Data Matching Research at the Australian National University

Peter Christen

Research School of Computer Science,
ANU College of Engineering and Computer Science,
The Australian National University

Contact: peter.christen@anu.edu.au

http://cs.anu.edu.au/people/Peter.Christen
Outline

- Background about me and the ANU
- A short introduction to data matching and its challenges
- Research projects in data matching at the ANU
  - Scalable real-time entity resolution on dynamic databases
  - Scalable privacy-preserving record linkage techniques
  - Efficient matching of historical census data across time
- Conclusions and research directions
Background - Short CV

- Born and grew up in Basel, Switzerland
  - Diploma in Computer Science, ETH Zürich in 1995
  - PhD in Parallel Computing, University of Basel in 1999
- Moved to Canberra / ANU in 1999
  - Postdoctoral Researcher (funded by Swiss NSF) from 1999 to 2000
  - Lecturer from 2001 to 2006
  - Senior Lecturer from 2007 to 2012
  - Associate Dean (Higher Degree Research) for Engineering and Computer Science, 2009 to 2011
  - Associate Professor since 2013
Research at the ANU (1)

- Around 17,000 students, over 2,000 PhD students (around 100 in computer science)
Research at the ANU (2)

- Over 1,600 academics (around 40 in computer science, including 14 full professors)
What is data matching?

The process of matching records that represent the same entity in one or more databases (patient, customer, business name, etc.)

Also known as record linkage, entity resolution, object identification, duplicate detection, identity uncertainty, merge-purge, etc.

Major challenge is that unique entity identifiers are often not available in the databases to be matched (or if available, they are not consistent)

E.g., which of these records represent the same person?

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Smith, Peter</td>
<td>42 Miller Street 2602 O'Connor</td>
</tr>
<tr>
<td>Pete Smith</td>
<td>42 Miller St 2600 Canberra A.C.T.</td>
</tr>
<tr>
<td>P. Smithers</td>
<td>24 Mill Rd 2600 Canberra ACT</td>
</tr>
</tbody>
</table>

February 2014 – p. 7/46
The data matching process

Database A
- Data pre-processing
- Indexing / Searching
- Comparison
- Classification
- Clerical Review
- Potential Matches

Database B
- Data pre-processing
- Matches
- Non-matches
- Evaluation
Applications of data matching

- Remove duplicates in one data set (deduplication)
- Merge new records into a larger master data set
- Create patient or customer oriented statistics (for example for longitudinal studies)
- Clean and enrich data for analysis and mining
- Geocode matching (with reference address data)

Widespread use of data matching

- Immigration, taxation, social security, census
- Fraud, crime, and terrorism intelligence
- Business mailing lists, exchange of customer data
- Health and social science research
Data matching challenges

- No unique entity identifiers are available
  (use approximate (string) comparison functions)

- Real world data are dirty
  (typographical errors and variations, missing and
  out-of-date values, different coding schemes, etc.)

- Scalability to very large databases
  (naïve comparison of all record pairs is quadratic; some
  form of blocking, indexing or filtering is needed)

- No training data in many data matching
  applications (true match status not known)

- Privacy and confidentiality
  (because personal information is commonly required
  for matching)
Types of data matching techniques

- Deterministic matching
  - Exact matching (if a unique identifier of high quality is available: precise, robust, stable over time)
    Examples: Social security or Medicare numbers
  - Rule-based matching (complex to build and maintain)

- Probabilistic record linkage (Fellegi and Sunter, 69)
  - Use available attributes for matching (often personal information, like names, addresses, dates of birth, etc.)
  - Calculate matching weights for attributes

- ‘Computer science’ approaches
  (based on machine learning, data mining, database, or information retrieval techniques)
Advanced classification techniques

- View record pair classification as a *multi-dimensional binary classification* problem (use attribute similarities to classify record pairs as *matches* or *non-matches*)

- Many machine learning techniques can be used
  - Supervised: Decision trees, SVMs, neural networks, learnable string comparisons, active learning, etc.
  - Un-supervised: Various clustering algorithms

- Recently, *collective* classification techniques have been investigated (build graph of database and conduct overall classification, rather than each record pair independently)
Project 1

Scalable real-time entity resolution on dynamic databases
Scalable real-time entity resolution on dynamic databases

- A Linkage Project funded by the Australian Research Council, Veda (credit bureau), and Funnelback (web and enterprise search)

Collaborators:

- Dr Huizhi (Elly) Liang (Post-doc, ANU)
- Ms Banda Ramadan (PhD student, ANU)
- Assoc Prof Peter Strazdins (ANU)
- Dr Ross Gayler (Veda)
- Prof David Hawking (Funnelback and ANU)
Motivation and objectives

- Credit bureau requires matching in real-time of query records to a large database of entity records (credit enquiries).
- Improve indexing to retrieve candidate records faster, therefore have more time for advanced classification (currently proprietary rules-based).

