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Abstract. This paper presents a parallel data mining application for
predictive modelling running on a Beowulf style Linux cluster. Data
mining or Knowledge Discovery in Databases (KDD) is the process of
analysing large and complex data sets with the purpose of extracting
useful and previously unknown knowledge. The task of predictive mod-
elling is the prediction of an attribute according to a model built with
one or more other attributes given in a data collection. We describe two
methods for predictive modelling of high-dimensional data sets, namely
ADDFIT which implements additive models, and HISURF which uses
wavelets for high-dimensional surface smoothing, and present a paral-
lel implementation on a distributed memory cluster architecture which
uses the scripting language Python as a flexible front-end to facilitate
user-interaction, control the parallel application, and generate graphical
outputs.
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1 Introduction

The computerisation of business transactions and the use of bar codes in commer-
cial outlets are providing businesses with increasingly large amounts of data, and
the growth of stored data has been explosive in recent years. Terabyte databases
are common, with Gigabytes added every day. In science, for example, projects
like the Human Genome Project deal with Terabytes of data.

With Data Mining one seeks techniques to automatically process and detect
patterns in these very large data sets [15]. Revealing patterns and relationships
in a data set can improve the missions and objectives of many organisations
and research projects. For example, sales records can reveal highly profitable
retail sales patterns. Data mining can be used for spotting trends in data that
may not be easily detectable by traditional database query tools that rely on
simple queries (like SQL statements), or on simple statistical data analysis. It
is therefore important to develop automatic techniques that are able to reveal
hidden relationships and patterns as well as uncover correlations [12] in very
large data sets.
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Algorithms applied in data mining have to deal with two major challenges:
Large data sets and high dimensions (many attributes). In recent years, data
sets had the size of Gigabytes, but Terabyte data collections are now being used
in business and the first Petabyte collections are appearing in science [10]. It has
also been suggested that the size of databases in an average company doubles
every 18 months [4] which is similar to the growth of hardware performance
according to Moore’s law. Consequently, data mining algorithms have to be able
to scale from smaller to larger data sizes when more data becomes available.
The complexity of data is also growing as more attributes tend to be logged
in each record. Data mining algorithms must, therefore, be able to handle high
dimensions in order to process such data sets.

This combination of large data sizes with high data complexity poses a tough
challenge for all data mining algorithms. Moreover, algorithms which do not scale
linearly with the data size are not feasible. Parallel processing can help to tackle
larger problems and to get reasonable response times. In this paper, we present
scalable parallel algorithms for predictive modelling and high dimensional surface
fitting that successfully deal with these issues.

An important technique applied in data mining is multivariate regression,
which is used to determine functional relationships in high dimensional data
sets. A major difficulty which one faces when applying non-parametric methods
is that the complexity grows exponentially with the dimension of the data set.
This has been called the curse of dimensionality. In Section 2 we present two
algorithms for predictive modelling and explain how they deal with this curse.
The implementation of this methods on a Beowulf style Linux cluster is discussed
in Section 3 and in Section 4 we present results using a public available census
database. Section 5 finalises this paper with conclusions and gives an outlook to
future work.

1.1 Parallel Data Mining

Parallel processing can help both to tackle larger problems and to get reasonable
response times. It is not only that more computing power becomes available, but
equally important is the increased I/O bandwidth and larger memory provided
by most parallel machines.

Parallel data mining is a hot research topic (see [31] for recent research pa-
pers), as the need for parallel processing is clearly given by the huge and in-
creasing data collections available. The requirements for parallel data mining
systems [23] include not only parallel scalable hardware platforms, parallel I/O
and databases, and parallel data mining algorithms, but also frameworks for
rapid algorithm development and evaluation. Issues like security, fault toler-
ance, heterogeneous data access and representation, quality of service, pricing
and portability have to be addressed as well. Large-scale parallel data mining
systems should support the entire data mining process, including pre- and post-
processing.

