Probabilistic Deduplication, Data Linkage and Geocoding

Peter Christen

Data Mining Group, Australian National University

in collaboration with Centre for Epidemiology and Research, New South Wales Department of Health

Contact: peter.christen@anu.edu.au

Funded by the ANU, the NSW Department of Health, the Australian Research Council (ARC), and the Australian Partnership for Advanced Computing (APAC)

Data cleaning and standardisation (1)

- Real world data is often dirty
 - Missing values, inconsistencies
 - Typographical and other errors
 - Different coding schemes / formats
 - Out-of-date data
- Names and addresses are especially prone to data entry errors
- Cleaned and standardised data is needed for
 - Loading into databases and data warehouses
 - Data mining and other data analysis studies
 - Data linkage and data integration

Data linkage

- Data (or record) linkage is the task of linking together information from one or more data sources representing the same entity
- Data linkage is also called database matching, data integration, data scrubbing, or ETL (extraction, transformation and loading)
- Three records, which represent the same person?
 1. Dr Smith, Peter; 42 Miller Street 2602 O’Connor
 2. Pete Smith; 42 Miller St 2600 Canberra A.C.T.
 3. P. Smithers, 24 Mill Street 2600 Canberra ACT

Probabilistic linkage

- Computer assisted data linkage goes back as far as the 1950s (based on ad-hoc heuristic methods)
- Basic ideas of probabilistic linkage were introduced by Newcombe & Kennedy (1962)
- Theoretical foundation by Fellegi & Sunter (1969)
 - Using matching weights based on frequency ratios (global or value specific ratios)
 - Compute matching weights for all fields used in linkage
 - Summation of matching weights is used to designate a pair of records as link, possible-link or non-link

Outline

- Data cleaning and standardisation
- Data linkage and probabilistic linkage
- Privacy and ethics
- Febrl overview and open source tools
- Probabilistic data cleaning and standardisation
- Blocking and indexing
- Record pair classification
- Parallelisation in Febrl
- Data set generation
- Geocoding

Data cleaning and standardisation (2)

- Remove unwanted characters and words
- Expand abbreviations and correct misspellings
- Segment data into well defined output fields

Data linkage techniques

- Deterministic or exact linkage
 - A unique identifier is needed, which is of high quality (precise, robust, stable over time, highly available)
 - For example Medicare, ABN or Tax file number (are they really unique, stable, trustworthy?)
- Probabilistic linkage (Fellegi & Sunter, 1969)
 - Apply linkage using available (personal) information (for example names, addresses, dates of birth, etc)
- Other techniques
 (rule-based, fuzzy approach, information retrieval, AI)

Approximate string comparison

- Account for partial agreement between strings
- Return score between 0.0 (totally different) and 1.0 (exactly the same)

Examples:

<table>
<thead>
<tr>
<th>String_1</th>
<th>String_2</th>
<th>Winkler</th>
<th>Bigram</th>
<th>Edit-Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>tanya</td>
<td>tonya</td>
<td>0.880</td>
<td>0.500</td>
<td>0.800</td>
</tr>
<tr>
<td>dwayne</td>
<td>duane</td>
<td>0.840</td>
<td>0.222</td>
<td>0.667</td>
</tr>
<tr>
<td>sean</td>
<td>susan</td>
<td>0.805</td>
<td>0.286</td>
<td>0.600</td>
</tr>
<tr>
<td>jon</td>
<td>john</td>
<td>0.933</td>
<td>0.400</td>
<td>0.750</td>
</tr>
<tr>
<td>itman</td>
<td>smith</td>
<td>0.567</td>
<td>0.250</td>
<td>0.200</td>
</tr>
<tr>
<td>ist</td>
<td>ist</td>
<td>0.778</td>
<td>0.550</td>
<td>0.667</td>
</tr>
<tr>
<td>peter</td>
<td>ole</td>
<td>0.511</td>
<td>0.000</td>
<td>0.200</td>
</tr>
</tbody>
</table>
Phonetic name encoding

- Bringing together spellings variations of the same name
- Examples:

<table>
<thead>
<tr>
<th>Name</th>
<th>Soundex</th>
<th>NYSSIS</th>
<th>Double-Metaphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>stephen</td>
<td>s315</td>
<td>staf</td>
<td>stfn</td>
</tr>
<tr>
<td>steve</td>
<td>s310</td>
<td>staf</td>
<td>stf</td>
</tr>
<tr>
<td>gail</td>
<td>g400</td>
<td>gal</td>
<td>kl</td>
</tr>
<tr>
<td>gayle</td>
<td>g400</td>
<td>gal</td>
<td>kl</td>
</tr>
<tr>
<td>christine</td>
<td>c623</td>
<td>chra</td>
<td>krst</td>
</tr>
<tr>
<td>christina</td>
<td>c623</td>
<td>chra</td>
<td>krst</td>
</tr>
<tr>
<td>kristina</td>
<td>k623</td>
<td>cras</td>
<td>krst</td>
</tr>
</tbody>
</table>

