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Motivation

Many Big Data applications require data from

different sources to be integrated and linked

To allow data analyses that are impossible on individual

databases

To enrich data with additional information

To improve data quality

Lack of unique entity identifiers means that linking
often has to be based on personal information

When databases are linked across organisations,
maintaining privacy and confidentiality is vital

The linking of databases is challenged by data
quality, database size, and privacy concerns
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Motivating example:

Health surveillance (1)
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Motivating example:

Health surveillance (2)

Preventing the outbreak of epidemics requires
monitoring of occurrences of unusual patterns of
symptoms, ideally in real time

Data from many different sources will need to be

collected (including travel and immigration records;

doctors, emergency and hospital admissions; drug

purchases; social network and location data; and possibly
even animal health data)

Privacy and confidentiality concerns arise if such
data are stored and linked at a central location

Such data sets are sensitive, large, dynamic,
heterogeneous and distributed, and they require
linking and analysis in near real time
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What is record linkage?

The process of linking records that represent the
same entity in one or more databases
(patients, customers, businesses, consumer products,

publications, etc.)

Also known as data linkage, data matching, entity
resolution, duplicate detection, etc.

Major challenge is that unique entity identifiers
are not available in the databases to be linked

(or if available, they are not consistent or change over time)

E.g., which of these records represent the same person?

Dr Smith, Peter 42 Miller Street 2602 O’Connor

Pete Smith 42 Miller St 2600 Canberra A.C.T.

P. Smithers 24 Mill Rd 2600 Canberra ACT
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Applications of record linkage

Remove duplicates in one data set (deduplication)

Merge new records into a larger master data set

Create patient or customer oriented statistics
(for example for longitudinal studies)

Clean and enrich data for analysis and mining

Geocode matching (with reference address data)

Widespread use of record linkage

Immigration, taxation, social security, census

Fraud, crime, and terrorism intelligence

Business mailing lists, exchange of customer data

Health and social science research
ScaDS Leipzig, July 2016 – p. 7/53



The record linkage process
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Record linkage techniques

Deterministic matching

Rule-based matching (complex to build and maintain)

Probabilistic record linkage (Fellegi and Sunter, 1969)

Use available attributes for linking (often personal

information, like names, addresses, dates of birth, etc.)

Calculate match weights for attributes

“Computer science” approaches

Based on machine learning, data mining, database, or

information retrieval techniques

Supervised classification: Requires training data

(true matches and true non-matches)

Unsupervised: Clustering, collective, and graph based
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Major record linkage challenges

No unique entity identifiers available

Real world data are dirty

(typographical errors and variations, missing and

out-of-date values, different coding schemes, etc.)

Scalability

Naïve comparison of all record pairs is quadratic

Remove likely non-matches as efficiently as possible

No training data in many linkage applications

No record pairs with known true match status

Privacy and confidentiality

(because personal information, like names and addresses,

is commonly required for linking)
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Privacy aspects in record linkage
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Privacy aspects in record linkage

Objective: To link data across organisations
such that besides the linked records (the ones
classified to refer to the same entities) no
information about the sensitive source data
can be learned by any organisation involved in
the linking, or any external organisation.

Main challenges

Allow for approximate linking of values

Being able to asses linkage quality and completeness

Have techniques that are not vulnerable to any kind of

attack (frequency, dictionary, crypt-analysis, etc.)

Have techniques that are scalable to linking large

databases across multiple parties
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Privacy and record linkage:

Motivating scenario 1

A demographer who aims to investigate how
mortgage stress is affecting different people with
regard to their mental and physical health

She will need data from financial institutions,
government agencies (social security, health, and
education), and private sector providers (such as
health insurers)

It is unlikely she will get access to all these
databases (for commercial or legal reasons)

She only requires access to some attributes of
the records that are linked, but not the actual

identities of the linked individuals (however, personal

details are needed to conduct the actual linkage)
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Privacy and record linkage:

Motivating scenario 2

A national crime investigation unit is tasked with
fighting against crimes that are of national
significance (organised crime or money laundering)

This unit will likely manage various national
databases which draw from different sources
(law enforcement and tax agencies, Internet service
providers, and financial institutions)

These data are highly sensitive; and storage,
analysis and sharing must be tightly regulated
(collecting such data in one place makes them vulnerable
to outsider attacks and internal adversaries)

Ideally, only linked records (such as those of
suspicious individuals) are available to the unit
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Current best practice approach

used in the health domain (1)

Linking of health data is common in public health
(epidemiological) research

Data are sourced from hospitals, doctors, health
insurers, police, governments, etc

Only identifying data are given to a trusted
linkage unit, together with an encrypted identifier

Once linked, encrypted identifiers are given back

to the sources, which ‘attach’ payload data to

identifiers and send them to researchers

Linkage unit never sees payload data

Researchers do not see personal details

All communication is encrypted
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Current best practice approach

used in the health domain (2)

addresses,
DoB, etc.

Names, Financial
details addresses,

DoB, etc.

Names,
addresses,
DoB, etc.

