
Performance Analysis of KDD Applications
using Hardware Event Counters

CAP Theme 2

http://cap.anu.edu.au/cap/projects/KDDMemPerf/

Peter Christen and Adam Czezowski
Peter.Christen@anu.edu.au
Adam.Czezowski@anu.edu.au

6 February 2002

CAP Workshop 02 KDD Performance 1 DCS, ANU

1 Overview

A Short Introduction to KDD (or Data Mining)

Three KDD Applications used for Performance Analysis

Decision Tree Induction (C4.5)

Market Basket Analysis (APRIORI)

Predictive Model (ADDFIT)

Performance Analysis

Hardware Performance Counters

Libraries (PAPI, PCL, libcpc)

libcpc Example Program

UltraSPARC III Hardware Events

Experiments and Results

Conclusions and Outlook

CAP Workshop 02 KDD Performance 2 DCS, ANU

2 A short Introduction to KDD

Analysis of massive and complex data collections
(with Giga- and Terabytes, some even Petabytes, and hundreds of attributes)

Discovery of previously unknown information (data driven exploration)

Modelling of the data (predict future behaviour using available and
historic data)

Data analysis can not be done manually

KDD applications include

Customer profiling and segmentation, E-Commerce and E-Business

Market basket analysis, fraud detection

Improvement of health services

Analysis of Human Genomic Data

Web and text mining

Many organisations are data rich but information poor

CAP Workshop 02 KDD Performance 3 DCS, ANU

3 KDD Techniques and Technologies

Techniques: Clustering, classification, neural and Bayesian networks,
predictive modelling, association rules, genetic algorithms, etc.

KDD became possible with powerful (multiprocessor) computers, and
large (automatic) data collection and storage

Efficient and scalable (with data size and complexity) techniques and
algorithms are needed

KDD is multi-disciplinary, using technologies from

Databases

Machine learning

Applied statistics

Pattern recognition

Computational mathematics

High-performance computing

Visualisation

CAP Workshop 02 KDD Performance 4 DCS, ANU

4 Decision Tree Induction (C4.5)

Ross Quinlan, University of New South Wales, 1993

Given a data set with records (e.g. SQL table), where each record
has the same attributes

Build a classification model of the data (classify records into different classes)

Data set is split into training set (used to build the decision tree) and
test set (to verify the quality of the tree)

Data structure: Recursive tree (not restricted to binary trees)

Example:

age student credit rating buys computer?
21 yes excellent yes
42 yes fair yes
29 no excellent no
34 no fair yes
27 no fair ?
34 yes excellent ?

age?

yesstudent? credit_rating?

<5 30 31...40 >40

no

no

yes

yes

no

excellent

yes

fair

CAP Workshop 02 KDD Performance 5 DCS, ANU

5 Association Rule Induction (APRIORI)

R. Agrawal, T. Imielinski and A. Swami, 1993

Popular for Market Basket Analysis
(trying to find what products customers frequently buy together)

Given a data set with transactions (can have variable length)

The task is to (1) find frequent large item sets and then (2) build rules
from these item sets

Data structures: Prefix trees, hash tables

Example:

TID
T100
T200
T300
T400
T500
T600
T700
T800
T900

L
�

ist of item_IDs
I1,
�

 I2, I5
I2,
�

 I4
I2,
�

 I3
I1,
�

 I2, I4
I1,
�

 I3
I2,
�

 I3
I1,
�

 I3
I1,
�

 I2, I3, I5
I1,
�

 I2, I3

If I1 and I2 I5

If I1 and I5 I2

If I2 and I5 I1

If I1 I2

If I1 I3

CAP Workshop 02 KDD Performance 6 DCS, ANU

6 Additive Models (ADDFIT)

ANU Data Mining Group, 2000

Build a predictive model of the data with additive functions
� � � � � � �

Two steps

1. Assemble dense symmetric linear system from data

2. Solve linear system sequential or in parallel

Assembly is data dependent and results in irregular memory access

Advantages

Linear scalable with dimensionality of the data (number of attributes)

Input data set has to be read only once

Size of the linear system is independent of the input data
(only depends on the model)

Data structure: Symmetric dense linear system

CAP Workshop 02 KDD Performance 7 DCS, ANU

7 Characteristics of KDD Applications

Usually access input data (on disk because of its size) several times
(ADDFIT only accesses data once)

Build dynamic and recursive data structures

Hash tables

Linked lists

Trees

Size of data structures is data dependent
(often not linear scalable with input data)

Data structure access is data dependent (irregular)

