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Abstract. Deduplicating one data set or linking several data sets are
increasingly important tasks in the data preparation steps of many data
mining projects. The aim of such linkages is to match all records relating
to the same entity. Research interest in this area has increased in recent
years, with techniques originating from statistics, machine learning, in-
formation retrieval, and database research being combined and applied
to improve the linkage quality, as well as to increase performance and
efficiency when deduplicating or linking very large data sets. Different
measures have been used to characterise the quality of data linkage algo-
rithms. This paper presents an overview of the issues involved in measur-
ing deduplication and data linkage quality, and it is shown that measures
in the space of record pair comparisons can produce deceptive accuracy
results. Various measures are discussed and recommendations are given
on how to assess deduplication and data linkage quality.

Keywords: data or record linkage, data integration and matching, dedu-
plication, data mining pre-processing, quality measures.

1 Introduction

With many businesses, government organisations and research projects collect-
ing massive amounts of data, data mining has in recent years attracted interest
both from academia and industry. While there is much ongoing research in data
mining algorithms and techniques, it is well known that a large proportion of
the time and effort in real-world data mining projects is spent understanding the
data to be analysed, as well as in the data preparation and pre-processing steps
(which may well dominate the actual data mining activity). An increasingly im-
portant task in data pre-processing is detecting and removing duplicate records
that relate to the same entity within one data set. Similarly, linking or matching
records relating to the same entity from several data sets is often required, as
information from multiple sources needs to be integrated, combined or linked in
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order to allow more detailed data analysis or mining. The aim of such linkages
is to match all records relating to the same entity, such as a patient, a customer,
a business, a consumer product, or a genome sequence.

Deduplication and data linkage can be used to improve data quality and in-
tegrity, to allow re-use of existing data sources for new studies, and to reduce
costs and efforts in data acquisition. In the health sector, for example, dedupli-
cation and data linkage have traditionally been used for cleaning and compiling
data sets for longitudinal or other epidemiological studies [23]. Linked data might
contain information that is needed to improve health policies, and which tradi-
tionally has been collected with time consuming and expensive survey methods.
Statistical agencies routinely link census data [18, 37] for further analysis. Busi-
nesses often deduplicate and link their data sets to compile mailing lists, while
within taxation offices and departments of social security, data linkage and dedu-
plication can be used to identify people who register for benefits multiple times
or who work and collect unemployment benefits. Another application of current
interest is the use of data linkage in crime and terror detection. Security agencies
and crime investigators increasingly rely on the ability to quickly access files for
a particular individual, which may help to prevent crimes by early intervention.

The problem of finding similar entities doesn’t only apply to records which
refer to persons. In bioinformatics, data linkage helps to find genome sequences
in large data collections that are similar to a new, unknown sequence at hand. In-
creasingly important is the removal of duplicates in the results returned by Web
search engines and automatic text indexing systems, where copies of documents
– for example bibliographic citations – have to be identified and filtered out be-
fore being presented to the user. Comparing consumer products from different
online stores is another application of growing interest. As product descriptions
are often slightly different, comparing them becomes difficult.

If unique entity identifiers (or keys) are available in all the data sets to be
linked, then the problem of linking at the entity level becomes trivial: a simple
database join is all that is required. However, in most cases no unique keys are
shared by all of the data sets, and more sophisticated data linkage techniques
need to be applied. An overview of such techniques is presented in Section 2. The
notation used in this paper, and a problem analysis are discussed in Section 3,
before a description of various quality measures is given in Section 4. A real-
world example is used in Section 5 to illustrate the effects of applying different
quality measures. Finally, several recommendations are given in Section 6, and
the paper is concluded with a short summary in Section 7.

2 Data Linkage Techniques

Computer-assisted data linkage goes back as far as the 1950s. At that time, most
linkage projects were based on ad hoc heuristic methods. The basic ideas of prob-
abilistic data linkage were introduced by Newcombe and Kennedy [30] in 1962,
and the theoretical statistical foundation was provided by Fellegi and Sunter [16]
in 1969. Similar techniques have independently been developed in the 1970s by



computer scientists in the area of document indexing and retrieval [13]. However,
until recently few cross-references could be found between the statistical and the
computer science community.

