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Motivation

Large amounts of data are being collected both
by organisations in the private and public sectors,
as well as by researchers and individuals

# Much of these data are about people, or they are
generated by people
# Financial, shopping, and travel transactions
» Electronic health records
» Tax, social security, and census records
» Location records

o Emails, tweets, SMSs, Facebook posts, etc.

Analysing such data can provide huge benefits to

9o
businesses, governments and researchers
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Motivation (continued)

Often data from different sources need to be
integrated and linked

» TJo allow data analyses that are impossible on
individual databases

» To improve data quality
» To enrich data with additional information

o Lack of unique entity identifiers means that linking
IS often based on personal information

#» When databases are linked across organisations,
maintaining privacy and confidentiality is vital

# The linking of databases is challenged by data
quality, database size, and privacy concerns
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Motivating example:
Health surveillance (1)
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Motivating example:
Health surveillance (2)

Preventing the outbreak of epidemics requires
monitoring of occurrences of unusual patterns of
symptoms, ideally in real time

# Data from many different sources will need to be
collected (including travel and immigration records;
doctors, emergency and hospital admissions; drug
purchases; social network and location data; and possibly
even animal health data)

# Privacy and confidentiality concerns arise if such
data are stored and linked at a central location

# Such data sets are large, dynamic, complex,
heterogeneous and distributed, and they require

linking and analysis in near real time
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Objective of this tutorial

Provide an understanding of data / record linkage
applications, challenges, and techniques

# Understand the data linkage process, and key
techniques employed in each step of this process

# Have a basic understanding of advanced
techniques for scalable indexing and machine-
learning based classification for data linkage

# Appreciate the privacy and confidentiality
challenges that data linkage poses

# Have a basic understanding of privacy-preserving
record linkage
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Peter Christen

Data
Matching

Concepts and Techniques
for Record Linkage, Entity Resolution,
and Duplicate Detection

@ Springer

Content is loosely based on
‘Data Matching’ (Springer, 2012)

The book is very well organized
and exceptionally well written.
Because of the depth, amount,
and quality of the material that
is covered, | would expect this
book to be one of the standard
references in future years.

William E. Winkler, U.S.
Bureau of the Census.
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Outline

Part 1: Introduction

» Applications, history, challenges, and examples

» Part 2: Data linkage process

» Key techniques used in data linkage
# Part 3: Advanced data linkage techniques

» Indexing and blocking for scalable data linkage

» Learning, collective, and graph based techniques
# Part 4: Privacy aspects in data linkage

» Motivating scenario

» Privacy-preserving record linkage

» Conclusions and research directions
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What is data linkage?

The process of linking records that represent the
same entity in one or more databases

(patients, customers, businesses, consumer products,
publications, etc.)

# Also known as record linkage, data matching,
entity resolution, duplicate detection, etc.

# Major challenge is that unique entity identifiers
are not available in the databases to be linked

(or if available, they are not consistent or change over time)

E.g., which of these records represent the same person?

Dr Smith, Peter | 42 Miller Street 2602 O’Connor
Pete Smith 42 Miller St 2600 Canberra A.C.T.
P Smithers 24 Mill Rd 2600 Canberra ACT
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Applications of data linkage

Remove duplicates in one data set (deduplication)
Merge new records into a larger master data set

» Create patient or customer oriented statistics
(for example for longitudinal studies)

# Clean and enrich data for analysis and mining

°

°

Geocode matching (with reference address data)
# Widespread use of data linkage

» |Immigration, taxation, social security, census

» Fraud, crime, and terrorism intelligence

» Business mailing lists, exchange of customer data
» Health and social science research
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Recent interest in data linkage

» Traditionally, data linkage has been used in
statistics (census) and health (epidemiology)

»

First computer based techniques developed in 1960s

# Inrecent years, increased interest from
businesses and governments

»

Massive amounts of data are being collected, and
increased computing power and storage capacities

Often data from different sources need to be integrated
Need for data sharing between organisations

Data mining (analysis) of large data collections
E-Commerce and Web services (comparison shopping)
Spatial data analysis and online map applications
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A brief history of data linkage (1)

» Computer assisted data linkage goes back as far

as the 1950s (based on ad-hoc heuristic methods)

# Basic ideas of probabilistic linkage were

introduced by Newcombe & Kennedy (1962)

# Theoretical foundation by Fellegi & Sunter (1969)

o

»

Compare common record attributes (or fields)

Compute matching weights based on frequency ratios
(global or value specific) and error estimates

Sum of the matching weights is used to classify a pair
of records as a match, non-match, or potential match

Problems: Estimating errors and thresholds,
assumption of independence, and clerical review
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A short history of data linkage (2)

Strong interest in the last decade from computer
science (from many research fields, including data
mining, Al, knowledge engineering, information retrieval,
information systems, databases, and digital libraries)

o Many different techniques have been developed
# Major focus has been on scalability to large
databases, and linkage quality

# Various indexing/blocking techniques to efficiently and
effectively generate candidate record pairs

» Various machine learning-based classification
techniques, both supervised and unsupervised,
as well as active learning based
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The data linkage process

Database A Database

Data pre— Data pre—
processing processmg

Classif-
ication

Evaluation

Indexing /
Searchlng
Matches

{Compariso

C|er|ca| Potential
Review Matches
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Data linkage techniques

# Deterministic matching
» Rule-based matching (complex to build and maintain)

# Probabillistic record linkage (Fellegi and Sunter, 1969)

o Use avalilable attributes for linking (often personal
information, like names, addresses, dates of birth, etc.)