Objectives are to develop:
- Novel indexing techniques that allow for real-time matching of query records on dynamic databases.
- Techniques that consider temporal data aspects.
- Improved techniques for real-time classification of query records (to match with database records).
### Dynamic similarity-aware indexing

(1)

<table>
<thead>
<tr>
<th>RecID</th>
<th>Given-name</th>
<th>Double-Metaphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r2</td>
<td>cathrine</td>
<td>k0rn</td>
</tr>
<tr>
<td>r3</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r4</td>
<td>kathryn</td>
<td>k0rn</td>
</tr>
<tr>
<td>r5</td>
<td>tonya</td>
<td>tn</td>
</tr>
</tbody>
</table>

RI: Record index, BI: Block index, SI: Similarity index

RI:
- cathrine -> kathryn (0.7)
- cathrine -> tony (0.9)
- cathrine -> tonya (0.9)

SI:
- k0rn -> tn
- k0rn -> cathrine
- k0rn -> kathryn
- k0rn -> tony
- k0rn -> tonya

BI:
- k0rn -> tn
- k0rn -> cathrine
- k0rn -> tony
- k0rn -> tonya

RI: Record index, BI: Block index, SI: Similarity index
Dynamic similarity-aware indexing

(2)

<table>
<thead>
<tr>
<th>RecID</th>
<th>Given-name</th>
<th>Double-Metaphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r2</td>
<td>cathrine</td>
<td>k0rn</td>
</tr>
<tr>
<td>r3</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r4</td>
<td>kathryn</td>
<td>k0rn</td>
</tr>
<tr>
<td>r5</td>
<td>tonya</td>
<td>tn</td>
</tr>
<tr>
<td>r6</td>
<td>cathrine</td>
<td>k0rn</td>
</tr>
</tbody>
</table>

RI: Record index, BI: Block index, SI: Similarity index
Dynamic similarity-aware indexing

RI: Record index, BI: Block index, SI: Similarity index
## Dynamic similarity-aware indexing

### Table

<table>
<thead>
<tr>
<th>RecID</th>
<th>Given-name</th>
<th>Double-Metaphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r2</td>
<td>cathrine</td>
<td>k0rn</td>
</tr>
<tr>
<td>r3</td>
<td>tony</td>
<td>tn</td>
</tr>
<tr>
<td>r4</td>
<td>kathryn</td>
<td>k0rn</td>
</tr>
<tr>
<td>r5</td>
<td>tonya</td>
<td>tn</td>
</tr>
<tr>
<td>r6</td>
<td>cathrine</td>
<td>k0rn</td>
</tr>
<tr>
<td>r7</td>
<td>linda</td>
<td>ln</td>
</tr>
<tr>
<td>r8</td>
<td>tonia</td>
<td>tn</td>
</tr>
</tbody>
</table>

### Diagram

RI: Record index, BI: Block index, SI: Similarity index

February 2014 – p. 19/46
Dynamic similarity-aware indexing

On North Carolina voter database (around 2.4 million records)
Dynamic similarity-aware indexing

(6)
Scalable privacy-preserving record linkage (PPRL)
Scalable privacy-preserving record linkage

A Discovery Project funded by the Australian Research Council

Collaborators:

- Ms Dinusha Vatsalan (PhD student, ANU)
- Assoc Prof Vassilios Verykios (Hellenic Open University)
- Mr Thilina Ranbaduge (PhD student, starting 2014)
Motivation and objectives

Privacy concerns in many applications where data are matched between organisations

Matched data can allow analysis not possible on individual databases (potentially revealing highly sensitive information)

Objectives are to develop:

- Scalable techniques to facilitate PPRL
- Techniques that allow PPRL on multiple databases
- Improved classification techniques for PPRL
- Methods to assess matching quality and completeness in a privacy-preserving framework
Privacy and data matching: An example scenario (1)
Privacy and data matching: An example scenario (2)