As most real-world data collections contain noisy, incomplete and incorrectly
formatted information, data cleaning and standardisation are important pre-
processing steps for successful deduplication and data linkage, and before data
can be loaded into data warehouses or used for further analysis [33]. Data may be
recorded or captured in various, possibly obsolete, formats and data items may
be missing, out of date, or contain errors. Names and addresses can change over
time, and names are often reported differently by the same person depending
upon the organisation they are in contact with. Additionally, many proper names
have different written forms, for example ‘Gail’ and ‘Gayle’. The main tasks of
data cleaning and standardisation are the conversion of the raw input data into
well defined, consistent forms, and the resolution of inconsistencies [7, 9].

If two data sets A and B are to be linked, the number of possible record pairs
equals the product of the size of the two data sets |A| × |B|. Similarly, when
deduplicating a data set A the number of possible record pairs is |A| × (|A| −
1)/2. The performance bottleneck in a data linkage or deduplication system is
usually the expensive detailed comparison of fields (or attributes) between pairs
of records [1], making it unfeasible to compare all record pairs when the data sets
are large. For example, linking two data sets with 100, 000 records each would
result in ten billion possible record pair comparisons. On the other hand, the
maximum number of truly matched record pairs that are possible corresponds
to the number of records in the smaller data set (assuming a record can only be
linked to one other record). For deduplication, the number of duplicate records
will be smaller than the number of records in the data set. The number of
potential matches increases linearly when linking larger data sets, while the
computational efforts increase quadratically.

To reduce the large number of possible record pair comparisons, data linkage
systems therefore employ blocking [1, 16, 37], sorting [22], filtering [20], cluster-
ing [27], or indexing [1, 5] techniques. Collectively known as blocking, these tech-
niques aim at cheaply removing pairs of records that are obviously not matches.
It is important, however, that no potential match is removed by blocking.

All record pairs produced in the blocking process are compared using a variety
of field (or attribute) comparison functions, each applied to one or a combination
of record attributes. These functions can be as simple as an exact string or a
numerical comparison, can take into account typographical errors, or be as com-
plex as a distance comparison based on look-up tables of geographic locations
(longitude and latitude). Each comparison returns a numerical value, often pos-
itive for agreeing values and negative for disagreeing values. For each compared
record pair a weight vector is formed containing all the values calculated by the
different field comparison functions. These weight vectors are then used to clas-
sify record pairs into matches, non-matches, and possible matches (depending
upon the decision model used). In the following sections the various techniques
employed for data linkage are discussed in more detail.



2.1 Deterministic Linkage

Deterministic linkage techniques can be applied if unique entity identifiers (or
keys) are available in all the data sets to be linked, or a combination of attributes
can be used to create a linkage key, which is then used to match records that
have the same key value. Such linkage systems can be developed based on stan-
dard SQL queries. However, they only achieve good linkage results if the entity
identifiers or linkage keys are of high quality. This means they have to be precise,
stable over time, highly available, and robust with regard to errors (for example,
include a check digit for detecting invalid or corrupted values).

Alternatively, a set of (often very complex) rules can be used to classify pairs
of records. Such rule-based systems can be more flexible than using a simple link-
age key, but their development is labour intensive and highly dependent upon the
data sets to be linked. The person or team developing such rules not only needs
to be proficient with the rule system, but also with the data to be deduplicated
or linked. In practise, therefore, deterministic rule based systems are limited to
ad-hoc linkages of smaller data sets. In a recent study [19], an iterative deter-
ministic linkage system was compared with the commercial probabilistic system
AutoMatch [25], and empirical results showed that the probabilistic approach
achieved better linkages.

2.2 Probabilistic Linkage

As common unique entity identifiers are rarely available in all data sets to be
linked, the linkage process must be based on the existing common attributes.
These normally include person identifiers (like names and dates of birth), de-
mographic information (like addresses) and other data specific information (like
medical details, or customer information). These attributes can contain typo-
graphical errors, they can be coded differently, and parts can be out-of-date or
even be missing.