» Calculate match weights for attributes

» “Computer science” approaches

# Based on machine learning, data mining, database, or
iInformation retrieval techniques

» Supervised classification: Requires training data
(true matches)

» Unsupervised: Clustering, collective, and graph based
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Major data linkage challenges

No unique entity identifiers available

Real world data are dirty

(typographical errors and variations, missing and
out-of-date values, different coding schemes, etc.)

Scalability

» Naive comparison of all record pairs is quadratic
» Remove likely non-matches as efficiently as possible

No training data in many linkage applications
» No record pairs with known true match status

Privacy and confidentiality
(because personal information, like names and addresses,
are commonly required for linking)
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Example 1: Web of Object (WOO)

(based on slides by Hye-Chung Kum, Texas A&M)

# Goal: To enable various products in Yahoo! to
synthesise knowledge-bases of entities relevant
to their domains (Bellare et al., VLDB, 2013)

# Desiderata:
o Coverage: the fraction of real-world entities
o Accuracy: information must be accurate
o Linkage: the level of connectivity of entities

o Identifiability: one and only one identifier for a
real-world entity

o Persistence/content continuity . variants of the same
entity across time must be linked

o Multi-tenant: be useful to multiple portals
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WOO: Knowledge base synthesis

» Knowledge base synthesis is the process of
iIngestion, disambiguation, and enrichment of
entities from a variety of structured and
unstructured data sources

o Sheer scale of the data
= Hundreds of millions of entities daily

o Diverse domains
= From hundreds of data sources

s Diverse requirements

= Multiple tenants, such as Locals, Movies,

Deals, and Events in (for example) the
Yahoo! website
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INPUT DATA SOURCES

OUTPUT KBs
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The WOO architecture (1)
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Source: Bellare et al., VLDB, 2013
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OUTPUT KBs INPUT DATA SOURCES

The WOO architecture (2)
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Importer takes a collection of data sources as input (like
XML feeds, RDF content, Relational Databases, or other
custom formats)
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OUTPUT KBs INPUT DATA SOURCES

The WOO architecture (3)
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Each data source is converted into a common format
called the WOO schema

The WOO Parcel, containing only the attributes needed
for matching, is pushed to the Builder
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The WOO architecture (4)
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® Builder performs the entity deduplication and produces
a clustering decision, including (1) blocker, (2) matcher,
(3) connected component generator, and (4) group
refiner

£
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The WOO architecture (5)
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#® Finaliser is responsible for handling the persistence of
object identifiers and the blending of the attributes of the
(potentially many) entities that are being merged
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OUTPUT KBs INPUT DATA SOURCES

The WOO architecture (6)
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Exporter generates a fully integrated and de-duplicated
knowledge-base, both in a format consistent with the
WOO schema and in any custom format
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OUTPUT KBs INPUT DATA SOURCES

The WOO architecture (7)
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Curation enables domain experts to influence the
system behaviour through a set of GUIs, such as:
forcing or disallowing certain matches between entities,
or by editing attribute values
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Example 2: Linking ‘big’ social
science data

Increasing use of large databases in social
science research

# Often the aim is to create ‘social genomes’ for
individuals by linking population databases
(Population Informatics, Kum et al. IEEE Computer, 2013)

# Knowing how individuals and families change
over time allows for a diverse range of studies
(fertility, employment, education, health, crime, etc.)

» Different challenges for historical data compared
to contemporary data, but some are common

o Database sizes (computational aspects)
» Accurate match classification (data quality)

.| ANU
L
THE AUSTRALIAN NATIONAL UNIVERSITY
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Challenges for historical data
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® |ow literacy (recording errors and unknown exact
values), no address or occupation standards

® |arge percentage of a population had one of just a
few common names (‘John’ or ‘Mary’)

#® Households and families change over time
Immigration and emigration, birth and death
#® Scanning, OCR, and transcription errors

°
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Challenges for present-day data

These data are about living people, and so
privacy is of major concern when data are linked
between organisations

» Linked data allow analyses not possible on individual

databases (potentially revealing highly sensitive
information)

® Modern databases contain more details and more
complex types of data (free-format text or multimedia)

# Data are available from different sources
(governments, businesses, social network sites, the Web)

# Major questions: Which data are suitable?
Which can we get access to?
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Outline

Part 1: Introduction

» Applications, history, challenges, and examples

# Part 2: Data linkage process
» Key techniques used in data linkage

# Part 3: Advanced data linkage techniques
» Indexing and blocking for scalable data linkage

# Learning, collective, and graph based techniques

# Part 4: Privacy aspects in data linkage
» Motivating scenario

» Privacy-preserving record linkage
» Conclusions and research directions
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The data linkage process

Database A Database

Data pre— Data pre—
processing processmg

Classif-
ication

Evaluation

Indexing /
Searchlng
Matches

{Compariso

C|er|ca| Potential
Review Matches
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Why cleaning and standardisation?