Complex core routines (large instruction foot-prints)

Many KDD applications have irregular memory access patterns
and therefore result in sub-optimal performance

CAP Workshop 02 KDD Performance 8 DCS, ANU

8 Performance Analysis

Modern processors and computer systems are becoming more
and more complex

Longer pipelines

Multiple functional units and multiple instruction issued per cycle

Speculative branch predictions

Several cache levels

Symmetric multiprocessing

There is an increasing gap between CPU and memory access speed

Many of today’s complex applications require large amounts of memory
(many functions and large data sizes)

CPU caches are only useful (efficient) when many data items or instructions
can be access directly from the cache (locality)

Understanding program behaviour is important to achieve
good efficiency and high performance

CAP Workshop 02 KDD Performance 9 DCS, ANU

9 Performance Analysis Methods

Profiling: Information about where your program spent its time and
which functions called which other functions while it was executing

Monitoring system utilisation with commands like:
ps, top, iostat, vmstat, kstat, cpustat, cputrack, har, pmap, etc.

Simulation: Possibility to modify hardware parameters

Hardware counters

Most modern microprocessors have hardware event counter registers

Possibility to count various hardware events

Control and access through library calls

Easy to instrument source code

Possible to analyse only parts of the code (e.g. computational core routines)

Possible to analyse programs with short run times

CAP Workshop 02 KDD Performance 10 DCS, ANU

10 Performance Counter Libraries

Solaris / UltraSPARC

The UltraSPARC I, II and III processors have two on-chip hardware counter
registers that allow run time measurements of various hardware events

Solaris provides access to these through the libcpc(3LIB) library

Platform independent libraries

PAPI (Performance Application Programming Interface)
http://icl.cs.utk.edu/ proj ect s/p api /

PCL (Performance Counter Library)
http://www.kfa-juelich .de/ zam/PCL/

Both PAPI and PCL specify a standard for accessing hardware performance
counters available on most modern microprocessors

Various vendor specific libraries for other processors (including Intel Pentium,
PowerPC, MIPS and Alpha) and operating systems

CAP Workshop 02 KDD Performance 11 DCS, ANU

11 Some UltraSPARC III Events

MIPS (Million Instructions Per Second)
instr cnt / tick cnt * clock freq

FLOPS (Floating-Point Instructions Per Second)
(fa pipe completion + fm pipe completion) / tick cnt * clock

CPI (Cycles Per Instruction)
cycle cnt / instr cnt

Address bus utilisation
(ec misses + ec wb) / (tick cnt * bus clock / cpu clock)

Data-Cache miss rate
(dc rd miss + dc wr miss) / (dc rd + dc wr)

Instruction-TLB misses
itlb miss / instr cnt

More useful measures are possible, based on 66 UltraSPARC III hardware
events

CAP Workshop 02 KDD Performance 12 DCS, ANU

12 libcpc Code Instrumenting

Use #include <libcpc.h> to include library

Use cpc access() and cpc version() to check version and
accessibility of counters

Use cpc getcpuver() to get counter configuration

Use cpc strtoevent() to initalise cpc event t data structure and
fill it with events (given as string)

Use cpc bind event() to bind an initialised cpc event t structure
to the calling process

Use cpc take sample() to sample counters as desired

Use cpc rele() to release when done

Compile with -lcpc flag

CAP Workshop 02 KDD Performance 13 DCS, ANU

13 libcpc Example Program

#include <libcpc.h>

int cpc_cpuver;
cpc_event_t cpc_event, start, stop;
char *cpc_arg="pic0=cycle_cnt, pic1=instr_cnt";

cpc_cpuver = cpc_getcpuver();
cpc_strtoevent(cpc_cpuver, cpc_arg, &cpc_event);
cpc_bind_event(&cpc_event, 0);

cpc_take_sample(&start);

/* ... add your code to analyse here ... */

cpc_take_sample(&stop);

printf("cycle_cnt: %lld, instr_cnt: %lld\n",
(stop.ce_pic[0]-start.ce_pic[0]), (stop.ce_pic[1]-start.ce_pic[1]));

CAP Workshop 02 KDD Performance 14 DCS, ANU

14 Characteristics of Our Test Programs

Program BLAS (SUNPERF) ADDFIT
small medium large small large

Data ����� ���	�
�
��
�
	� �	����� ���	��� Census with Census with
matrices matrices matrices 104,858 records 209,715 records