In the traditional probabilistic linkage approach [16, 37], pairs of records are
classified as matches if their common attributes predominantly agree, or as non-
matches if they predominantly disagree. If two data sets A and B are to be
linked, the set of record pairs A×B = {(a, b); a ε A, b ε B} is the union of the
two disjoint sets of true matches M and true non-matches U .

M = {(a, b); a = b, a ε A, b ε B} (1)

U = {(a, b); a 6= b, a ε A, b ε B} (2)

Fellegi and Sunter [16] considered ratios of probabilities of the form

R =
P (γ ε Γ |M)

P (γ ε Γ |U)
, (3)

where γ is an arbitrary agreement pattern in a comparison space Γ . For example,
Γ might consist of six patterns representing simple agreement or disagreement
on given name, surname, date of birth, street address, suburb and postcode.



Alternatively, some of the γ might additionally consider typographical errors, or
account for the relative frequency with which specific values occur. For example,
a surname value ‘Miller’ is much more common in many western countries than
a value ‘Dijkstra’, resulting in a smaller agreement value. The ratio R, or any
monotonically increasing function of it (such as its logarithm) is referred to as
a matching weight. A decision rule is then given by

if R > tupper , then designate a record pair as match,
if tlower ≤ R ≤ tupper , then designate a record pair as possible match,
if R < tlower, then designate a record pair as non-match.

The thresholds tlower and tupper are determined by a-priori error bounds on false
matches and false non-matches. If γ ε Γ for a certain record pair mainly consists
of agreements, then the ratio R would be large and thus the pair would more
likely be designated as a match. On the other hand for a γ ε Γ that primarily
consists of disagreements the ratio R would be small.

The class of possible matches are those record pairs for which human over-
sight, also known as clerical review, is needed to decide their final linkage status.
While in the past (when smaller data sets were linked, for example for epidemio-
logical survey studies) clerical review was practically manageable in a reasonable
amount of time, linking today’s large data collections – with millions of records
– make this process impossible, as tens or even hundreds of thousands of record
pairs will be put aside for review. Clearly, what is needed are more accurate and
automated decision models that will reduce – or even eliminate – the amount
of clerical review needed, while keeping a high linkage quality. Such approaches
are presented in the following section.

2.3 Modern Approaches

Improvements [38] upon the classical probabilistic linkage [16] approach include
the application of the expectation-maximisation (EM) algorithm for improved
parameter estimation [39], the use of approximate string comparisons [32] to
calculate partial agreement weights when attribute values have typographical
errors, and the application of Bayesian networks [40].

In recent years, researchers have also started to explore the use of techniques
originating in machine learning, data mining, information retrieval and database
research to improve the linkage process. Most of these approaches are based on
supervised learning techniques and assume that training data (i.e. record pairs
with known deduplication or linkage status) is available.

One approach based on ideas from information retrieval is to represent records
as document vectors and compute the cosine distance [10] between such vectors.
Another possibility is to use an SQL like language [17] that allows approxi-
mate joins and cluster building of similar records, as well as decision functions
that decide if two records represent the same entity. A generic knowledge-based
framework based on rules and an expert system is presented in [24], and a hy-
brid system which utilises both unsupervised and supervised machine learning



techniques is described in [14]. That paper also introduces metrics for deter-
mining the quality of these techniques. The authors find that machine learning
outperforms probabilistic techniques, and provides a lower proportion of possible
matches.

The authors of [35] apply active learning to the problem of lack of training
instances in real-world data. Their system presents a representative (difficult to
classify) example to a user for manual classification. They report that manually
classifying less than 100 training examples provided better results than a fully
supervised approach that used 7,000 randomly selected examples. A similar ap-
proach is presented in [36], where a committee of decision trees is used to learn
mapping rules (i.e. rules describing linkages).

High-dimensional overlapping clustering (as alternative to traditional block-
ing) is used by [27] in order to reduce the number of record pair comparisons to
be made, while [21] explore the use of simple k-means clustering together with
a user tunable fuzzy region for the class of possible matches. Methods based
on nearest neighbours are explored by [6], with the idea to capture local struc-
tural properties instead of a single global distance approach. An unsupervised
approach based on graphical models [34] aims to use the structural information
available in the data to build hierarchical probabilistic models. Results which
are better than the ones achieved by supervised techniques are presented.