For the development of our algorithms we are using a Beowulf [26] style Linux
cluster with 96 processing nodes at the Australian National University [1]. This



type of parallel architecture is a cost efficient alternative to expensive super-
computers, and therefore specially useful for algorithm development. A more
detailed description of the used cluster is given in Section 4.

2 Scalable Parallel Predictive Modelling

Predictive modelling is widely used in data mining to discover average relation-
ships or trends between numerical and categorical attributes which can then be
applied to estimate properties of future objects or transactions. In particular,
the discovered models can be used to find unusual data records. Such records
could, in some case, be indicative to fraud. In general, they point to exceptional
circumstances which suggest further investigation and possibly action.

A predictive model is described by a function y = f(x), where x = (x1, . . . , xd)
belongs to the set T of predictors and y belongs to the set S of responses. If
the set S is finite (often S = {0, 1}), the determination of f is a classification

problem and if S = R (the set of real numbers) one speaks of regression. In the
following we will mainly consider the case of regression. Note, however, that the
techniques discussed here can be modified to include logistic regression which is
used for classification.

In many applications the response variable y is known to depend smoothly
on the predictor variables xi. This allows the application of approximation re-
sults which have successively been applied in engineering and science. There, the
finite element methods provide a very efficient computational foundation for the
approximation of effects as diverse as mechanical stress, electrical fields and fluid
flow vorticity. It has been shown earlier that such finite element approximations
are also efficient for the approximation of smooth regression functions [18]. In
principle, these approximations all use linear representations by generating or
basis functions of the form

f(x) =

m
∑

j=1

cjβj(x). (1)

As the βj are not necessarily linearly dependent, linear constraints are used to
provide a one-to-one correspondence between the coefficients cj and the functions
f .

The data is modelled as a sequence of pairs (xi, yi) ∈ T×R where i = 1, . . . , n
are n data records (in data mining applications n is typically in the range of 106

or higher). The function f should fit the data in the sense that f(x(i)) ≈ y(i)

but it should also be smooth. A good compromise between smoothness and data
fit is obtained with a penalised least squares fit where f minimises a functional
of the form

Jα(f) =
n

∑

i=1

(

f(x(i))− y(i)
)2

+ α

∫

T

|L(x)|2 dx (2)

where the smoothing parameter α controls the trade-off between smoothness
and data fit. If α = 0 f in (2) will be an interpolant. The symbol L denotes a



differential operator, examples include the gradient, Hessian and the Laplacian,
and | · | denotes the Euclidean norm for vector operators.

While the actual application can only be developed when a given set of gener-
ating or basis functions βj is chosen (in the following subsections two particular
cases will be presented), several aspects are independent of the particular choices,
however, and they will be discussed here. First, the coefficients ci are determined
by a quadratic optimisation problem, in particular, the minimiser

Qα(c) = cT Ac + 2bT c + αcT Cc

possibly with additional constraints. The assembly of the finite element matrix
C is standard for finite element calculations and the matrix elements are

Cj,k =

∫

T

(Lβj(x))TLβk(x)dx.

The matrix A and vector b are assembled from the data. Their components are

Aj,k =

n
∑

i=1

βj(x
(i))βk(x(i)) (3)

and

bj =

n
∑

i=1

βj(x
(i))y(i) (4)

respectively. Thus the determination of the functions f consists of two steps:

1. Assembly: The computation of the matrices A and C and the right-hand
side b. This computation is expensive due to the large number of data records
n. However, it is scalable in the data size, i.e. it has linear time complex-
ity O(n). It is, however, O(m2) and a large set of generating functions m
can make this computation infeasible. The number of generating functions
required is strongly influenced by the dimension of the problem. However,
in data mining applications, m� n so that this step corresponds to a data
reduction.
At the end of this step the penalty term αC is added to the matrix A.

2. Solution: The linear system of equations (A + αC)c = b is solved using a
direct solver. The solution does not require reading the data and thus has a
time complexity independent of the data size. Typically, for a size m system
we require O(m3).

Note that for large n step 1 will dominate whereas for large m step 2 will
dominate. As the number of data records n is usually very large for data mining
applications, the overall complexity is mainly determined by n.