» Real world data are often dirty
» Typographical and other errors
» Different coding schemes
» Missing values

» Data changing over time

# Name and addresses are especially prone to
data entry errors

# Scanned, hand-written, over telephone, hand-typed
# Same person often provides her/his details differently

» Different correct spelling variations for proper names
(e.g. ‘Gail’ and ‘Gayle’, or ‘Dixon’ and ‘Dickson’)
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Example: Address standardisation

App 3a/42 Main Rd Canberra A.C.T. 260

-II----a-c.

< Z ~
R & & o© ¥
\\
¢ & 257 Q

. Clean input

® Remove unwanted characters and words
® Expand abbreviations and correct misspellings

Segment address into well defined output fields

. Verity if address (or parts of it) exists in reality
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Standardisation approaches

# Rules based
o Manually developed parsing and transformation rules

# Time consuming and complex to develop and maintain

# Probabilistic methods
o Based for example on hidden Markov models (HMMs)
o More flexible and robust with regard to new unseen data

o Drawback: Training data needed for most methods
(for example, sets of correctly standardised addresses)

HMMs are widely used in natural language processing
and speech recognition, as well as for text segmentation
and information extraction.
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Standardisation steps

# Cleaning
» Based on look-up tables and correction lists
» Remove unwanted characters and words
» Correct various misspellings and abbreviations
# Tagging

o Split input into a list of tokens (words, characters,
numbers, and separators)

# Assign one or more tags to each token using look-up
tables and/or features

#» Segmenting

» Use for example a trained HMM to assign list elements
Into output fields
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Data tagging example

o Tags provide information about the category /
type of a token, such as:

— TI Name title words (‘ms’, ‘mr’, ‘dr’, etc.)
— GM Male given names (‘thomas’, ‘paul’, etc.)
— SN Surnames (‘smith’, ‘miller’, ‘thomas’, etc.)

— N4 Four-digit numbers ('2602’, ‘3000’, etc.)

# Specific tags for names, addresses, and other
domains (some overlapping, like street names)

#» Example tagging:
— Uncleaned input string: ‘Doc. Thomas Paul MILLER

— Cleaned string: ‘dr thomas paul miller’
— Token and tag lists:

[ ‘dr’, ‘thomas’, ‘paul’, '‘miller’]
[‘TI’, ‘GM/SN’, ‘GM', ‘SN’ ]

J
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Hidden Markov model (HMM)

o A HMM is a probabilistic finite state machine

» Made of a set of states and transition probabilities
between these states

» In each state an observation symbol is emitted with a
certain probability distribution

» For data segmentation, the observation symbols are
tags and the states correspond to the output fields
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HMM probability matrices

State
Observation | Start | Title | Givenname | Middlename | Surname | End
TI — 96% 1% 1% 1% —
GM — 1% 34% 33% 15% —
GF — 1% 36% 27% 14% —
SN - 1% 9% 14% 45% —
UN - 1% 20% 25% 25% —
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HMM data segmentation

For an observation sequence we are interested Iin
the most probable path through a given HMM
(in our case an observation sequence is a list of tags)

The Viterbi algorithm is used for this task
(a dynamic programming approach)

Smoothing is applied to account for unseen data
(assign small probabilities for unseen observation symbols)
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HMM segmentation example

55% SS%y/VSW 5%
0

10
100%

#® Input word and tag list
[ ‘dr’, ‘thomas’, ‘paul’, '‘miller’]
[‘TI’, ‘GM/SN’, ‘GM’, ‘SN’ ]

® Two example paths through HMM:

Start — Title (T1) — Givenname (GM) — Middlename (GM) —
Surname (sN) — End

Start — Title (T1) — Surname (sN) — Givenname (GM) —
Surname (sN) — End
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HMM training

Both transition and observation probabilities need
to be trained (maximum likelihood estimates (MLE) are
derived by accumulating frequency counts for transitions
and observations)

Training data consists of records, each being a
sequence of tag:hmm_state pairs

Examples training records:

— GM:Givenname, SN: Surname (‘peter’, ‘miller’)

— UN:Givenname, SN:Surname (‘zikia', ‘smith’)

—TI:Title, GM:Givenname, GF:Surname (‘mr, ‘john’, ‘kelly’)
Only a few person days are needed to get a HMM
that results in an accurate standardisation

(instead of weeks or even month to develop rules)
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Blocking / indexing / filtering

Number of record pair comparisons equals the
product of the sizes of the two data sets

(matching two data sets containing 1 and 5 million records
will result in 7,000,000 x 5,000,000 record pairs)

Performance bottleneck in a data linkage system
Is usually the (expensive) detailed comparison of
field values between record pairs

(such as approximate string comparison functions)

Blocking / indexing / filtering techniques are used
to reduce the large amount of comparisons

Aim of blocking: Cheaply remove candidate
record pairs which are obviously not matches
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Traditional blocking