Value specific frequencies

- Example: Surnames
 - Assume the frequency of Smith is higher than Dijkstra (NSW Whitepages: 25,425 Smith, only 3 Dijkstra)
 - Two records with surname Dijkstra are more likely to be the same person than with surname Smith
 - The matching weights need to be adjusted
 - Difficulty: How to get value specific frequencies that are characteristic for a given data set
 - Earlier linkages done on same or similar data
 - Information from external data sets (e.g. Australian Whitepages)

Applications and usage

- Applications of data linkage
 - Remove duplicates in a data set (internal linkage)
 - Merge new records into a larger master data set
 - Create patient or customer oriented statistics
 - Compile data for longitudinal (over time) studies
 - Clean data sets for data analysis and mining projects
 - Geocode data
- Widespread use of data linkage
 - Census statistics
 - Business mailing lists
 - Health and biomedical research (epidemiology)
 - Fraud and crime detection

Febrrl – Freely extensible biomedical record linkage

- Commercial software for data linkage is often expensive and cumbersome to use
- Project aims
 - Allow linkage of larger data sets (high-performance and parallel computing techniques)
 - Reduce the amount of human resources needed (improve linkage quality by using machine learning)
 - Reduce costs (free open source software)
 - Modules for data cleaning and standardisation, data linkage, deduplication and geocoding
 - Free, open source https://sourceforge.net/projects/febrl/

Linkage example: Month of birth

- Assume two data sets with a 3% error in field month of birth
- Probability that two linked records (that represent the same person) have the same month value is 97% (L agreement)
- Probability that two linked records do not have the same month value is 3% (L disagreement)
- Probability that two (randomly picked) unlinked records have the same month value is 1/12 = 8.3% (U agreement)
- Probability that two unlinked records do not have the same month value is 11/12 = 91.7% (U disagreement)

Final linkage decision

- The final weight is the sum of weights of all fields
 - Record pairs with a weight above an upper threshold are designated as a link
 - Record pairs with a weight below a lower threshold are designated as a non-link
 - Record pairs with a weight between are possible link

Privacy and ethics

- For some applications, personal information is not of interest and is removed from the linked data set (for example epidemiology, census statistics, data mining)
- In other areas, the linked information is the aim (for example business mailing lists, crime and fraud detection, data surveillance)
- Personal privacy and ethics is most important
 - Privacy Act, 1988
 - National Statement on Ethical Conduct in Research Involving Humans, 1999

Open source software tools

- Scripting language Python www.python.org
 - Easy and rapid prototype software development
 - Object-oriented and cross-platform (Unix, Win, Mac)
 - Can handle large data sets stable and efficiently
 - Many external modules, easy to extend
 - Large user community
- Parallel libraries MPI and OpenMP
 - Widespread use in high-performance computing (quasi standards) ⇒ Portability and availability
 - Parallel Python extensions: PyRO and PyPar
Probabilistic data cleaning and standardisation

1. Cleaning
 - Based on look-up tables and correction lists
 - Remove unwanted characters and words
 - Correct various misspellings and abbreviations
2. Tagging
 - Split input into a list of words, numbers and separators
 - Assign one or more tags to each element of this list (using look-up tables and some hard-coded rules)
3. Segmenting
 - Use either rules or a hidden Markov model (HMM) to assign list elements to output fields

Step 1: Cleaning
- Assume the input component is one string (either name or address – dates are processed differently)
- Convert all letters into lower case
- Use correction lists which contain pairs of (original, replacement) strings
- An empty replacement string results in removing the original string
- Correction lists are stored in text files and can be modified by the user
- Different correction lists for names and addresses

Step 2: Tagging
- Cleaned strings are split at whitespace boundaries into lists of words, numbers, characters, etc.
- Using look-up tables and some hard-coded rules, each element is tagged with one or more tags
- Example:
 - Uncleaned input string: “Doc. peter Paul MILLER”
 - Cleaned string: “dr p peter p paul miller”
 - Word and tag lists:
 [‘dr’, ‘peter’, ‘paul’, ‘miller’]

Hidden Markov model (HMM)

- A HMM is a probabilistic finite state machine
- Made of a set of states and transition probabilities between these states
- In each state an observation symbol is emitted with a certain probability distribution
- In our approach, the observation symbols are tags and the states correspond to the output fields

