its gender and age group,
will for example be too high for older male entities,
and too low for younger female entities, because it is
rare for an older male person to change last name,
but common for a young female to change last name
due to marriage.

Support attributes are assigned to certain at-
tributes when the value of a support attribute may
affect the probability of the attributes to change.
For example, when building a model which predicts
the probability for attribute address to change, at-
tribute(s) such as gender and age can be used to make
the prediction more accurate. Support attributes are
selected by the user based on empirical knowledge,
however they can also be selected by a feature selec-
tion strategy (Blum & Langley 1997).

Figure 3 compares the difference between the orig-
inal learning strategy (left) and the learning strategy
using a machine learning model (right), with attribute
gender used as a support attribute for attribute last
name.

Algorithm 3 shows how we use a machine learning

Algorithm 3 Temporal model training with dis-
agreement probability
Input:

- A list of clusters: C, each cluster C ∈ C contains a list
of records that belong to an entity

- An attribute to build temporal model: A1

- A list of support attributes: LA

- A machine learning algorithm: model
Output:

- A trained temporal model

1: train = ∅
2: for C in C do
3: start = 1
4: while start ≤ |C | do
5: end = start +1
6: supportValues = getAttValues(C [start ],LA)
7: while C [start ].a1 == C [end ].a1 and end ≤ |C | do
8: end = end + 1
9: if end > |C | then
10: ∆t = C [|C |].t − C [start ].t + 1 // Partial life span
11: for i = 1 to ∆tmax do
12: train.add([0,∆t, supportV alues])

13: else
14: ∆t = C [end ].t − C [start ].t // Full life span
15: for i = 1 to max∆t do
16: if ∆t ≥ i then
17: train.add([1,∆t, supportV alues])
18: else
19: train.add([0,∆t, supportV alues])

20: start = end
21: // Train the model with the accumulated training data
22: model .fit(train)
23: return model

model to predict disagreement probability. In line
6, the function getAttV alues(r, LA) extracts a list of
attribute values from a record r according to an at-
tribute list LA. The attribute values are important
features later used to create training instances. In
lines 9-12, a training instance with class value 0, with
∆t and supportV alues as features is created. Since
partial life spans indicate no value change, we use 0
to denote non-change. In lines 16-17, in the case that
a change happen within a ∆t, we create a training in-
stance with class value 1 which denotes change. The
training instances are then sent to the machine learn-
ing model defined by the user which can be used to

predict d 6=prob for an attribute A.
Figure 4 shows the different decay values calcu-

lated for attribute last name using disagreement de-
cay d6= (see Equation 1) and disagreement probabil-

ity d 6=prob predicted by a regression model which was
trained using Algorithm 3. Attribute gender was used
as the support attribute. We can see that with our
approach, lower disagreement probabilities are calcu-
lated for entities with male gender, whereas higher
disagreement probabilities are calculated for entities
with female gender, for attribute last name. This
makes sense as female entities change last name more
often than male entities due to marriages.

5.3 Combine Disagreement Probability with
Agreement Decay

Disagreement probability can be modified into the
same form as disagreement decay by normalising it:

d 6=nprob(A,∆t) =
d 6=
prob(A,∆t)

max(d6=
prob(A))

. where max(d 6=prob(A))

is the maximum disagreement probability over all ∆t.
Using Equation 3 and Equation 4 above, the temporal
similarity for our model can be calculated by substi-

tuting d 6= with d6=nprob.



Figure 4: Different decay values for attribute last
name calculated using disagreement decay d 6= and

disagreement probability d6=prob predicted by a regres-
sion model. Attribute gender was used as the support
attribute.

Table 1: A summary of snapshots of the NCVR
database and temporal records created from each
snapshot

Snapshot
(year-month)

Number of
records

Records
added

Records
updated

Temporal
records

2011-10 6,233,683.00 5,660,833 0 5,660,833
2011-12 6,981,774.00 285,091 50,181 335,272
2012-02 6,974,887.00 40,370 40,187 80,557
2012-04 7,054,734.00 82,370 82,496 164,866
2012-06 7,090,377.00 38,792 87,326 126,118
2012-08 7,134,332.00 47,928 86,418 134,346
2012-10 7,310,212.00 183,858 182,609 366,467
2012-12 7,524,471.00 221,922 354,053 575,975
2013-02 7,251,818.00 34,607 83,552 118,159
2013-04 7,268,064.00 28,878 43,423 72,301
2013-06 7,291,726.00 27,293 26,511 53,804
2013-08 7,325,036.00 35,382 32,528 67,910
2013-10 7,358,266.00 35,683 54,264 89,947
2013-12 7,388,104.00 33,495 50,440 83,935
2014-02 7,391,221.00 28,336 32,974 61,310
2014-06 7,453,901.00 69,002 120,422 189,424
2014-08 7,490,428.00 38,250 50,923 89,173
2014-10 7,539,857.00 53,438 86,702 140,140
2014-12 7,608,324.00 72,576 211,607 284,183
2015-02 7,111,324.00 29,247 43,555 72,802
2015-04 7,129,997.00 24,578 50,048 74,626
2015-06 7,156,299.00 31,320 88,298 119,618
2015-08 7,198,755.00 45,845 58,748 104,593
2015-10 7,244,629.00 50,579 71,549 122,128
2015-12 7,272,428.00 46,563 74,142 120,705
2016-02 7,313,555.00 45,498 77,645 123,143