In this paper we discus algorithms for two particular choices of the basis
vectors βj . We call these algorithms ADDFIT and HISURF respectively, and
they are presented in more details in the following two subsections. A third
method using a thin plate splines approach and called TPSFEM is presented
elsewhere [7].



A dense linear system is assembled for both ADDFIT and HISURF, so the
same solver can be used to solve theses systems. TPSFEM on the other hand
results in a sparse linear system, which requires different solving techniques.

The process of assembling the linear systems has the same structure both for
ADDFIT and HISURF. For each data record, some nonzero elements are added
into the matrix and vector. The number of nonzero elements per data record is
O(d) (assuming a d-dimensional data set), forming the normal equations matrix
A is thus of order O(d2) for each data record. The total complexity of assembling
n data records sequentially is therefore

Tassem(1) = O(d2n).

The assembly of data records into the linear system is additive and so each record
can be assembled independently from all others. Having p processing nodes avail-
able, each of them can read a fraction n/p of all data records, and a local linear
system is assembled on each node without communication. The parallel com-
plexity of the assembly process on p processing nodes therefore becomes

Tassem(p) = O

(

d2n

p

)

.

The complete matrix data structure has to be stored on each node, as every
data record can contribute nonzero elements anywhere in the matrix. The linear
system is therefore distributed, but not replicated, on the processing nodes and
the final linear system is the sum of all local linear systems.

The assembly process without communication is limited by the available
amount of memory on each processing node. For matrices that are too large,
a more complex assembly has to be applied, where the matrix data has to be
distributed in a memory-scalable way. A blocking structure of reading and re-
distributing data can be used for this.

2.1 High-dimensional Surface Smoothing using Wavelets

This section describes the High Dimensional Surface Smoothing (HISURF) method.
It uses a hierarchical interpolatory wavelet basis and tensor products thereof to
approximate f as given in (2). Wavelets provide a multi-level decomposition of f
in each dimension which can lead to very compact approximations of reasonable
well behaved functions. See [8, 24, 27] for introductions to wavelet theory.

Let Ij,l =
[

l
2j ; l+1

2j

]

be an interval. The one-dimensional hierarchical basis
functions are defined as

βj,l =

{

ϕ0,l, j = 0
ψj−1,l, j > 0

(5)

where

ϕj,l(x) =







1 + 2jx− l, x ∈ Ij,l−1

1− 2jx+ l, x ∈ Ij,l
0, otherwise



and ψj−1,l = ϕj,2l+1, l = 0, . . . , 2j . The high dimensional basis functions are

formed as the tensorial multi dimensional wavelet functions βj,l =
⊗d

s=1 βjs,ls

where j = (j1, . . . , jd)
T is a vector of scales in each dimension and l = (l1, . . . , ld)

T

is a vector of positions in each dimension.
Let j ∈ Z be a fixed maximal resolution, let γ = 2j +1 be the number of grid

points in each dimension, and let Ud
j be the space generated by piecewise linear

d-dimensional functions interpolated from the γd total grid points. These hat

functions comprise the generic finite element basis widely used in the literature
and in finite element methods. However, it can be shown [20] that the functions
βj,l also form a basis for Ud

j . We call this basis the rectangular wavelet basis.

A function f(x1, . . . , xd) ∈ Ud
j then has an expansion in terms of the rectan-

gular basis as follows:

u =

j
∑

j1,...,jd=0

θ(j1)
∑

l1=0

· · ·

θ(jd)
∑

ld=0

dj,lβj,l (6)

where the function θ(i) denotes the last local index of coefficients at scale i,
defined as θ(i) = 2|i−1| − 1, i ≥ 0.

It can be shown [20] that terms of this expansion where j1 + · · ·+ jd > j can
be deactivated without sacrificing the essential approximation power.

The compression error is bounded by the expression const
(

j+d−1
j

)

2−2j where
the constant depends only on the smoothness of f . In return, the dimension m
of the compressed system is bounded by jd−1(2j+1 − 1), which is a significant
reduction compared to computing the full surface [20], especially for large j and
d. The approximated smoothing surface is then computed in terms the active
coefficients only.