# Traditional blocking works by only comparing
record pairs that have the same value for a
blocking variable (for example, only compare records
that have the same postcode value)

# Problems with traditional blocking

# An erroneous value in a blocking variable results in a
record being inserted into the wrong block (several
passes with different blocking variables can solve this)

» Values of blocking variable should have uniform
frequencies (as the most frequent values determine
the size of the largest blocks)

Example: Frequency of ‘Smith’ in NSW: 25,425
Frequency of ‘Dijkstra’ in NSW: 4
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o Examples:

Name
stephen
steve
gail
gayle
christine
christina

kristina

Soundex

s315
s310
g400
g400
cb23
cb23
k623

NYSIIS

staf
staf
gal
gal
chra
chra

Cras

Phonetic encoding

# Bringing together spellings variations of the
same name for improved blocking

# Techniques such as Soundex, NYSIIS, or
Double-Metaphone

Double—Metaphone

stfn
stf
k1l
k1l
krst
krst
krst
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Soundex algorithm

Keep first letter of a string (name), and remove all
following occurrences of a, e, i, 0, u, y, h, w

# Replace all consonants from position 2 onwards
with digits using these rules:
b fp v—1
c,q, /,k qg,8 Xx,Z—2
at—3
| — 4

m,n—5
r— 6

# Only keep unique adjacent digits

» |f length of code is less than 4 add zeros,
If longer truncate at length 4
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The data linkage process

Database A Database

Data pre— Data pre—
processing processmg
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Approximate string comparison

o Aim: Calculate a normalised similarity between
two strings (0 < simupprox < 1)

® SiMyypror = 1 — Same (‘peter’, ‘peter’)

® SiMgppror = 0 — Totally different (‘peter’, ‘chris’)

® 0 < SiMypprox < 1 — Somewhat similar (‘peter’, ‘pedro’)
# Many different techniques available, some

generic, others specific for certain types of strings

o Edit-distance based (number of character edits)

» Set-based (Jaccard, Dice, and Overlap coefficients)

» Jaro-Winkler (specific for personal names)

s Monge-Elkan and Soft-TFIDF (specific for strings that
ANU contain several words)
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Q-gram based string comparisons

Convert a string into g-grams (sub-strings of
length q)

o For example, for g = 2: ‘peter’ — [‘pe’,‘et’,'te’,'er’]

# Find g-grams that occur in two strings, for
example using the Dice coefficient:

SIMpice = 2 X C. 1 (C1 + C3)

where c¢. Is number of common g-grams, and c;,
c, the number of g-grams in string s; and s

» With s; = ‘peter’ and s, = ‘pete’: ¢; =4, ¢, = 3,
and c. = 3 (‘pe’,'et’,'te’):
Simp;..(‘peter’, ‘pete’) = 2x3/(4+3)= 6/7 = 0.86
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Edit-distance based string
comparisons

The number of character edits needed to convert
one string into another (insert, delete, substitute)

Can be calculated using a dynamic programming
algorithm (of quadratic complexity in length of strings)

Convert distance into a similarity as:
SimED =1 - diStED / maX(ll, /2)
where [; = length of string s; and /; = length of s,

With s, = ‘peter’ and s, = ‘pete’: Iy = 5, I, = 4,
distgp = 1 (delete 'r): simgp=1-1/5=4/5=0.8
Variations consider transposition of two adjacent
characters, allow for gaps, or different edit costs
(learned from training data)
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Edit distance calculation example

o Matrix D shows number of edits between sub-
strings (for example, ‘ga’ and ‘gayle’ -> 3 inserts)

D glaly|1]e] ® Ifsii=s2j],then
0] 1]2]3]4)5 Dli, jl = Dli = 1,5 = 1]
9 [1[O0[1]2|3]4] @ Ifs[i]# ssj], then D[i,j] =
e e [ D[i—1,j]+1 del
i (321|123 | - |
| (4|3 ]|2|2]1]2 min g Dli,j —1] +1 ins
| Dli—1,j—1]+1 subst

® Edit path: ‘gail’ — substitute ‘I’ with 'y’ — insert ‘e’ — ‘gayle’
(final edit distance distgp(‘gail’,'gayle’) = 2)
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Probabilistic record linkage

# Basic ideas of probabilistic linkage were
introduced by Newcombe & Kennedy, 1962

# Theoretical foundation by Fellegi & Sunter, 1969

o Compare common record attributes (or fields) using
approximate (string) comparison functions

» Calculate matching weights based on frequency ratios
(global or value specific ratios) and error estimates

# Sum of the matching weights is used to classify a pair
of records as a match, non-match, or potential match

» Problems: Estimating errors, find optimal thresholds,
assumption of independence, and manual clerical
review
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Fellegi and Sunter classification (1)

# For each compared record pair a vector of
matching weights is calculated

Record A: [‘dr’, ‘thomas’, ‘paul’, ‘miller’]
Record B: [‘mr’, ‘john’, \, ‘miller’ ]
Matching weights: [0.2, -3.2, 0.0, 2.4 ]