6 Experiments

In this section we describe datasets, methods and
measures used in our experiment. Then we present
and discuss the experimental results.

6.1 Experimental Settings

we describe the characteristics of the datasets we used
in the experiments and the methods, measures, and
other implementation details of the experiments.

Table 3: Testing datasets

Dataset name
Number of

entities
Number of

records
Entities with more
than one records

Avery 13,707 15,464 1,604
Buncombe 221,106 282,947 49,490
Cherokee 25,450 28,715 2,875

Gates 9,396 10,504 1,006
Guilford 410,661 515,878 85,192

Montgomry 18,686 21,544 2,539
Avery L2 1,604 3,361 1,604

Buncombe L2 49,490 111,331 49,490
Cherokee L2 2,875 6,140 2,875

Gates L2 1,006 2,114 1,006
Guilford L2 85,192 190,409 85,192

Montgomry L2 2,539 5,397 2,539

Temporal datasets: The temporal datasets we
used in this paper are from the North Carolina Voter
Registration (NCVR) datasets collected every two
months1. The datasets have ground truth (entity
identifiers) available for all entities. Because the raw
datasets are collected in the form of snapshots of
databases, we preprocessed them to refine their tem-
poral aspects. Only records that describe changes of
an entity are selected into the temporal dataset.

If an entity never has changes in its attribute val-
ues, only the earliest record will be selected for that
entity. If we sort records of an entity by increasing
time-stamp values, the first record of an entity is an
add, since it indicates the time that the entity was
created in that dataset. Any following record of that
entity, where a record has any attribute values (ex-
cept age and time-stamp) that are different from the
last record, then this record is considered as update.

Table 1 summarizes the number of records in
each database snapshot and the number of tempo-
ral records created from them. A total of 8,336,205
unique entities were added to the datasets at different
point of time.

Example: As shown in Table 2, an entity e1
with name “William Crawford Taylor” was added to
the snapshot at 2011-10, but only two updates oc-
curred over the next four snapshots: middle name
was changed from ‘Rose’ to ‘Louise’ at 2012-02, and
last name was changed from ‘Taylor’ to ‘Clark’ at
2012-06.

The temporal dataset of entity e1 will only have
the initial record and the two records when the up-
dates occurred, as shown in the left side of the ta-
ble. The second entity, e2, used another first name at
2011-12 and 2012-02, then was changed back. This
entity will have three temporal records, one for the
first record of the entity at 2011-10, two for the
two updates. For the third entity e3 whose name
“Michelle Mary Lee” has never been changed across
the five snapshots, this entity will only have one
record in the temporal dataset as there was no up-
date happened.

Above 80% of entities are in the same situation as
the third entity e3 in the NCVR datasets, indicating
updating election information is not very common for
most people.

Only a subset of datasets and attributes were used
in our work. These attributes were used in the test:
last name, middle name, first name, name suffix, res-
idential address, age, and sex code. Sex code has
been used as a support attribute for last name, mid-
dle name, and residential address. We choose these
attributes as they are commonly seen in different
datasets, comparing to other attributes, such as race
code, party code, and phone number. We did not use

1http://dl.ncsbe.gov/

http://dl.ncsbe.gov/


Table 2: Sample records in a temporal dataset
Raw records Temporal records

Entity Date First name Last name Middle name Date First name Last name Middle name Action
e1 2011-10 William Taylor Rose 2011-10 William Taylor Rose Add
e1 2011-12 William Taylor Rose
e1 2012-02 William Taylor Louise 2012-02 William Taylor Louise Update
e1 2012-04 William Taylor Louise
e1 2012-06 William Clark Louise 2012-06 William Clark Louise Update

......
e2 2011-10 David Edward Jr 2011-10 David Edward Jr Add
e2 2011-12 Dave Edward Jr 2011-12 Dave Edward Jr Update
e2 2012-02 Dave Edward Jr
e2 2012-04 David Edward Jr 2012-04 David Edward Jr Update
e2 2016-06 David Edward Jr

......
e3 2011-12 Michelle Lee Mary 2011-12 Michelle Lee Mary Add
e3 2012-02 Michelle Lee Mary
e3 2012-04 Michelle Lee Mary
e3 2012-06 Michelle Lee Mary

......

the full datasets for testing at this stage as the pro-
posed approaches are still being tuned and testing on
the full datasets is time consuming. The results from
selected subsets are well informative so far. We aim
to test on the full datasets in the future.