This is data independent or a-priori compression as opposed to the more
common (in the wavelet literature) data dependent compression where wavelet
coefficients are discarded based on their magnitude. The data dependent com-
pression is efficient for a function with isolated singularities. On the other hand,
for fitting a high dimensional smooth surface, singularities are unlikely to occur
so good approximations can be achieved by using a-priori compression. Since
this compression scheme is data-independent the algorithm can be very fast.

2.2 Additive Models

In this section we describe our method for Additive Model Fitting called ADDFIT.
Functions of d variables can be represented as sums of the form

f(x1, . . . , xd) = f0 +

d
∑

i=1

fi(xi) +
∑

i<j

fi,j(xi, xj) + · · · .

Such decompositions originate from the Analysis of Variance and have thus been
called ANOVA-decompositions [11]. They can be viewed as generalisations of
Taylor and Fourier-series. However, the terms are only uniquely determined if



additional constraints are imposed. If this is not done, the component f1(x1),
for example, is a special case of f1,2(x1, x2) and thus cannot be determined.

Including so-called interaction terms fi1,...,ik
(xi1 , . . . , xik

) up to order k = d
allows the exact representation of f . This, however, is computationally infeasible
in general due to the curse of dimensionality which also poses a major challenge
to HISURF. Luckily, for high-dimensional data only the inclusion of lower-order
terms is required as they give approximations which converge with the dimension
d for smooth functions [19]. Practical algorithms [3, 13, 16, 30] typically give good
approximations for k = 1 or k = 2 and it is common folklore that interactions
with higher order than k = 5 are highly unusual. (Of course, one also requires
enough data in order to identify such high-dimensional interactions.) The terms
in the ANOVA decomposition are represented using the same basis functions
which have been used for HISURF. The more general cases will be discussed
elsewhere, here we only discuss functions of the form

f(x) = f0 +
d

∑

s=1

fs(xs).

These additive models are discussed extensively in [16] from a statistical view-
point. The predictor variables (or attributes) xs can be real numbers, categories
or even more complex objects like sets, graphs and vectors. Vectors allow the
inclusion of higher order interactions. In the following, however, only simple data
types (real and categorical) will be discussed.

Additive models have many advantages. They are easy to interpret as the
overall effect is given as a sum of effects of single variables. When interpreting ad-
ditive models, however, one has to take into account that the variables xs might
be correlated. Our implementation of additive models uses a basis representation
of the component functions fs as

fs(xs) =

γs
∑

i=1

cs,iβs,i(xs)

with the basis functions βs,i, the coefficients cs,i and where γs is the number
of basis functions characterising fs. The basis functions are such that for any
xs only a small number of basis functions have nonzero values. For categorical
variables the basis functions are just the category indicator functions and for real
variables we use piecewise linear functions. A difficulty is that these functions
may be linearly dependent over the data set and this has to be addressed with
constraints.

While the components of the sum defining A in Equation (3) are typically
sparse, the final matrix A is more or less dense. In the parallel implementation
each processing node needs storage of the size of A to store the partial sum. This
means that we will not be able to increase the accuracy of the model in a scalable
way with the numbers of nodes, but this was not essential for our project. The
accuracy of the estimate is given by the accuracy of the model (bias) and the
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Fig. 1. Matrix structures and storage requirements.

variance of the estimate. The number of data records controls the variance of
the estimate.

The total number of basis functions used is m = 1 +
∑d

s=1 γs. Thus, for
constant γs = γ the number of unknowns – and thus the size of the assembled
linear system – scales linearly with the dimension d,

m = 1 + dγ.

This scalability with dimension d is an import advantage of additive models.
Figure 1 shows the structure of matrices assembled for a 3-dimensional data

set for both ADDFIT and HISURF. It also shows the increasing size of the
assembled linear systems with increasing dimensionality. However, computing a
full surface will grow exponentially with dimensions.