# A ratio R is calculated for each compared record
pair r = (a,b) in the product space A x B:
R=P(yel |reM)/P(veT |rel),
where M and U are the sets of true matches and

true non-matches, and ~ is an agreement pattern
in the comparison space I, with:

A xB={(a,b):a e Abec B} forfiles A and B

M ={(a,b) :a=0b, ac Abe B}

ANU U=1{(a,b):a#b, ac Abec B}
= .
ruM ’ ’ ’ INI DLA, July 2016 — p. 51/106




Fellegi and Sunter classification (2)

» Fellegi and Sunter proposed the following
decision rule:

R>t, = r— Match
th<R<t, = r— Potential Match
R<t; = r— Non-Match

Lower Upper
threshold threshold |

Many more with
lower weights...

|

Total matching weight
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Fellegi and Sunter classification (3)

o Assuming conditional independence between
attributes allows to calculate individual attribute-
wise probabilities

m; = P([CL@ =bj,a e Ab e B] ‘ r & M) and

U; = P([CLZ # bj,a € A,b € B] ‘ rc U),
where a; and b; are the values of attribute / being
compared

# Based on these m- and u-probabilities, we
calculate a matching weight w; for attribute : as:
logo (24) if a;, =0, (agreement weight)

YT tom(a) if i #b (disagreement weight)
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Weight calculation: Month of birth

Assume two data sets with a 3% error in field month of birth

® Probability that two matched records (representing the
same person) have the same month value is 97% (m;)

® Probability that two matched records do not have the same
month value is 3% (1-m;)

® Probability that two (randomly picked) un-matched records
have the same month value is 1/12 = 8.3% (u;)

® Probability that two un-matched records do not have the
same month value is 11/12 =91.7% (1-u;)

® Agreement weight log.(m; / u;): 10g>(0.97 / 0.083) = 3.54

Disagreement weight logs (1-m;) / (1-u;): log.(0.03/0.917)
=-4.92
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Data linkage evaluation (1)

» At the end we need to evaluate how good the
results of a data linkage project are

# Main measures for linkage complexity

» Reduction ratio: How many candidate record pairs
were generated by blocking, compared to all pairs?

number of candidate pairs
rr=1— ,
number of all record pairs

» Pairs completeness: How many true matches were
generated by blocking, divided by all true matches?

number of true matching candidate pairs

C —
b number of all true matching pairs
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Data linkage evaluation (2)

# To measure linkage quality, we need true
matches (gold standard, ground truth data)

o Two types of errors:

— A missed true match (false non-match, false negative)
— A wrong match (false match, false positive)

# Data linkage is often a very imbalanced problem

» Most records pairs (even after blocking) are true
non-matches

# Calculating accuracy is not meaningful
(percentage of false matches and false non-matches)

» Classifying all record pairs as non-matches can give
very high accuracy
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Data linkage evaluation (3)

#» Commonly used measures are similar to
iInformation retrieval (Web search)

» Precision: How many true matches are in the set
of classified matches?

number of true matching pairs tp

rec = =
b number of classified matching pairs  tp+ fp

» Recall: How many true matches did we find from
all known true matches?

number of true matching pairs tp

reca = =
number of all true matching pairs tp+ fn

o Number of true non-matches (fn) are not used for
precision and recall
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Advanced indexing approaches (1)

# Sorted neighbourhood approach
» Sliding window over sorted databases
» Use several passes with different sorting criteria

o Window size can be fixed or adaptive (based on
similarities between records)

For example, database sorted using first and last name:

abbybond 5
paulsmith 2 o
L et irst
pedrosmith  r4 | window

e SR Second
pedrosmith  rg | ° "€c0"ds indow

L0 et L Third _
percysmith  r1 of records indow

""""""""""""""""""" of records Fourth
petersmith 7 window .

""""""""""""""""""" of records  Fifth
petersmith 10 window |
robinstevens r3 ofrecords | i dow
sallytaylor  r6 | of records

=
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Advanced indexing approaches (2)

# Canopy clustering

» Based on a computationally ‘cheap’ similarity measure
such as Jaccard (set intersection based on g-grams)

o Records will be inserted into several clusters / blocks

» Algorithm steps:
1) Randomly select a record in data set D as cluster centroidc;, i =1, 2, ...
2) Insert all records that have a similarity of at least s;,,5e With ¢;
into cluster C;
3) Remove all records r; € C; (including c;) that have a similarity
of at least s;;41+ With ¢; from D, with Syt > Sio0se
4) If data set D not empty go back to step 1
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Advanced indexing approaches (3)

# (Q-gram based blocking (e.g. 2-grams / bigrams)

» Convert values into g-gram lists, then generate sub-lists
peter’ — [pe’,'et’, te’,’er’], [‘pe’,‘et’,‘te’], [pe’,‘et’,‘er]], ..
pete’ — [‘pe’,‘et’,‘te’], [pe’,‘et’], [pe’,te’], [‘et,te]], ...

o Records with the same sub-list value are inserted into
the same block

o Each record will be inserted into several blocks

o Works well for‘dirty’ data but has high computational
costs

#» Mapping-based blocking

» Map strings into a multi-dimensional space such that
distances between strings are preserved
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Original data set
from Table 1