Run time 0.075 sec 1.255 sec 44.5 sec 1.3 sec 7.4 sec
Iterations 100 10 1 10 10
Heap size 1,024 KB 10,240 KB 102,400 KB 10,024 KB 90,408 KB
User code �������� % �������
 % �������� % �	������ % �������� %

Program APRIORI C4.5
small large small large

Data T5I4D10K with T10I8D1000K with Census with Census with
10,000 records 1,000,000 records 8,322 records 266,305 records

Run time 3.1 sec 42 sec 3.2 sec 423 sec
Iterations 10 1 5 1
Heap size 19,776 KB 70,512 KB 3,960 KB 62,152 KB
User code �������� % �������� % �	���
� % ��
����� %

CAP Workshop 02 KDD Performance 15 DCS, ANU

15 Dynamic Memory Allocation in APRIORI and C4.5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

H
ea

p
si

ze
 (

in
 K

B
yt

es
)

�

Run time (totally 3.1 seconds)

Memory allocation for APRIORI

0

500

1000

1500

2000

2500

3000

3500

4000

H
ea

p
si

ze
 (

in
 K

B
yt

es
)

�

Run time (totally 3.2 seconds)

Memory allocation for C4.5

First phase is loading data from files

Second phase is computing frequent item sets and decision tree

Measured with pmap using a Python script (for filtering output)

ADDFIT (like BLAS matrix-matrix multiplication) allocates all memory
in one block at beginning

CAP Workshop 02 KDD Performance 16 DCS, ANU

16 MIPS and MFLOPS Measurements

0

100

200

300

400

500

600

700

800

900

(s) (m) (l) (s) (l) (s) (l) (s) (l)

M
IP

S�

 BLAS ADDFIT APRIORI C4.5

Million Instructions Per Second (MIPS)

all
usr
sys

0

100

200

300

400

500

(s) (m) (l) (s) (l) (s) (l) (s) (l)

M
F

LO
P

S�

 BLAS ADDFIT APRIORI C4.5

Million Floating-Point Operations Per Second (MFLOPS)

all
usr
sys

MIPS: Million Instructions Per Second
(correspond directly to Instructions Per Cycle)

MFLOPS: Million Floating-Point Instructions Per Second

KDD applications are not dominated by floating-point instructions

For KDD applications smaller input data sets result in higher MIPS rate

CAP Workshop 02 KDD Performance 17 DCS, ANU

17 Data- and Instruction-Cache Miss Rates

0

10

20

30

40

50

60

70

80

90

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e

�

 BLAS ADDFIT APRIORI C4.5

Data-Cache Miss Rate

all
usr
sys

0

1

2

3

4

5

6

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e

�

 BLAS ADDFIT APRIORI C4.5

Instruction-Cache Miss Rate

all
usr
sys

Instruction-Cache miss rate is much smaller than Data-Cache miss rate

Both Data- and Instruction-Cache miss rates are much smaller in
user mode than in system (kernel) mode

While the Data-Cache miss rate is increasing with larger data sets,
the Instruction-Cache miss rate is decreasing

CAP Workshop 02 KDD Performance 18 DCS, ANU

18 L2-Cache and Data-TLB Miss Rates

0

1

2

3

4

5

6

7

8

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e

�

 BLAS ADDFIT APRIORI C4.5

External-Cache (L2) Miss Rate

all
usr
sys

0

1

2

3

4

5

6

(s) (m) (l) (s) (l) (s) (l) (s) (l)

P
er

ce
nt

ag
e

�

 BLAS ADDFIT APRIORI C4.5

Data-TLB Miss Rate

all
usr
sys

System (kernel) Level-2 miss rates are much higher than user miss rates
(with the exception of C4.5 with the large data set)

Instruction-TLB miss rates (not shown here) are all smaller than 0.02

High miss rates both for Level-2 as well as Data-TLB for C4.5 with the
large data set are because of the sorting of entire categorical attributes
(using recursive quicksort)

CAP Workshop 02 KDD Performance 19 DCS, ANU

19 Conclusions and Outlook

Performance analysis is important to

understand characteristics of modern complex applications
find bottlenecks both in software (application as well as operating system)
and hardware (processor and memory system)
improve efficiency and performance of high-performance computer systems

Hardware counters are a good tool for performance analysis, but it is

easy to drown in numbers (many possible measurements)
sometimes hard to understand the meaning of the results
important to consider side effects from other running programs
and the operating system

Our future research directions

Analyse more KDD applications
Do analysis on a Primepower SMP system (ANU Supercomputing Facility)
Extend analysis to parallel SMP codes

CAP Workshop 02 KDD Performance 20 DCS, ANU