Another approach is to train distance measures used for approximate string
comparisons. [3] presents a framework for improving duplicate detection using
trainable measures of textual similarity. The authors argue that both at the
character and word level there are differences in importance of certain character
or word modifications, and accurate similarity computations require adapting
string similarity metrics for all attributes in a data set with respect to the par-
ticular data domain. Related approaches are presented in [5, 12, 29, 41], with [29]
using support vector machines for the binary classification task of record pairs.
As shown in [12], combining different learned string comparison methods can re-
sult in improved linkage classification. An overview of other methods – including
statistical outlier identification, pattern matching, and association rules based
approaches – is given in [26].

3 Notation and Problem Analysis

The notation used in this paper is presented here. It follows the traditional data
linkage literature [16, 37, 38]. The number of elements in a set X is denoted
|X|. A general linkage situation is assumed, where the aim is to link two sets
of entities. For example, the first set could be patients of a hospital, and the
second set people who had a car accident. Some of the car accidents resulted in
people being admitted into the hospital, some did not. The two sets of entities
are denoted as Ae and Be. Me = Ae ∩ Be is the intersection set of matched
entities that appear in both Ae and Be, and Ue = (Ae ∪ Be) \ Me is the set
of non-matched entities that appear in either Ae or Be, but not in both. This
space of entities is illustrated in Figure 1, and called the entity space.
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Fig. 1. General linkage situation with two sets of entities Ae and Be, their intersection
Me (the entities that appear in both sets), and the set Ue which contains the entities
that appear in either Ae or Be, but not in both

The maximum possible number of matched entities corresponds to the size
of the smaller set of Ae or Be. This is the situation when the smaller set is a
proper subset of the larger one, which also results in the minimum number of
non-matched entities. The minimum number of matched entities is zero, which
is the situation when no entities appear in both sets. The maximum number of
non-matched entities in this situation corresponds to the sum of the entities in
both sets. The following equations show this in a more formal way.

0 ≤ |Me| ≤ min(|Ae|, |Be|) (4)

abs(|Ae| − |Be|) ≤ |Ue| ≤ |Ae| + |Be| (5)

In a simple example, assume the set Ae contains 5 million entities (e.g.
hospital patients), and set Be contains 1 million entities (e.g. people involved in
car accidents), with 700,000 entities present in both sets (i.e. |Me| = 700, 000).
The number of non-matched entities in this situation is |Ue| = 4, 600, 000, which
is the sum of the entities in both sets (6 millions) minus twice the number of
matched entities (as they appear in both sets Ae and Be). This simple example
will be used as a running example in the discussion below.

Records for the entities in Ae and Be are now stored in two data sets (or
databases or files), denoted by A and B, such that there is exactly one record
in A for each entity in Ae (i.e. the data set contains no duplicate records), and
each record in A corresponds to an entity in Ae. The same holds for Be and B.
The aim of a data linkage process is to classify pairs of records as matches or
non-matches in the product space A×B = M ∪U of true matches M and true
non-matches U [16, 37] as given in Equations 1 and 2.

It is assumed that no blocking (as discussed in Section 2) is applied, and
that all possible pairs of records are compared. The total number of comparisons
equals |A|×|B|, which is much larger than the number of entities available in Ae

and Be together. In case of the deduplication of a single data set A, the number
of record pair comparisons equals |A| × (|A| − 1)/2, as each record in the data
set must be compared with all others, but not to itself. The space of record pair
comparisons is illustrated in Figure 2 and called the comparison space.
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Fig. 2. General record pair comparison space with 25 records in data set A arbitrar-
ily numbered on the horizontal axis and 20 records in data set B arbitrarily num-
bered on the vertical axis. The full rectangular area corresponds to all possible record
pair comparisons. Assume that record pairs (A1, B1), (A2, B2) up to (A12, B12) are
true matches. The linkage algorithm has wrongly classified (A10, B11), (A11, B13),
(A12, B17), (A13, B10), (A14, B14), (A15, B15), and (A16, B16) as matches (false pos-
itives), but missed (A10, B10), (A11, B11), and (A12, B12) (false negatives)

For the simple example given earlier, the comparison space consists of |A| ×
|B| = 5, 000, 000× 1, 000, 000 = 5 × 1012 record pairs, with |M | = 700, 000 and
|U | = 5 × 1012 − 700, 000 = 4.9999993× 1012 record pairs.