3 Cluster Implementation

First prototypes of the presented predictive modelling algorithms have been
developed by our group over the last couple of years [6, 7, 18–20] using Matlab
and the scripting language Python. The ADDFIT method has been used in
an administrative health data mining research consultancy [17] to predict the
behaviour of pathology laboratories.

To increase the performance and being able to use larger data sets we grad-
ually implemented parts of the algorithm in C. In a first step a C version of the
assembly routine for ADDFIT has been embedded into the Python code, allow-
ing both faster execution and the assembly of linear systems using larger data
sets. Next we developed a parallel version of the ADDFIT assembly routine [6]
using MPI [21] for communication, while a parallel dense solver for indefinite
linear systems [28] has been modified to fit into our framework. By now, we have
a parallel implementation for the ADDFIT and HISURF methods, including
both the assembly and solving stages. We are using a Python wrapper code to
facilitate the user interface and present graphical output. We describe both the
Python wrapper and the parallel implementation in the following subsections.



num_proc = 10 # Specify number of processes to use
alpha = 0.001 # Select smoothing parameter

solver_args = [1,1,64,64] # Parameters for dense solver

stat_dict = load_stat(’CENSUS’) # Load CENSUS statistical file

stat_dict.update({’data_dir’:’/tmp/predmod_data/’}) # Local directories

stat_dict.update({’pred_model’:’ADDFIT’}) # Select model type

stat_dict.update({’response_attr’:’MARSUPWT’}) # Select response attribute
pred_attr = [’YEAR’, ’CAPGAIN’,’INCOME’,’AAGE’,’ASEX’]
stat_dict.update({’predictor_attr’:pred_attr}) # Select predictor attributes

stat_dict.update({’grid_resolution’:10}) # Select grid resolution

write_conf(’CENSUS’, stat_dict) # Create configuration file

# Start (parallel) MPI code

result = run_predmod(’CENSUS’, stat_dict, num_proc, solver_args, alpha)

# Create model description
model = plot_predmod(result, ’CENSUS’, pred_attr, stat_dict, alpha)

model.plot() # Plot model (see Figure 3)

Fig. 2. Python code for calling ADDFIT with CENSUS database.

3.1 Python Wrapper

We are using the scripting language Python [5], both for the development of
prototypes, as well as controlling the parallel implementations, facilitating user
interface and to display results graphically. Python is an excellent tool for rapid
code development. It handles large amounts of data efficiently, it is very easy
to write scripts as well as general functions, it can be run interactively (inter-
pretable) and it is flexible with regards to data types because it is based on
general lists and dictionaries (associative arrays), of which the latter are imple-
mented as very efficient hash-tables. A numerical extension [9] provides func-
tionalities similar to Matlab, and many more modules are available in all kinds
of areas, including interfaces to Tkinter and Gnuplot.

Our Python wrapper code reads the data structures which describe a data
set and a predictive model and all its parameters, and creates a temporary con-
figuration file which is then read by the parallel application. This data structures
use dictionaries and are in an easy readable form as can be seen in Figure 2.
The Python code also dynamically creates an MPI call, which starts the parallel
application. Results are written to files by the parallel program, loaded by a
Python function and displayed using a graphical interface as shown in Figure 3.

We also use Python for testing purposes, as it is easy to run parallel codes
with different arguments in batch mode, to compare results and create reports.
The results from our Python prototype codes are compared to the results from
the parallel C/MPI code (running on various number of processing nodes), thus
giving us another tool for testing.



Fig. 3. Graphical output for ADDFIT.

3.2 Parallel Assembly

The parallel codes have been implemented in C using MPI [21] for communica-
tions. The basic structure of the assembly routine is the same for both ADDFIT
and HISURF, and both can be solved with the dense linear system solver de-
scribed in Section 3.3. The matrix data structures and the assembly of data
records into the linear system are the only parts that differ in ADDFIT and
HISURF.