- Preventing the outbreak of epidemics requires monitoring of occurrences of unusual patterns in symptoms (in real time!)
- Data from many different sources will need to be collected (including travel and immigration records; doctors, emergency and hospital admissions; drug purchases in pharmacies; animal health data; etc.)
- Privacy concerns arise if such data are stored and matched at a central location
- Matched sensitive patient data and confidential data from healthcare organisations must be kept secure, while still allowing analysis
The PPRL process

Database A

Data pre-processing

Database B

Data pre-processing

Indexing / Searching

Comparison

Classification

Matches

Non-matches

Evaluation

Clerical Review

Potential Matches

Privacy-preserving context

Encoded data
PPRL challenges and basic protocols

Main challenges in PPRL

- Allow for approximate matching of values (given real world data are often ‘dirty’)
- Have techniques that are not vulnerable to any kind of attack, and are scalable to matching large databases

Two basic types of protocols

- Two-party protocol: Only the two database owners who wish to link their data
- Three-party protocols: Use a (trusted) third party (linkage unit) to conduct the linkage (this party will never see any unencoded values, but collusion is possible)
**Basic protocol steps**

Generally, three main communication steps

1. Exchange of which attributes to use in a linkage, pre-processing methods, encoding functions, parameters, secret keys, etc.

2. Exchange of the *somehow* encoded database records

3. Exchange of records (or selected attribute values, or identifiers only) of records classified as matches
Bloom filter based PPRL

Proposed by Schnell et al. (Biomed Central, 2009)

Idea: Map q-grams into Bloom filters using hash functions only known to database owners, send Bloom filters to linkage unit to calculate Dice similarity

1-bits for string ‘peter’: 7, 1-bits for ‘pete’: 5, common 1-bits: 5, therefore $sim_{Dice} = 2 \times 5/(7+5) = 10/12 = 0.83$
Two-party Bloom filter protocol (1)

- Iteratively exchange certain bits from the Bloom filters between database owners

- Calculate the minimum Dice similarity from the bits exchanged, and classify record pairs as matches, non-matches, and possible matches

- Pairs classified as possible matches are taken to the next iteration (where more bits are exchanged)
  - The number of bits revealed in each iteration is calculated such that the risk of revealing more bits for non-matches is minimised
  - Minimum similarity of possible matches increases as more bits are revealed


**Two-party Bloom filter protocol for PPRL (2)**

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Iteration 1</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ra1</td>
<td>rb1</td>
<td>sim = [0.22, 0.89]</td>
</tr>
<tr>
<td>0 1 0 1 1 1 0 0 1 0</td>
<td>0 1 0 0 1 1 0 0 0 1 0</td>
<td>possible match</td>
</tr>
<tr>
<td>ra2</td>
<td>rb2</td>
<td>sim = [0.0, 0.75]</td>
</tr>
<tr>
<td>0 0 1 0 0 0 1 0 1 1</td>
<td>0 1 0 0 1 1 0 0 0 1 0</td>
<td>possible match</td>
</tr>
<tr>
<td>ra3</td>
<td>rb3</td>
<td>sim = [0.0, 0.28]</td>
</tr>
<tr>
<td>1 0 1 1 0 0 0 0 0 1</td>
<td>0 1 0 0 1 0 0 0 0 1 0</td>
<td>non-match</td>
</tr>
</tbody>
</table>

| **Iteration 2** |              |                     |
| ra1            | rb1          | sim = [0.67, 0.89]  |
| 0 1 0 1 1 1 0 0 1 0 | 0 1 0 0 1 1 0 0 0 1 0 | possible match     |
| ra2            | rb2          | sim = [0.0, 0.25]   |
| 0 0 1 0 0 0 1 0 1 1 | 0 1 0 0 1 1 0 0 0 1 0 | non-match          |

- Each party knows how many 1-bits are set in total in a Bloom filter received from the other party.
- In iteration 1, for example, there is one unrevealed 1-bit in *ra3*, and so the maximum possible Dice similarity with *rb3* is: `max(sim(ra3, rb3)) = 2 \times 1/(4+3) = 2/7 = 0.28`
Project 3

Efficient matching of historical census data across time
Collaborators:

- Ms Zhichun (Sally) Fu (PhD student, ANU)
- Assoc Prof Mac Boot (Australian Demographic and Social Research Institute, ANU)

Motivation

- Shift in the social sciences from small-scale studies to using population databases
- New field of ‘population informatics’ to analyse the ‘social genome’
- Develop techniques to compile family trees over time from large data collections (population reconstruction)
Challenges with historical (census) data

- Low literacy (recording errors and unknown exact values), no address or occupation standards
- Large percentage of a population had one of just a few common names (‘John’ or ‘Mary’)
- Households and families change over time
- Immigration and emigration, birth and death
- Scanning, OCR, and transcription errors
Group matching using household information

- Conduct pair-wise matching of individual records
- Calculate household similarities using Jaccard or weighted similarities (based on pair-wise matching)
- Promising results on UK Census data from 1851 to 1901 (Rawtenstall, with around 17,000 to 31,000 records)
One graph per household, find best matching graphs using both record attribute and structural similarities

Edge attributes are information that does not change over time (like age differences)
To make sure everybody is awake..
Conclusions and research directions

- We address various challenges in data matching: real-time matching and dynamic data; temporal aspects; privacy; and population reconstruction.

Challenges in data matching

- Improved classification for matching personal data
- Matching data from many sources
- Use of cloud computing platforms for large-scale data matching
- Frameworks for data matching that allow comparative experimental studies, and test data collections
- Develop practical PPRL techniques (assessing accuracy and completeness)
Recent publications (1)


Recent publications (2)

The book is very well organized and exceptionally well written. Because of the depth, amount, and quality of the material that is covered, I would expect this book to be one of the standard references in future years.

William E. Winkler, U.S. Bureau of the Census.
Collective classification example

(A1, Dave White, Intel)
(A2, Don White, CMU)
(A3, Susan Grey, MIT)
(A4, John Black, MIT)
(A5, Joe Brown, unknown)
(A6, Liz Pink, unknown)

(P1, John Black / Don White)
(P2, Sue Grey / D. White)
(P3, Dave White)
(P4, Don White / Joe Brown)
(P5, Joe Brown / Liz Pink)
(P6, Liz Pink / D. White)

Adapted from Kalashnikov and Mehrotra, ACM TODS, 31(2), 2006
A definition of PPRL

Assume $O_1 \cdots O_d$ are the $d$ owners of their respective databases $D_1 \cdots D_d$.

They wish to determine which of their records $r^i_1 \in D_1$, $r^j_2 \in D_2$, $\cdots$, and $r^k_d \in D_d$, match according to a decision model $C(r^i_1, r^j_2, \cdots, r^k_d)$ that classifies pairs (or groups) of records into one of the two classes $M$ of matches, and $U$ of non-matches.

$O_1 \cdots O_d$ do not wish to reveal their actual records $r^i_1 \cdots r^k_d$ with any other party (they are, however, prepared to disclose to each other, or to an external party, the outcomes of the matching process — certain attribute values of record pairs in class $M$ — to allow further analysis).
A taxonomy for PPRL

PPRL Taxonomy

Privacy aspects
- Number of parties
- Aversary model
- Privacy techniques

Linkage techniques
- Indexing
- Comparison
- Classification

Theoretical analysis
- Scalability
- Linkage quality
- Privacy vulnerabilities

Evaluation
- Scalability
- Linkage quality
- Privacy

Practical aspects
- Implementation
- Data sets
- Application area

Application area

Indexing

Privacy evaluation aspects

Scalability

Privacy vulnerabilities

Linkage quality

Classification

Comparison

Indexing

Privacy

Number of parties

Aversary model

Privacy techniques

Classification

Comparison

Indexing

February 2014 – p. 45/46
Secure multi-party computation

- Compute a function across several parties, such that no party learns the information from the other parties, but all receive the final results [Yao 1982; Goldreich 1998/2002]

- Simple example: Secure summation $s = \sum_i x_i$.

Step 0:
- $Z = 999$
- Party 1: $x_1 = 55$

Step 1: $Z + x_1 = 1054$
- Party 2: $x_2 = 73$

Step 2: $(Z + x_1) + x_2 = 1127$
- Party 3: $x_3 = 42$

Step 3: $((Z + x_1) + x_2) + x_3 = 1169$

Step 4: $s = 1169 - Z = 170$