A linkage algorithm compares pairs of records and classifies them into M̃
(record pairs considered to be a match by the algorithm) and Ũ (record pairs
considered to be a non-match). To keep this analysis simple, it is assumed here
that the linkage algorithm does not classify record pairs as possible matches (as
discussed in Section 2.2). Both records of a truly matched pair correspond to
the same entity in Me. Un-matched record pairs, on the other hand, correspond
to different entities in Ae and Be, with the possibility of both records of such a
pair corresponding to different entities in Me. As each record relates to exactly
one entity, and there are no duplicates in the data sets, a record in A can only
be correctly matched to a maximum of one record in B, and vice versa. For
each record pair, the binary classification into M̃ and Ũ results in one of four
possible outcomes [15] as shown in Table 1. As can be seen, M = TP + FN ,
U = TN + FP , M̃ = TP + FP , and Ũ = TN + FN .

When assessing the quality of a linkage algorithm, the general interest is in
how many truly matched entities and how many truly non-matched entities have
been classified correctly as matches and non-matches, respectively. However, the
outcome of the classification is measured in the comparison space (as number



Table 1. Confusion matrix of record pair classification

Actual Classification

Match (M̃) Non-match (Ũ)

Match (M) True match False non-match
True positive (TP) False negative (FN)

Non-match (U) False match True non-match
False positive (FP) True negative (TN)

of classified record pairs). While the number of truly matched record pairs is
the same as the number of truly matched entities, |M | = |Me| (as each truly
matched record pair corresponds to one entity), there is however no correspon-
dence between the number of truly non-matched record pairs and non-matched
entities. Each non-matched record pair contains two records that correspond
to two different entities, and so it not possible to easily calculate a number of
non-matched entities.

The maximum number of truly matched entities is given by Equation 4.
From this follows the maximum number of record pairs a linkage algorithm
should classify as matches is |M̃ | ≤ |Me| ≤ min(|Ae|, |Be|). As the number
of classified matches M̃ = TP + FP , it follows that |TP + FP | ≤ |Me|. And
with M = TP + FN , it also follows that both the numbers of FP and FN will
be small compared to the number of TN, and they will not be influenced by
the multiplicative increase between the entity and the comparison space. The
number of TN will dominate, however, as, in the comparison space, the following
equation holds:

|TN | = |A| × |B| − |TP | − |FN | − |FP |. (6)

This is also illustrated in Figure 2. Therefore, any quality measure used in dedu-
plication or data linkage that uses the number of TN will give deceptive results,
as will be illustrated and discussed further in Sections 4 and 5.

The above discussion assumes no duplicates in the data sets A and B. Thus,
a record in one data set can only be matched to a maximum of one record in the
other data set (often called one-to-one assignment restriction). In practise, how-
ever, one-to-many and many-to-many linkages or deduplications are possible.
Examples include longitudinal studies of administrative health data, where sev-
eral records might correspond to a certain patient over time, or business mailing
lists where several records can relate to the same customer (this happens when
data sets have not been properly deduplicated). While the above analysis would
become more complicated, the issue of having a very large number of TN stills
hold in one-to-many and many-to-many linkage situations, as the number of
matches for a single record will be small compared to the full number of record
pair comparisons.