HMM probability matrices

- Using the tag list, assign elements in the word list to the appropriate output fields
- Rules based approach (e.g. AutoStan)
 - Example: “if an element has tag ‘TI’ then assign the corresponding word to the ‘Title’ output field”
 - Hard to develop and maintain rules
 - Different sets of rules needed for different data sets
 - Hidden Markov model (HMM) approach
 - A machine learning technique (supervised learning)
 - Training data is needed to build HMMs

HMM data segmentation

- For an observation sequence we are interested in the most likely path through a given HMM (in our case an observation sequence is a tag list)
- The Viterbi algorithm is used for this task (a dynamic programming approach)
- Smoothing is applied to account for unseen data (assign small probabilities for unseen observation symbols)

HMM segmentation example

- Input word and tag list:
 [‘dr’, ‘peter’, ‘paul’, ‘miller’]
- Two example paths through the HMM:
 1: Start -> Title (TI) -> Givenname (GM) -> Middlename (GM) -> Surname (SN) -> End
 2: Start -> Title (TI) -> Surname (SN) -> Givenname (GM) -> Surname (SN) -> End
Address HMM standardisation example

1. Raw input: '73 Miller St, NORTH SYDNEY 2060'
 Cleaned into: '73 miller street north sydney 2060'
2. Word and tag lists:
 ['73', 'miller', 'street', 'north_sydney', '2060']
3. Example path through HMM
 Start -> Wayfare Number (NU) -> Wayfare Name (UN) -> Wayfare Type (WT) -> Location Name (LN) -> Postcode (PC) -> End

HMM training (2)

A bootstrapping approach is applied for semi-automatic training
1. Manually edit a small number of training records and train a first rough HMM
2. Use this first HMM to segment and tag a larger number of training records
3. Manually check a second set of training records, then train an improved HMM
 Only a few person days are needed to get a HMM that results in an accurate standardisation (instead of weeks or even months to develop rules)

Name standardisation results

- NSW Midwifes Data Collection (1990 - 2000)
 (around 963,000 records, no medical information)
- 10-fold cross-validation study with 10,000 random records (9,000 training and 1,000 test records)
- Both Febrl rule based and HMM data cleaning and standardisation
 Rules were better because most names were simple (not much structure to learn for HMM)

<table>
<thead>
<tr>
<th>Method</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>83.1%</td>
<td>97.0%</td>
<td>92.0%</td>
<td>±4.7%</td>
</tr>
<tr>
<td>Rules</td>
<td>97.1%</td>
<td>99.7%</td>
<td>98.2%</td>
<td>±0.7%</td>
</tr>
</tbody>
</table>

Field comparison functions in Febrl

- Exact string
- Truncated string (only consider beginning of strings)
- Approximate string (using Winkler, Edit dist, Bigram etc.)
- Encoded string (using Soundex, NYSIIIS, etc.)
- Keying difference (allow a number of different characters)
- Numeric percentage (allowing percentage tolerance)
- Numeric absolute (allow absolute tolerance)
- Date (allow day tolerance)
- Age (allow percentage tolerance)
- Time (allow minute tolerance)
- Distance (allow kilometre tolerance)

Blocking and indexing

- Number of possible links equals the product of the sizes of the two data sets to be linked
 (two databases with 1,000,000 and 5,000,000 records will result in 5 x 10^12 = 5 Trillion record pair comparisons)
- Performance bottleneck is the (expensive) comparison of field values (similarity measures) between record pairs
- Blocking / indexing / filtering techniques are used to reduce the large amount of record comparisons (for example, only compare records which have the same postcode value)

HMM training (1)

- Both transition and observation probabilities need to be trained using training data
 (maximum likelihood estimates (MLE) are derived by accumulating frequency counts for transitions and observations)
- Training data consists of records, each being a sequence of (tag: hmm_state) pairs
- Example (2 training records):
 # '42 / 131 miller place manly 2095 new_south_wales'
 # '2 richard street lewisham 2049 new_south_wales'

Address standardisation results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>HMM</th>
<th>HMM2</th>
<th>HMM3</th>
<th>AutoStan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Data Set (1,000 records each)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Death Certificates</td>
<td>95.7%</td>
<td>98.6%</td>
<td>97.6%</td>
<td>91.5%</td>
</tr>
<tr>
<td>Inpatient Statistics Collection</td>
<td>95.7%</td>
<td>95.9%</td>
<td>97.4%</td>
<td>95.3%</td>
</tr>
</tbody>
</table>