Names,
details
Health

details
Education

Education databaseMental health databaseMortgage database

unit
Linkage Researchers

Step 1: Database owners send partially identifying data to linkage unit
Step 2: Linkage unit sends linked record identifiers back
Step 3: Database owners send ‘payload’ data to researchers

Details given in: Chris Kelman, John Bass, and D’Arcy Holman: Research use of Linked

Health Data – A Best Practice Protocol, Aust NZ Journal of Public Health, vol. 26, 2002.
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Current best practice approach

used in the health domain (3)

Problem with this approach is that the linkage unit
needs access to personal details
(metadata might also reveal sensitive information)

Collusion between parties, and internal and
external attacks, make these data vulnerable

Privacy-preserving record linkage (PPRL)

aims to overcome these drawbacks

No unencoded data ever leave a data source

Only details about matched records are revealed

Provable security against different attacks

PPRL is challenging (employs techniques from

cryptography, databases, etc.)
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The PPRL process
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Basic PPRL protocols

(1)

(2)
(2)

(3) (3)

BobAlice

(3)(3)

(2) (2)

(1)
Alice

Carol

Bob

Two basic types of protocols

Two-party: Only the two database owners who wish to

link their data

Three-party: Use a (trusted) third party (linkage unit) to

conduct the linkage (this party will never see any

unencoded values, but collusion is possible)

Multi-party protocols: Linking records from more
than two databases (with or without a linkage unit)
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Adversary models

Honest-but-curious (HBC) model assumes that

parties follow the protocol while being curious to

find about another party’s data

HBC model does not prevent collusion

Most existing PPRL protocols assume HBC model

Malicious model assumes that parties behave

arbitrarily (do not follow the protocol)

Protocols under this model often have high complexity

Accountable computing and covert model

Allow for proofs if a party has followed the protocol or

the misbehaviour can be detected with high probability

Lower complexity than malicious and more secure
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Attack methods

Dictionary attacks
An adversary encodes a list of known values using existing

encoding functions until a matching encoded value is

identified (a keyed encoding approach, like HMAC, can
help prevent this attack)

Frequency attacks
Frequency distribution of encoded values is matched with
the distribution of known values

Cryptanalysis attack
A special category of frequency attack applicable to
Bloom filter based encoding

Collusion
A set of parties (in three- or multi-party protocols)
collude with the aim to learn about another party’s data
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Frequency attack example

Sorted surname frequencies

Sorted postcode frequencies

Sorted hash−code frequencies

F
re
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en

ci
es

 (
co
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ts

)

Values sorted according to their frequencies (counts)

If frequency distribution of hash-encoded values closely

matches the distribution of values in a (public) database,

then ‘re-identification’ of values might be possible
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PPRL techniques

First generation (mid 1990s): exact matching only
using simple hash-encoding

Second generation (early 2000s): approximate
matching but not scalable (PP versions of edit

distance and other string comparison functions)

Third generation (mid 2000s): take scalability into
account (often a compromise between PP and

scalability, some information leakage accepted)

Different approaches have been developed for
PPRL, so far no clear best technique

For example based on Bloom filters, embedding space,

generalisation, noise addition, differential privacy, or
secure multi-party computation (SMC)
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PPRL techniques:

Hash-encoding for PPRL

A basic building block of many PPRL protocols

Idea: Use a one-way hash function (like SHA) to

encode values, then compare hash-codes

Having only access to hash-codes will make it nearly

impossible to learn their original input values

But dictionary and frequency attacks are possible

Single character difference between two input

values results in completely different hash codes

For example:

‘peter’ → ‘101010. . .100101’ or ‘4R#x+Y4i9!e@t4o]’

‘pete’ → ‘011101. . .011010’ or ‘Z5%o-(7Tq1@?7iE/’

Only exact matching is possible
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PPRL techniques:

Reference values and embedding

Reference values

Values extracted from a publicly available source in the

same domain (e.g. telephone directory) or randomly

generated values

Calculate similarities between private values using the

similarities of each private value with the reference

value (triangular inequality)

Embedding space

Embeds records into multi-dimensional space while

preserving the distances

Difficult to determine the dimension of space and

select suitable pivots
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PPRL techniques:

Noise and differential privacy

Noise addition

Extra (fake) records to perturb data

Overcomes frequency attack (improves privacy) at the

cost of more comparisons and loss in linkage quality

(due to false matches)

Differential privacy

Alternative to noise addition

The probability of holding any property on the perturbed

database is approximately the same whether or not an

individual value is present in the database

Magnitude of noise depends on privacy parameter and

sensitivity of data
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PPRL techniques:

Encryption and generalisation

Value generalisation

Generalises the records to overcome frequency attacks

For example k-anonymity: ensure every combination of

attribute values is shared by at least k records

Other techniques are value generalisation hierarchies,

top-down specialisation, and binning

Encryption schemes (SMC)

Commutative and homomorphic encryption are used

Secure scalar product, secure set intersection, and

secure set union are the most commonly used SMC

techniques

However, many are computationally expensive
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PPRL techniques:

Secure multi-party computation

Compute a function across several parties, such
that no party learns the information from the other
parties, but all receive the final results
[Yao, Foundations of Computer Science, 1982]

Simple example: Secure summation s =

∑
i
x i.