Table 2. Quality measures used in recent deduplication and data linkage publications

Measure Formula / Description Used in

Accuracy acc = TP+TN

TP+FP+TN+FN
[21, 35, 36]

Precision prec = TP

TP+FP
[1, 2, 10, 11, 14, 27]

Recall rec = TP

TP+FN
[1, 11, 14, 21, 27]

F-measure f−measure = 2( prec×rec

prec+rec
) [1, 11, 27]

False positive rate fpr = FP

TN+FP
[2]

Precision-Recall graph Plot precision on vertical and [3, 6, 28]
recall on horizontal axis

4 Quality Measures

Given that deduplication and data linkage are classification problems, vari-
ous quality measures are available to the data linkage researcher and practi-
tioner [15]. With many recent approaches being based on supervised learning,
no clerical review process (i.e. no possible matches) is often assumed and the
problem becomes a binary classification, with record pairs being classified as
either matches or non-matches, as shown in Table 1. A summary of the qual-
ity measures used in recent publications is given in Table 2 (a more detailed
discussion can be found in [8]).

As presented in Section 2.2, a linkage algorithm is assumed to have a thresh-
old parameter t (with no possible matches tlower = tupper), which determines
the cut-off between classifying record pairs as matches (with matching weight
R ≥ t) or as non-matches (R < t). Increasing the value of t results in an in-
creased number of TN and FP and in a reduction in the number of TP and FN,
while lowering t reduces the number of TN and FP and increases the number of
TP and FN. Most of the quality measures presented here can be calculated for
different values of such a threshold (often only the quality measure values for an
optimal threshold are reported in empirical studies). Alternatively, quality mea-
sures can be visualised in a graph over a range of threshold values, as illustrated
by the examples in Section 5.

Taking the example from Section 3, assume that for a given threshold a
linkage algorithm has classified |M̃ | = 900, 000 record pairs as matches and the
rest (|Ũ | = 5 × 1012 − 900, 000) as non-matches. Of these 900, 000 classified
matches 650, 000 were true matches (TP), and 250, 000 were false matches (FP).
The number of false non-matched record pairs (FN) was 50, 000, and the number
of true non-matched record pairs (TN) was 5×1012−950, 000. When looking at
the entity space, the number of non-matched entities is 4, 600, 000− 250, 000 =
4, 350, 000. Table 3 shows the resulting quality measures for this example in
both the comparison and the entity spaces, and as discussed, any measure that
includes the number of TN depends upon whether entities or record pairs are
counted. As can be seen, the results for accuracy and the false positive rate



Table 3. Quality results for the simple example

Measure Entity space Comparison space

Accuracy 94.340% 99.999994%
Precision 72.222% 72.222000%
Recall 92.857% 92.857000%
F-measure 81.250% 81.250000%
False positive rate 5.435% 0.000005%

all show misleading results when based on record pairs (i.e. measured in the
comparison space). This issue will be illustrated further in Sections 5 and 6.

The authors of [4] discuss the topic of evaluating deduplication and data
linkage systems. They advocate the use of precision-recall graphs over the use of
single value measures like accuracy or maximum F-measure, on the grounds that
such single value measures assume that an optimal threshold has been found. A
single value can also hide the fact that one classifier might perform better for
lower threshold values, while another better for higher thresholds.

5 Experimental Examples

In this section the previously discussed issues on quality measures are illustrated
using a real-world administrative health data set, the New South Wales Midwives

Data Collection (MDC) [31]. 175, 211 records from the years 1999 and 2000 were
extracted, containing names, addresses and dates of birth of mothers giving
birth in these two years. This data set has previously been deduplicated (and
manually clerically reviewed) using the commercial probabilistic data linkage
system AutoMatch [25]. According to this deduplication, the data set contains
166, 555 unique mothers, with 158, 081 having one, 8, 295 having two, 176 having
three, and 3 having four records (births). The AutoMatch deduplication decision
was used as the true match (or deduplication) status for this example

A deduplication was then performed using the Febrl (Freely extensible biomed-
ical record linkage) [7] data linkage system. Fourteen attributes in the MDC were
compared using various comparison functions (like exact and approximate string
comparisons), and the resulting comparison values were summed into a match-
ing weight (as discussed in Section 2.2) ranging from −43 (disagreement on all
fourteen comparisons) to 115 (agreement on all comparisons). As can be seen
in the density plot in Figure 3, almost all true matches (record pairs classified
as true duplicates) have positive matching weights, while the majority of non-
matches have negative weights. There are, however, non-matches with rather
large positive matching weights, which is due to the differences in calculating
the weights between AutoMatch and Febrl.