Record pair classification

- For each record pair compared a vector containing matching weights is calculated
 Example:
 Record A: ['df', 'peter', 'paul', 'miller']
 Record B: ['mr', 'john', '', 'miller']
 Matching weights: [0.2., -3.2, 0.0, 2.4]
- Matching weights are used to classify record pairs as links, non-links, or possible links
- Fellegi & Sunter classifier simply sums all the weights, then uses two thresholds to classify
- Improved classifiers are possible (for example using machine learning techniques)
Parallelisation

- Implemented transparently to the user
- Currently using MPI via Python module PyPar
- Use of super-computing centres is problematic (privacy) → Alternative: In-house office clusters
- Some initial performance results (on Sun SMP)

Data set generation

- Data set with 4 original and 6 duplicate records

<table>
<thead>
<tr>
<th>REC_ID</th>
<th>ADDRESS1</th>
<th>ADDRESS2</th>
<th>SUBURB</th>
</tr>
</thead>
<tbody>
<tr>
<td>rec-0-org</td>
<td>wylly place,</td>
<td>pine ret vill, taree</td>
<td></td>
</tr>
<tr>
<td>rec-0-dup-1</td>
<td>pine ret vill,</td>
<td>wyly place, taree</td>
<td></td>
</tr>
<tr>
<td>rec-0-dup-2</td>
<td>wyly place,</td>
<td>pine ret vill, taree</td>
<td></td>
</tr>
<tr>
<td>rec-0-dup-3</td>
<td>wyly place,</td>
<td>pine ret vill, taree</td>
<td></td>
</tr>
<tr>
<td>rec-1-org</td>
<td>stuart street,</td>
<td>hartford, menton</td>
<td></td>
</tr>
<tr>
<td>rec-2-org</td>
<td>griffiths street,</td>
<td>myross, kilda</td>
<td></td>
</tr>
<tr>
<td>rec-2-dup-1</td>
<td>griffiths street,</td>
<td>myross, kilda</td>
<td></td>
</tr>
<tr>
<td>rec-3-org</td>
<td>ellenborough place,</td>
<td>kalkite homestead, sydney</td>
<td></td>
</tr>
</tbody>
</table>

- Each record is given a unique identifier, which allows the evaluation of accuracy and error rates for data linkage.

Geocoding

- Street centreline based (many commercial systems)
- Property parcel centre based (our approach)
- A recent study found substantial differences (specially in rural areas)
 Cayo and Talbot; Int. Journal of Health Geographics, 2003

Geocoding techniques

- Street centreline based
- Property parcel centre based
- A recent study showed substantial differences

Geocoded national address file

- G-NAF: Available since early 2004
- Source data from 13 organisations
- Processed into 22 normalised database tables

Febrl geocoding system

- Use external Australia Post postcode and suburb look-up tables for correcting and imputing
 (e.g., if a suburb has a unique postcode this value can be imputed if missing, or corrected if wrong)
- Use boundary files for postcodes and suburbs to build **neighbouring region lists**
 Idea: People often record neighbouring suburb or postcode if it has a higher perceived social status
 Create lists for direct and indirect neighbours (neighbouring levels 1 and 2)
Febre geocoding match engine

- Uses cleaned and standardised user address(es) and G-NAF inverted index data
- Fuzzy rule based approach
 1. Find street match set (street name, type and number)
 2. Find postcode and locality match set (with no, then direct, then indirect neighbour levels)
 3. Intersect postcode and locality sets with street match set (if no match increase neighbour level and go back to 2.)
 4. Refine with unit, property, and building match sets
 5. Retrieve corresponding location (or locations)
 6. Return location and match status (address, street or locality level match; none, one or many matches)

Outlook

- Several research areas
 - Improving probabilistic data standardisation
 - New and improved blocking / indexing methods
 - Apply machine learning techniques for record pair classification
 - Improve performances (scalability and parallelism)
- Project web page

Febre is an ideal experimental platform to develop, implement and evaluate new data standardisation and data linkage algorithms and techniques

Geocoding examples

- Red dots: Febre geocoding (G-NAF based)
- Blue dots: Street centreline based geocoding

Contributions / Acknowledgements

- Dr Tim Churches (New South Wales Health Department, Centre for Epidemiology and Research)
- Dr Markus Hegland (ANU Mathematical Sciences Institute)
- Dr Lee Taylor (New South Wales Health Department, Centre for Epidemiology and Research)
- Ms Kim Lim (New South Wales Health Department, Centre for Epidemiology and Research)
- Mr Alan Willmore (New South Wales Health Department, Centre for Epidemiology and Research)
- Mr Karl Goiser (ANU Computer Science PhD student)
- Mr Puthick Hok (ANU Computer Science honours student, 2004)
- Mr Justin Zhu (ANU Computer Science honours student, 2002)
- Mr David Horgan (ANU Computer Science summer student, 2003/2004)