Split using < FN, F2>

<'Jo'>

Merge

<'Jo'>

Controlling block sizes

Split using <SN, Sdx>
<'S530'>

Merge
<'Sb30’, 'S253 >

# |mportant for real-time and privacy-preserving
linkage, and with certain machine learning
algorithms (that have a quadratic or higher complexity)

# We have developed an iterative split-merge
clustering approach

Final Blocks
<'Jo'><'Sh30', 'S253' >

John, Smith, 2000

John, Smith, 2000

Johnathon, Smith, 2009

John, Smith, 2000

John, Smith, 2000

John, Smith, 2000

Johnathon, Smith, 2009

Peter, Jones, 3000 \ Paul,

Joseph, Milne, 2902

Joey, Schmidt, 2009 \
Joe, Miller, 2902

Johnathon, Smith, 200

<'S253' >

Joey, Schmidt, 2009

John, Smith, 2000

Joey, Schmidt, 2009

<’M460’,’M450'>

<'Jo'><'M460’,’M450'>

<'Pa' >

, 3000

<'Pe>

Peter, Jones, 3000

N/

<Pa,’'Pe>

Paul, , 3000

Peter, Jones, 3000

Joey, Schmidt, 2009
Joseph, Milne, 2902 \ <M 460" >
Joe, Miller, 2902

Joe, Miller, 2902

Joseph, Milne, 2902

Joe, Miller, 2902

Joseph, Milne, 2902

<'M450'>

Joseph, Milne, 2902

Blocking Keys = <FN, F2>, <SN, Sdx>

Smin:2x Smax :3

<Pa,’'Pe>

Paul, , 3000

Peter, Jones, 3000
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Advanced classification techniques

# View record pair classification as a multi-
dimensional binary classification problem

» Use all attribute similarities to classify record pairs
o Only classify into matches and non-matches

#» Many machine learning technigues can be used

» Supervised: Requires training data (record pairs with
known true match and non-match status)

» Different supervised technigues have been used:
Decision trees, support vector machines, neural
networks, learnable string comparisons, etc.

» Active and semi-supervised learning
o Unsupervised: Clustering
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Classification challenges

# |n many cases there are no training data available

» Possible to use results of earlier matching projects?
Or from manual clerical review process?

» How confident can we be about correct manual
classification of potential matches?

# Often there is no gold standard available
(no data sets with known true match status)

# No large test data set collection available
(like in information retrieval or machine learning)
» Due to privacy and confidentiality concerns

» Therefore much research (in computer science) has
been using bibliographic data
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Advanced classification:
Active learning and group linkage

# Active learning
# Semi-supervised by human-machine interaction

o Overcomes the problem of supervised learning that
requires training data

o Selects a sample of record pairs to be manually
classified (budget constraints)

» Trains and improves a classification model using
manually labelled data

» Group linkage
» First conduct pair-wise linking of individual records

# Then calculate group similarities using Jaccard or
weighted similarities (based on pair-wise similarities)
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Advanced classification:
Graph-based linkage

» Based on structure between groups of records
(for example linking households from different censuses)

» One graph per household, finds best matching graphs
using both record attribute and structural similarities

o Edge attributes are information that does not change
over time (like age differences)

attr sim=0.84__.----=""" "~ CTITEe=zIIlTTT ST TT----_attr_sim=0.79
255312 25532 208554 2085§
28 24 28 22
26 26 26 24
25533 > 2553% 20857 > 2085%
attr sim=0.63 "~~~ _____ Tireeecill At sim =0.84
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Advanced classification:
Collective entity resolution

» Considers relational similarities not just attribute
similarities

(A1, Dave White, Intel) (P1, John Black / Don White)
(A2, Don White, CMU) (P2, Sue Grey / D. White)
(A3, Susan Grey, MIT) (P3, Dave White)

(A4, John Black, MIT) (P4, Don White / Joe Brown)
(A5, Joe Brown, unknown) (P5, Joe Brown / Liz Pink)
(AB, Liz Pink, unknown) (P6, Liz Pink / D. White)

Adapted from: [Kalashnikov and Mehrotra, ACM TODS, 2006]
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Managing transitive closure

» |f record ai is classified as matching with record
a2, and record a2 as matching with record a3,
then records a7 and a3 must also be matching

# Possibility of chains of linked records occurring

# Various algorithms have been developed to find
optimal solutions (special clustering algorithms)

# Collective classification and clustering
approaches deal with this problem by default
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Generating and using synthetic data

# Privacy issues prohibit publication of real
personal information

# De-identified or encrypted data cannot be used
for data linkage research
(as real name and address values are required)

# Several advantages of synthetic data

» Volume and characteristics can be controlled (errors
and variations in records, number of duplicates, etc.)