The full comparison space for this data set with 175, 211 records would re-
sult in 175, 211× 175, 210/2 = 15, 349, 359, 655 record pairs, which is infeasible
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to process even with today’s powerful computers. Standard blocking was used
to reduce the number of comparisons, resulting in 759, 773 record pairs (this
corresponds to only around 0.005% of all record pairs in the full comparison
space). The total number of truly classified matches (duplicates) was 8, 841 (for
all the duplicates as described above), with 8, 808 of the 759, 773 record pairs
in the blocked comparison space corresponding to true duplicates (thus, 33 true
matches were removed by blocking).

The quality measures discussed in Section 4 applied to this real-world dedu-
plication procedure are shown in Figure 4 for a varying threshold −43 ≤ t ≤ 115.
The aim of this figure is to illustrate how the different measures look for a dedu-
plication example taken from the real world. The measurements were done in
the blocked comparisons space as described above. The full comparison space
(15, 349, 359, 655 record pairs) was simulated by assuming that blocking removed
mainly record pairs with negative comparison weights (normally distributed be-
tween -43 and -10). As discussed previously, this resulted in different numbers
of TN between the blocked and the (simulated) full comparison spaces. As can
be seen, the precision-recall graph is not affected by the blocking process, and
the F-measure differs only slightly. The two other measures, however, resulted
in graphs of different shape.
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Fig. 4. Quality measurements of a real-world administrative health data set

6 Recommendations

Based on the above discussions, several recommendations for measuring dedu-
plication and data linkage quality can be given. Their aim is to provide both
researchers and practitioners with guidelines on how to perform empirical stud-
ies on different algorithms, or production deduplication or linkage projects, as
well as on how to properly assess and describe the outcome of such linkages.

Record Pair Classification Due to the problem of the number of true nega-
tives in any comparison, quality measures which use that number (for example
accuracy or the false positive rate) should not be used. The variation in the
quality of a technique against particular types of data means that results should
be reported for particular data sets. Also, given that the nature of some data
sets may not be known in advance, the average quality across all data sets used
in a certain study should be reported. When comparing techniques, precision-
recall or F-measure graphs provide an additional dimension to the results. For
example, if a small number of highly accurate links is required, the technique
with higher precision for low recall would be chosen [4].



Blocking The aim of blocking is to cheaply remove obvious non-matches be-
fore the more detailed, expensive record pair comparisons are made. Working
perfectly, blocking would only remove record pairs that are true non-matches,
thus affecting the number of true negatives, and possibly the number of false
positives. To the extent that, in reality, blocking also removes record pairs from
the set of true matches, it will also affect the number of true positives and false
negatives. Blocking can thus be seen to be a confounding factor in quality mea-
surement – the types of blocking procedures and the parameters chosen will
potentially affect the results obtained for a given linkage procedure. If compu-
tationally feasible, for example in an empirical study using small data sets, it is
strongly recommended that all quality measurement results be obtained without
the use of blocking. It is recognised that it may not be possible to do this with
larger data sets. A compromise would be to publish the blocking approach and
resulting number of removed pairs of records, and to make the blocked data set
available for analysis and comparison by other researchers. At the very least,
the blocking procedure and parameters should be specified in a form that can
enable other researchers to repeat it.1

7 Conclusions

Deduplication and data linkage are important tasks in the pre-processing step of
many data mining projects, and also important for improving data quality before
data is loaded into data warehouses. An overview of data linkage techniques has
been presented, and the issues involved in measuring the quality of deduplication
and data linkage algorithms have been discussed. It is recommended that data
linkage quality be measured using the precision-recall or F-measure graphs rather
than single numerical values, and measures that include the number of true
negative matches should not be used due to their large number in the space of
record pair comparisons. When publishing empirical studies, researchers should
aim to use non-blocked data sets if possible, or otherwise at least detail the
blocking approach taken, and report on the number of record pairs being removed
by the blocking process.
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