Training dataset. The NCVR temporal dataset of
county ‘Alexander’ was used as a training dataset.
Which has 33,995 records from 27,725 entities, and
5,403 entities have at least two records.

Testing datasets: Temporal datasets of six counties
were selected from NCVR as testing datasets, where
each county has two versions of temporal datasets:
the original temporal dataset (named by the county’s
name) and a refined temporal dataset (L2 dataset)
where every entity has at least two records, as shown
in Table 3. The original temporal datasets of NCVR
have a low percentage of entities who have at least
two records, which means the majority of records are
not linkable. L2 versions of datasets were created
by extracting records from entities with at least two
records from its respective original temporal dataset,
to test the algorithm’s performance when all of the
records are linkable.

The reason to create one L2 dataset for each
county is to test the algorithm’s performance in a
distinct data environment where most entities have
multiple records.

6.1.1 Implementation

We implemented all algorithms in Python 2.7, and
the experiments were conducted on a server with
64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of
memory and running Ubuntu 14.04.

We implemented four algorithms which are be-
ing discussed below. All of the algorithms above
were implemented on the R-Swoosh clustering frame-
work (Benjelloun et al. 2009). Blocks were generated
using LSH as discussed in Section 4.1, with pairs com-
pleteness greater than 99%, which means greater than
99% of records can be correctly linked with an ideal
linkage technique. The same set of blocks was used
by the four algorithms. For the regression model,
we used linear regression model from sklearn python
package with default settings. 2

For string attributes, the similarity of a pair of at-
tribute values was calculated using the Jaro-Winkler
string comparison function (Christen 2012a). The
similarity of a pair of age values was calculated as:

2http://scikit-learn.org

sage = 1
|age1−age2|+1 . The similarity threshold used

by all algorithms was 0.8, which means record pairs
with similarity equal to or above this threshold are
matches (same entity) and below are non-matches.
This threshold is arbitrarily chosen. Future experi-
ments can be done with different similarity thresh-
olds.

• No model. A baseline approach with no temporal
model. Weights of attributes were not adjusted
by a temporal model.

• Decay model (Decay). A baseline approach us-
ing the temporal model proposed by Li et al.
(2012). The algorithm calculates a disagreement
rate (the probability for an attribute to change
within a certain time interval) and agreement
rate (the probability for an entity’s attribute
value to be the same as other different entities
within a time interval), and uses the two rates to
adjust the weight of each attribute.

• Disagreement probability regression model (Dis-
prob). A temporal model uses a regression model
to predict disagreement probability, and reduces
the weight of attributes when its predicted dis-
agreement probability is high. The weights of
attributes are normalized so that the sum of at-
tribute weights is always 1.

• Disagreement probability plus agreement decay
regression model (Mixed). With a disagreement
probability being predicted in the same way as
the method above, the mixed method also cal-
culates agreement decay from the decay model.
Disagreement probability and agreement decay
are combined to adjust the weight of each at-
tribute.

Measures. Let res be a linkage result in the form
of clusters of records that are matching, stand be the
ground truth that res corresponds to, which is also
in the form of clusters of records. Pair-wise precision

(Precision) = |res∩stand|
|res| , pair-wise recall (Recall) =

|res∩stand|
|stand| , and F1 = 2∗Precision∗Recall

Precision+Recall .

6.2 Experimental Results

We compared the four approaches (two baseline and
two proposed approaches) on the 12 testing datasets,
using precision, recall, and F1. The ‘Alexander’
dataset was used as the training dataset.

http://scikit-learn.org


Table 4: Linkage results on original temporal datasets
Dataset Avery Buncombe Cherokee

Precision Recall F1 Precision Recall F1 Precision Recall F1
No model 0.8830 0.9350 0.9083 0.7495 0.9517 0.8386 0.8607 0.9198 0.8893

Decay 0.6857 0.9579 0.7992 0.5740 0.9604 0.7185 0.6177 0.9394 0.7453
Disprob 0.8449 0.9126 0.8774 0.7407 0.9315 0.8252 0.8000 0.8896 0.8425
Mixed 0.6421 0.9802 0.7759 0.5158 0.9754 0.6747 0.5687 0.9658 0.7159