» It is known which records are duplicates of each other,
and so matching quality can be calculated

» Data and the data generator program can be published
(allowing others to repeat experiments)
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Printed

cc (ph)

Modelling of variations and errors

cc (ph)
Handwritten Memory sub, ins, del
N\ > attr swap, repl

ce (ty)

sub, ins, del

// \\

<

attr swap, repl

cc (ocr)
sub, ins, del
wc split, merge

THE AUSTRALIAN NATIONAL UNIVERSITY

cc (ph)
sub,

~Sub, ins, del, trans
> attr swap, repl

Dictate

Abbreviations:

cc : character change
wc : word change
subs : substitution
ins : insertion

del : deletion
trans : transpose
repl : replace

ty : typographic
ph : phonetic

attr : attribute

cc (ph,ty)

sub, ins, del, trans
wc split, merge
attr swap, repl

cc (ph and or ty)

sub, ins, del, trans

attr swap, repl
Speech recognition

P
|

ins, del
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Example of generated data

rec_id, age, given_name, surname, street, suburb

rec-1-org, 33, Madison, Solomon, Tazewell Circuit, Beechboro
rec-1-dup-0, 33, Madisoi, Solomon, Tazewell Circ, Beech Boro
rec-1-dup-1, , Madison, Solomon, Tazewell Crct, Bechboro

rec-2-org, 39, Desirae, Contreras, Maltby Street, Burrawang
rec-2-dup-0, 39, Desirae, Kontreras, Maltby Street, Burawang
rec-2-dup-1, 39, Desire, Contreras, Maltby Street, Buahrawang

rec-3-org, 81, Madisyn, Sergeant, Howitt Street, Nangiloc
rec-3-dup-0, 87, Madisvn, Sergeant, Hovvitt Street, Nangqiloc

® rec-1: typing/abbreviations; rec-2: phonetic; rec-3: OCR

® Generated using the Febrl and GeCo data generators
(see: https://dmm.anu.edu.au/geco/)
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Privacy aspects in data linkage

# Objective: To link data across organisations

such that besides the linked records (the ones
classified to refer to the same entities) no
Information about the sensitive source data
can be learned by any party involved in the
linking, or any external party.

Main challenges
» Allow for approximate linking of values
» Being able to asses linkage quality and completeness

# Have techniques that are not vulnerable to any kind of
attack (frequency, dictionary, crypt-analysis, etc.)

» Have techniques that are scalable to linking large
databases across multiple parties
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Privacy and data linkage:
A motivating scenario

A demographer who aims to investigate how
mortgage stress is affecting different people with
regard to their mental and physical health

o She will need data from financial institutions,
government agencies (social security, health, and
education), and private sector providers (such as
health insurers)

# |tis unlikely she will get access to all these
databases (for commercial or legal reasons)

# She only requires access to some attributes of
the records that are linked, but not the actual

identities of the linked individuals (but personal
details are needed to conduct the actual linkage)
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Current best practice approach
used in the health domain (1)

Linking of health data is common in public health
(epidemiological) research

o Data are sourced from hospitals, doctors, health
iInsurers, police, governments, etc

» Only identifying data are given to a trusted
linkage unit, together with an encrypted identifier

» Once linked, encrypted identifiers are given back
to the sources, which ‘attach’ payload data to
identifiers and send them to researchers

# Linkage unit does never see payload data
# Researchers do not see personal details

# All communication is encrypted
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Current best practice approach
used in the health domain (2)

Mortgage database Mental health database Education database

Names, Financial Names, Health Names, Education
addresses, details addresses, details addresses, details
DoB, etc. DoB, etc.

A

Linkage

AR Researcher

----- = Step 1. Database owners send partially identifying data to linkage unit
---------- > Step 2: Linkage unit sends linked record identifiers back
— Step 3: Database owners send ‘payload’ data to researchers

Details given in: Chris Kelman, John Bass, and D’Arcy Holman: Research use of Linked
Health Data — A Best Practice Protocol, Aust NZ Journal of Public Health, vol. 26, 2002.
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Current best practice approach
used in the health domain (3)

Problem with this approach is that the linkage unit
needs access to personal details
(metadata might also reveal sensitive information)

# Collusion between parties, and internal and
external attacks, make these data vulnerable

» Privacy-preserving record linkage (PPRL)
aims to overcome these drawbacks

» No unencoded data ever leave a data source
» Only details about matched records are revealed
» Provable security against different attacks

# PPRL is challenging (employs techniques from
cryptography, databases, etc.)
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The PPRL process

Database A Database

Data pre— Data pre—
processing processing
Privacy—preserving conte:
Indexing /
Searching g g
: g Matches g
Y Y

{Compariso} ....... { Classif-
ication |

I |
------- = Encoded data { (Fiee\f,'gﬁ‘v } -

IHEAL;ST LIAN NATIONAL UNIVE INI DLA, JUIy 2016 —p. 78/106
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Basic PPRL protocols

# Two basic types of protocols

o Two-party: Only the two database owners who wish to
link their data

o Three-party: Use a (trusted) third party (linkage unit) to
conduct the linkage (this party will never see any
unencoded values, but collusion is possible)

# Multi-party protocols: Linking records from more
than two databases (with or without a linkage unit)

.| ANU
L]
THE AUSTRALIAN NATIONAL UNIVERSITY
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Adversary models