A Single-Program-Multiple-Data (SPMD) style is used for both the assem-
bly and solver steps. A configuration file (dynamically created by the Python
wrapper code) is read by all processes from a commonly accessible directory
(assuming a NFS for parts of the directory tree). In the assembly step, the out-
ermost loop iterates over the available data files. For each given data file, the
number of records n is divided by the number of processes p and each process
reads its part, with p0 reading from the beginning of the files and all other
processes skipping to their corresponding positions.

In the innermost loop each process reads and assembles its n/p data records
in a blocking fashion, i.e. a number of records is loaded, assembled into the local
linear system, and the next block is loaded. Thus, it is possible to trade memory
usage and I/O access (larger blocks are usually more efficient to load). In the
assembly step a local linear system is assembled on each process as described in
Section 2, and the sum of all theses local systems is then the final linear system
to be solved.

If the assembled linear system is small, a sequential solver can be used to
solve it. In this case, the local systems have to be reduced into the final linear
system on one processing node before it can be solved sequentially. Alterna-



tively, if the assembled linear system is too large to be solved efficiently on one
processing node (i.e. if a parallel solving is faster than the sequential), a block-
cyclic redistribution is performed and the parallel solver discussed in the next
subsection is used to solve the system.

3.3 Parallel Dense Solver

Solving the assembled linear system can be done with either a sequential or
parallel solver, depending on the size of the system and the available parallel
architecture.

The systems currently generated by HISURF and ADDFIT are dense and
symmetric, positive definite in the former case, and semi-definite in the latter
case. However, in future refinements of these models, the definiteness property
may be lost, for example because of the addition of extra constraints or – in the
case of additive models – extending it to a second-order model.

For HISURF and ADDFIT a solver is thus required that will be accurate
for any symmetric dense system, and also has good parallel and sequential per-
formance. The former requirement argues for a direct solver with good stability
properties; the latter argues for one that exploits symmetry to require only
m3

3 + O(m2) floating point operations, and that has been shown to have an ef-
ficient parallelisation. A direct solver for general symmetric (indefinite) systems
based on the diagonal pivoting method [2, 14] meets these requirements.

In the diagonal pivoting method, the decomposition A = LDLT is per-
formed, where L is an m×m lower triangular matrix with a unit diagonal, and
D is a block diagonal matrix with either 1 × 1 or 2 × 2 sub-blocks [14]. The
factorisation of A proceeds column by column; in the elimination of column j,
three cases arise:

1. Eliminate using a 1 × 1 pivot from Aj,j . This corresponds to the defi-
nite case, and will be used when Aj,j is sufficiently large (compared with
max(Aj+1:m,j)).

2. Eliminate using a 1×1 pivot from Ai,i, where i > j. This corresponds to the
semi-definite case; a symmetric interchange with row/columns i and j must
be performed.

3. Eliminate using a 2 × 2 pivot using columns i′ and i (i′, i ≥ j, i′ 6= i). This
case produces a 2× 2 sub-block at column j of D. This corresponds to the
indefinite case; a symmetric interchange with rows/columns i′, i and j, j+1
must be performed. However, columns j and j+1 are eliminated in this case.

The tests used to decide between these cases, and the searches used to select
column i (and i′), yield several algorithms based on the method, the most well-
known being the variants of the Bunch-Kaufman algorithm (see [14] and the
references cited within).

It has been recently shown for the Bunch-Kaufman algorithm that there is
no guarantee that the growth of L is bounded [2]. Variants such as the bounded

Bunch-Kaufman and fast Bunch-Parlett algorithms have been devised which



overcomes this problem. The extra accuracy of these methods results from more
extensive searching for stable pivot columns i (and i′) for cases 2 and 3, with a
correspondingly more frequent use of these cases.

For linear systems that are close to definite, such as are likely to be gen-
erated by our models, the diagonal pivoting methods permit most columns to
be eliminated by case 1, requiring no symmetric interchanges. For a parallel
implementation, this is a highly useful property, as even for large matrices the
communication startup and volume overheads of symmetric interchange, when
the rows and columns come from different nodes, is considerable [28].