Dataset Gates Guilford Montgomry
Precision Recall F1 Precision Recall F1 Precision Recall F1

No model 0.8840 0.9326 0.9076 0.7100 0.9421 0.8097 0.8904 0.9272 0.9085
Decay 0.7101 0.9581 0.8157 0.5741 0.9531 0.7166 0.7269 0.9450 0.8217

Disprob 0.8346 0.8998 0.8660 0.7072 0.9219 0.8004 0.8492 0.9002 0.8740
Mixed 0.6654 0.9737 0.7905 0.5037 0.9707 0.6632 0.6682 0.9698 0.7912

Table 5: Linkage results on L2 temporal datasets
Dataset Avery L2 Buncombe L2 Cherokee L2

Precision Recall F1 Precision Recall F1 Precision Recall F1
No model 0.9841 0.9339 0.9584 0.8922 0.9517 0.9210 0.9907 0.9195 0.9538

Decay 0.9766 0.9568 0.9666 0.8491 0.9604 0.9013 0.9730 0.9421 0.9573
Disprob 0.9882 0.9126 0.9489 0.9297 0.9315 0.9306 0.9863 0.8894 0.9353
Mixed 0.9597 0.9787 0.9691 0.7875 0.9757 0.8716 0.9564 0.9680 0.9621

Dataset Gates L2 Guilford L2 Montgomry L2
Precision Recall F1 Precision Recall F1 Precision Recall F1

No model 0.9887 0.9334 0.9603 0.8538 0.9428 0.8961 0.9832 0.9269 0.9542
Decay 0.9701 0.9589 0.9645 0.8319 0.9540 0.8888 0.9657 0.9456 0.9555

Disprob 0.9856 0.8998 0.9407 0.9074 0.9225 0.9149 0.9814 0.9005 0.9392
Mixed 0.9619 0.9737 0.9677 0.7597 0.9716 0.8527 0.9457 0.9701 0.9578

Figure 5: Similarity scatter plot between the four ap-
proaches. Each plot shows the similarities produced
by the two approaches for each of the record pairs.
We can see that decay and mixed tend to produce a
higher similarity than no model, and mixed tends to
produce a higher similarity than decay.

Results based on original datasets: Table 4
shows the results on the six original temporal datasets
(shown in Table 3). We observed that the perfor-
mance of a linkage approach drops significantly when
the size of a dataset increases. This is expected, as the
larger a dataset is, the more likely for a non-matched
pair with high similarity exists.

Results based on L2 datasets: Table 5 shows the
results on the six L2 datasets (where only entities
with at least two records are included). L2 datasets
performed significantly better than original datasets
since there is at least one match guaranteed for each
record and they are also smaller.

We observed that the approach without a temporal
model (no model) produced the best F1 scores, which
is consistent with the observation from Li et al. (2012)
where better performance was achieved only after us-
ing a temporal clustering technique. The mixed ap-
proach produced the highest Recall throughout the
experiment, however at a significant cost with Preci-
sion. The disprob approach produced the best result
among temporal models, however, generally inferior
to the no model baseline.
Comparison between temporal and non-
temporal approaches. We extracted a subset of the
results in attempt to analyze the impact of the tempo-
ral models. As Figure 5 shows, we found the approach
with a temporal model tends to produce higher simi-
larity on record pairs than the approach without a
temporal model. On a closer look we found that
temporal models gave attribute first name a higher
weight and attribute address and last name a lower
weight, which is expected since it is more common
for people to change address and last name. However,
when a pair of non-match records share a popular first
name such as ‘Anna’, the temporal model made them
more likely to be matched by mistake, especially when
their age and gender are the same too. A potential fix
to this issue is to introduce a frequency based weight-
ing strategy, such as weighting attribute according to
a value’s frequency in the context (TF-IDF) (Witten
et al. 1999), or use the temporal clustering method as
proposed by Li et al. (2012).

7 Conclusion and Future Works

In this paper we developed two attribute weighting
approaches using a linear regression model to im-
prove the quality of temporal record linkage. Our
regression model uses multiple attribute values from
a record pair as input, to predict the probability of
an attribute value to change within a certain time
period, and then adjust the weight of the attribute
accordingly. We evaluated our approaches on twelve
datasets derived from NCVR datasets. Experimental
results show that one of our approaches performed
better than the temporal baseline, and another ap-
proach achieved overall highest recall.



In the future, we intend to incorporate a frequency
based weighting strategy into the framework, and to
see if the undesired high similarities can be adjusted
properly. Another possible direction is to test the
temporal models with different clustering techniques,
such as the temporal clustering techniques proposed
by Li et al. (2012) and Chiang et al. (2014b).
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