Honest-but-curious (HBC) model assumes that
parties follow the protocol while being curious to
find about another party’s data

o HBC model does not prevent collusion
» Most existing PPRL protocols assume HBC model
»® Malicious model assumes that parties behave
arbitrarily (do not follow the protocol)
» Protocols under this model often have high complexity

# Accountable computing and covert model

» Allow for proofs if a party has followed the protocol or
the misbehaviour can be detected with high probability

o Lower complexity than malicious and more secure
u than HBC INI DLA, July 2016 — p. 80/106
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Attack methods

Dictionary attacks
An adversary encodes a list of known values using existing
encoding functions until a matching encoded value is

identified (a keyed encoding approach, like HMAC, can
help prevent this attack)

Frequency attacks
Frequency distribution of encoded values is matched with
the distribution of known values

Cryptanalysis attack
A special category of frequency attack applicable to
Bloom filter based encoding

Collusion
A set of parties (in three- or multi-party protocols)
collude with the aim to learn about another party’s data
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Frequency attack example

—— Sorted surname frequencies
............... Sorted postcode frequencies
------ Sorted hash—-code frequencies

Frequencies (counts)

Values sorted according to their frequencies (counts)

® |If frequency distribution of hash-encoded values closely
matches the distribution of values in a (public) database,
then ‘re-identification’ of values might be possible




PPRL techniques

First generation (mid 1990s): exact matching only
using simple hash encoding

Second generation (early 2000s): approximate
matching but not scalable (PP versions of edit
distance and other string comparison functions)

Third generation (mid 2000s): take scalability into
account (often a compromise between PP and
scalability, some information leakage accepted)

Different approaches have been developed for
PPRL, so far no clear best technique
For example based on Bloom filters, embedding space,

generalisation, noise addition, differential privacy, or
secure multi-party computation (SMC)
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Hash-encoding for PPRL

# A basic building block of many PPRL protocols
# |dea: Use a one-way hash function (like SHA) to
encode values, then compare hash-codes

» Having only access to hash-codes will make it nearly
Impossible to learn their original input values

» But dictionary and frequency attacks are possible

# Single character difference between two input
values results in completely different hash codes

o For example:

‘peter’ — ‘101010...100101° or ‘4R#x+Y4i9le@t4o0]
‘pete’ — ‘011101...011010° or ‘Z5%0-(7Tgq1@?7iE/

» Only exact matching is possible
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Bloom filter based PPRL (1)

Proposed by Schnell et al. (Biomed Central, 2009)

» A Bloom filter is a bit-array, where a bit is set to 1
If a hash-function H,.(x) maps an element x of a
set into this bit (elements in our case are g-grams)

® 0 < Hi(x) < I, with [ the number of bits in Bloom filter
» Many hash functions can be used (Schnell: k = 30)
» Number of bits can be large (Schnell: / = 1000 bits)

# Basic idea: Map g-grams into Bloom filters using
hash functions only known to database owners,
send Bloom filters to a third party which calculates
Dice coefficient (number of 7-bits in Bloom filters)
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Bloom filter based PPRL (2)

Alicel1 o/1/0/l0/0|2/12/ 20 0/1 01

Bob1/lo/1/ 00 0/1/1 0/ 0/l0 1 0]0

® 1-bits for string ‘peter’: 7, 1-bits for ‘pete’: 5, common
1-bits: 5, therefore simp;.. = 2x5/(7+5)=10/12 = 0.83

® Collisions will effect the calculated similarity values

® Number of hash functions and length of Bloom filter
need to be carefully chosen

£
ANU
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Secure multi-party computation

Compute a function across several parties, such
that no party learns the information from the other
parties, but all receive the final results

» Simple example: Secure summation s = ) . x;.

- Step 1: Z+x1= 1054
Step 4. s =1169-Z Step 2: (Z+x1)+x2 = 1127
=170 '\‘
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Conclusions and research
directions (1)

For historical data, a major challenge is data
quality (develop (semi-) automatic data cleaning and
standardisation techniques)

How to employ collective classification techniques
for data with personal information?

No training data available in many applications
o Employ active learning approaches

» Visualisation for improved manual clerical review

Linking data from many sources (significant
challenge in PPRL, due to issue of collusion)

Frameworks for data linkage that allow
comparative experimental studies
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Conclusions and research
directions (2)

#® Collections of test data sets which can be used
by researchers

» Challenging (impossible?) to have true match status

» Challenging because most databases are proprietary
and / or sensitive

# Develop practical PPRL techniques
» A standard measures for privacy is needed
» Improved advanced classification techniques for PPRL

» Methods to assess accuracy and completeness

# Pragmatic challenge: Collaborations across
multiple research disciplines

THE AUSTRALIAN NATIONAL UNIVERSITY
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Gerrit Bloothooft - Peter Christen
Kees Mandemakers - Marijn Schraagen
Editors

Population
Reconstruction

@ Springer

Advertisement: Book ‘Population
Reconstruction’ (August 2015)

The book details the possibilities
and limitations of information
technology with respect to
reasoning for population
reconstruction.

Follows the three main processing
phases from handwritten registers
fo a reconstructed digitized
population.

Combines research from historians,
social scientists, linguists, and
computer scientists.
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