Step 3: ((R+x1)+x2)+x3=1169

 = 170
Step 4: s = 1169−R Party 2

Party 3

Step 0: R=999 Party 1
x1=55

Step 1: R+x1= 1054

Step 2: (R+x1)+x2 = 1127

x2=73

x3=42
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PPRL techniques:

Bloom filter encoding (1)

Proposed by Schnell et al. (Biomed Central, 2009)

A Bloom filter is a bit-array, where a bit is set to 1

if a hash function Hk(x) maps an element x of a

set into this bit (elements in our case are q-grams)

0 ≤ Hk(x) < l, with l the number of bits in Bloom filter

Many hash functions can be used (Schnell: k = 30)

Number of bits can be large (Schnell: l = 1000 bits)

Basic idea: Map q-grams into Bloom filters using
hash functions only known to database owners,
send Bloom filters to a third party which calculates
Dice coefficient (number of 1-bits in Bloom filters)
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PPRL techniques:

Bloom filter encoding (2)

erteet

1 1111 0 0 0 0 1 0 0 0 1

pe

Alice

pe et te

1 1111 0 0 0 0 0 0000Bob

1-bits for string ‘peter’: 7, 1-bits for ‘pete’: 5, common

1-bits: 5, therefore Dice_sim = 2×5/(7+5)= 10/12 = 0.83

Collisions will effect the calculated similarity values

Number of hash functions and length of Bloom filter

need to be carefully chosen
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Multi-Party PPRL (1)

Privacy-preserving linking of multiple databases
(more than two sources)

Example applications:

Health outbreak systems require data to be integrated

across human health data, travel data, drug data, and

animal health data

National security applications need to integrate data

from law enforcement agencies, Internet service

providers, businesses, and financial institutions

Additional challenges:

Exponential complexity with number of sources

Increased privacy risk of collusion
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Multi-party Bloom filter based PPRL
(Vatsalan and Christen, CIKM, 2014)

Distribute similarity calculation across all parties:

Bloom filters are split into segments such that each

party processes a segment to calculate the number of

common 1-bits in its segment

Secure summation is applied across parties to sum

the number of common 1-bits (ci) and total 1-bits (x i)

in their Bloom filters to calculate the similarity

1 1 1

1 0 1 0 1

1 0 1 10 0 1 1

1 1 0 10 1 1

0 1 1 0 0 0

0 1 0

01

(AND)

c  = 2c  = 1 c  = 11 2 3

Dice_sim = 1 2 3

1 2 3
=

(6+6+5)
= 0.706

1x  = 6

x  = 6
2

x  = 53

(x +x +x )
3(c +c +c ) 3(1+2+1)

1−bits
Num common

Num 1−bits

b3

b2

b
1 1

0

1 2 P3p P
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Conclusions and research directions

To make sure everybody is awake.. :-)
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Conclusions

The linking of databases is challenged by data
quality, database size, and privacy concerns

When databases are linked across organisations,
maintaining privacy and confidentiality is vital

A variety of PPRL techniques has been

developed in the past two decades

They allow approximate matching

Are scalable to medium–large databases

Work on static databases

More research is needed to make PPRL practical
for Big Data applications
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Research directions (1)

Improved classification for PPRL

Mostly simple threshold-based classification is used

No investigation into advanced methods, such as

collective / relational techniques

Supervised classification is difficult (no training data

in many situations)

Assessing linkage quality and completeness

How to assess linkage quality (precision and recall)?

– How many classified matches are true matches?

– How many true matches have we found?

Access to actual record values is not possible

(as this would reveal sensitive information)
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Research directions (2)

A framework for PPRL is needed

To facilitate comparative experimental evaluation of

PPRL techniques

Needs to allow researchers to plug-in their techniques

Benchmark data sets are required (biggest challenge,

as such data are sensitive!)

PPRL on multiple databases

Most work so far is limited to linking two databases

(in practice, often records from several organisations

need to be linked)

Pair-wise linking does not scale up

Preventing collusion between (sub-groups of) parties

becomes more difficult
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Advertisement: Book ‘Data Matching’

(2012)

The book is very well organized

and exceptionally well written.

Because of the depth, amount,

and quality of the material that

is covered, I would expect this

book to be one of the standard

references in future years.

William E. Winkler, U.S.

Bureau of the Census.
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A taxonomy for PPRL

PPRL

PracticalLinkage
aspects

Number

Aversary

Privacy

Data sets

of parties

model Comparison

Indexing

Privacy Evaluation aspects

Application
area

Implementation

Taxonomy

Classification

Scalability

Linkage quality

Privacy
vulnerabilities

Scalability

Privacy

analysis
Theoretical

Linkage quality

techniques

techniques

A taxonomy of privacy-preserving record linkage techniques

Dinusha Vatsalan, Peter Christen, and Vassilios Verykios

Elsevier Information Systems, 38(6), September 2013
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