Instead of suppressing interchanges, which even if done judiciously may re-
sult in the loss of some accuracy [28], high parallel performance can also be
achieved with a block-search algorithm that searches for suitable pivot columns
i and i′ from the current storage block [22]. If this search was successful, the
symmetric interchanges would require no communication, resulting in no paral-
lel overhead. Such a strategy could be based on the Duff-Reid algorithm used
for sparse matrices [2, 22], which also has strong guarantees of accuracy.

However, if the search was not successful, an equally stable means of elim-
inating column j must then be used. We chose the bounded Bunch-Kaufman

algorithm over the fast Parlett-Reid algorithm, as the latter requires sorting of
the columns by the size of the diagonal, which would give it higher parallel
overheads. Further details can be found in [29].

The implementation of this parallel solver assumes the processing nodes being
arranged logically in a rectangular grid. The parallelisation of the solver step is
independent from the assembly step. We are using a partial reduction operation
which reduces the assembled local linear systems from p processing nodes onto
a logical q1× q2 grid. While it is often appropriate to use all available processing
nodes to assemble the linear system (because a large amount of data has to be
loaded from disk), solving the system on only a small number of nodes might be
more efficient due to the increasing communication overhead. A special case is
q1 = q2 = 1, i.e. a sequential solving of the system, in which case the local linear
systems are reduced onto one processing node.

4 Cluster Architecture and Performance Results

For test and timing purposes we downloaded and installed the publicly available
Census-Income database from the UCI KDD Archive at the University of Cali-

fornia, Irvine1. This database contains weighted census data extracted from US
population surveys conduced by the US Bureau of Census in 1994 and 1995. It
contains 42 demographic and employment related attributes, six of them contin-
uous and the others categorical with up to 92 categories. The data set contains
a total of 299, 285 records.

In a preprocessing step statistical information was collected and stored in
a configuration file. For continuous attributes the minimal and maximal values

1 See: http://kdd.ics.uci.edu/
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are stored, while for categorical attributes the number of categories are stored
and the category names are saved in separate files. A further normalisation
step then converted the original text files into binary files, one per attribute.
Continuous attributes were normalised into the interval [0, 1] and for categorical
attributes only the category numbers were stored. Using only these binary files
for the predictive modelling process allows very efficient file reading using the C
function fread() instead of the much slower fscanf().

The implementations discussed and the results presented in this paper were
all developed and measured on the Beowulf style Linux cluster called Bunyip2 [1]
at the Australian National University, Canberra. This cluster is built with 98
dual 550 MHz Pentium III nodes, each equipped with 384 Megabytes of RAM
(total about 36 Gigabytes), 13 Gigabytes of disk space (total 1.3 Terabytes) and
3 × 100 MBit/s fast Ethernet cards. Logically 96 nodes are connected in four
groups of 24 nodes arranged as a tetrahedron with a group of nodes at each
vertex, as depicted in Figure 4. Two nodes are dedicated as servers connected
to a network-switch by a Gigabit link

4.1 ADDFIT Performance Results

In this section we present timing results for ADDFIT using the Census database
described above. For these tests we used up to 48 processing nodes (groups B
and C) on the Bunyip cluster. The database (total size around 54 Megabytes)
has been copied onto local discs, so file access was handled locally.

To simulate a larger data set, we also run tests where we loaded the Census

database ten times, with a total of 2, 992, 850 records. We denote the normal
one-time loading of Census with Census1 and the tenfold loading with Census10.
Note that loading the data ten times does not affect the size of the linear system.

In a first series of tests we choose a subset of 8 attributes (7 categorical
and one continuous), and a small matrix of dimension 100× 100 was assembled
and solved. The amount of data which was loaded in this test was around 7

2 See: http://tux.anu.edu.au/Projects/Bunyip/



Megabytes in total. The grid resolution for the continuous attribute was set to
33 grid points. Each test run was performed 10 times and we report average
times. Test were run both with loading Census once and ten times (Census1

and Census10, respectively).

The second series of timings was run with all attributes used for the predictive
modelling (i.e. one continuous attribute as response attribute and all others as
predictor attributes). In this case, a total of around 54 Megabytes were loaded
in the Census1 case and around 540 Megabytes with the Census10 case. The
resulting linear system had a dimension of 1000× 1000.

In Table 1 we show the timings achieved with the Python prototype code of
ADDFIT on one processing node of Bunyip, and Tables 2 and 3 show timings
for the C/MPI implementation. All presented times are in seconds.

8 attributes 41 attributes
Census1 Census10 Census1 Census10

Loading 61 617 322 3209

Assembly 4.142 4.160 93.243 93.294

Solving 0.029 0.037 18.132 18.221

Table 1. ADDFIT Python prototype timings (in seconds).

For the Python prototype, the total run-time is dominated by loading the
data from files. Once the data is loaded into memory, assembling the linear
system is quite fast and solving the system is even faster (even for the 1000×1000
system).

For the parallel C/MPI code the time for the assembly step (which includes
loading the data from files) is reduced linearly with increasing number of pro-
cessing nodes used, while the time to reduce the final linear system increases
with number of nodes. So there is a trade-off between reduced local I/O and
communication. As expected the times for loading and assembling the Census10

data takes ten times longer than for the Census1 data.

Processing nodes 1 2 4 8 16 24

Assembly Census1 3.921 1.975 0.984 0.493 0.243 0.160

Assembly Census10 39.139 19.558 9.714 4.823 2.390 1.573

Reduce: – 0.007 0.057 0.038 0.054 0.064

Solving: 0.009 0.009 0.010 0.010 0.010 0.010

Table 2. ADDFIT C/MPI timings with 8 attributes and a 100 × 100 system.



Processing nodes 1 2 4 8 16 24 32 40 48

Assembly Census1 50.37 25.32 12.69 6.35 3.19 2.13 1.80 1.45 1.22

Assembly Census10 498.00 250.06 124.94 62.42 31.01 20.60 17.33 13.92 11.54

Reduce: – 0.76 1.51 2.18 2.82 3.50 3.45 4.12 4.38

Solving: 2.17 2.20 2.18 2.18 2.18 2.18 2.37 2.37 2.37

Table 3. ADDFIT C/MPI timings with 41 attributes and a 1000 × 1000 system.

Note that the time to solve the linear system is the same for different number
of nodes used. This is because we solved the linear system sequentially in all
presented tests. Even for the 1000 × 1000 system a parallel solving resulted in
a speed-down due to the high communication overhead. But as the overall run
time is dominated by the assembly step – specially if we look at data mining
applications with millions of records – the solving step is only a fraction and can
almost be neglected. However, it should be noted that systems of this size are
small on even two processing nodes, and the solver performance scales well for
larger matrices [29].

As the complete triangular matrix is stored on each processing node, the
reduce step becomes a large portion of the total run-time if the number of pro-
cessing nodes is increased. In the case of the 1000 × 1000 matrix, almost 4
Megabytes are communicated from one node to another. Even with a binary-
tree like reduction algorithm, log2(p) messages are needed to reduce the linear
system to one processing node.

5 Outlook

In this paper we presented two methods for parallel predictive modelling that
can be used for data mining of large and complex data sets. Based on additive
models and wavelets, ADDFIT and HISURF both require the assembly of a
symmetric dense linear system, which can be be done in parallel. The solution
step has parallelisation properties which are independent of the assembly.

At the time of this writing, the ADDFIT method is fully implemented in
C/MPI, and we are currently working on the integration of HISURF into the
same framework. A third method, called TPSFEM [7], will be added later.

The presented implementations were developed on a Beowulf cluster, how-
ever, we are planning to port our applications to the APAC 3 National Facilities
as soon as they will be available.

The Python wrapper code currently used helps the user to set up and control
a predictive modelling process, by facilitating the choice of attributes and model
parameters, and by providing a graphical output. We plan to include our parallel
predictive modelling applications into the framework of the DMtools [25], a data
mining toolbox – written in the scripting language Python – that allows efficient

3 Australian Partnership for Advanced Computing, http://www.apac.edu.au



and flexible access to relational databases and helps with handling of common
tasks in data mining.
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