
Automated Probabilistic Address

Standardisation and Verification

http://datamining.anu.edu.au/linkage.html

Peter Christen? and Daniel Belacic

Department of Computer Science,
Australian National University,
Canberra ACT 0200, Australia,

{peter.christen,daniel.belacic}@anu.edu.au

Abstract. Addresses are a key part of many records containing infor-
mation about people and organisations, and it is therefore important
that accurate address information is available before such data is mined
or stored in data warehouses. Unfortunately, addresses are often cap-
tured in non-standard and free-text formats, usually with some degree
of spelling and typographical errors. Additionally, addresses change over
time, for example when people move, when streets are renamed, or when
new suburbs are built. Cleaning and standardising addresses, as well as
verifying if they really exist, are therefore important steps in data min-
ing pre-processing. In this paper we present an automated probabilistic
approach based on a hidden Markov model (HMM), which uses national
address guidelines and a comprehensive national address database to
clean, standardise and verify raw input addresses. Initial experiments
show that our system can correctly standardise even complex and un-
usual addresses.

Keywords: Data mining pre-processing, address cleaning and standard-
isation, hidden Markov model, G-NAF, postal address guidelines.

1 Introduction

Most real world data collections contain noisy, incomplete, incorrectly formatted,
or even out-of-date data. Cleaning and standardising such data are therefore
important first steps in data pre-processing, and before such data can be stored
in data warehouses or used for further data analysis or mining [11, 16]. In most
settings it is desirable to be able to detect and remove duplicate records from
a data set, in order to reduce costs for business mailings or to improve the
accuracy of a data analysis task. The cleaning and standardisation of personal
information (like addresses and names) is especially important for data linkage
and integration, to make sure that no misleading or redundant information is
introduced. Data linkage (also called record linkage) [10] is important in many

? Corresponding author



application areas, such as compilation of longitudinal epidemiological studies,
census related statistics [19], or fraud and crime detection systems.

The main tasks of data cleaning [16] are the conversion of the raw input
data into well defined, consistent forms, and the resolution of inconsistencies in
the way information is represented or encoded. Personal information is often
captured and stored with typographical and phonetical variations, parts can be
missing or recorded in different (possibly obsolete) formats, or be out-of-order.
Addresses and names can change over time, and are often reported differently
by the same person depending upon the organisation they are in contact with.
Moreover, while for many regular words there is only one correct spelling, there
are often different written forms for proper names (which are commonly used as
street, locality or institution names), for example ‘Dickson’ and ‘Dixon’. For ad-
dresses to be useful and valuable, they need to be cleaned and standardised into
a well defined format. For example, various abbreviations should be converted
into standardised forms, nicknames should be expanded into their full names,
and postcodes should be validated using official postcode lists.

In this paper we report on a project that aims to develop techniques for
fully automated cleaning, standardisation, as well as verification, of raw input
addresses. In Section 2 we introduce the task of address cleaning and standard-
isation in more detail and present other work that has been done in this area.
While traditional approaches have been based on either rules that need to be
customised by the user according to her or his data, or manually prepared train-
ing data, our system is based on a mainly unsupervised approach. The main
contribution of our work is the automated training of a probabilistic address
standardisation system using national address guidelines and a comprehensive
national address database. We present our approach in Section 3, and discuss the
methods used to automatically train our system in Section 4. First experimental
results are then presented and discussed in Section 5, and an outlook to future
work is given in Section 6.

2 Address Cleaning and Standardisation

The aim of the cleaning and standardisation process is to transform the raw in-
put address records into a well defined and consistent form, as shown in Figure 1.
Addresses can be separated into three components, corresponding to the address

site (containing flat and street number details), street (containing street name
and type), and locality (with locality, state and postcode information). As can
be seen from Figure 1, these components are further split into several output
fields, each containing a basic piece of information. The standardisation pro-
cess also replaces different spellings and abbreviations with standard versions.
Look-up tables of such standard spellings are often published by national postal
services, together with guidelines of how addresses should be written properly on
letters or parcels. This information can be used to build an automated address
standardiser, as presented in more details in Sections 3 and 4.



42 main road canberra act 2600

App. 3a/42 Main Rd Canberra A.C.T. 2600

a3apartment

fla
t_typ

e

fla
t_number

fla
t_number_su

ffix

number_firs
t

str
eet_name

str
eet_typ

e

loca
lity

_name

sta
te_abbrev

postc
ode

Fig. 1. Example address standardisation. The left four output fields relate to the ad-

dress site level, the middle two to street level, and the right three fields to locality

level

The terms data cleaning (or data cleansing), data standardisation, data
scrubbing, data pre-processing, and ETL (extraction, transformation and load-
ing) are used synonymously to refer to the general tasks of transforming source
data into clean and consistent sets of records suitable for loading into a data
warehouse, or for linking with other data sets. A number of commercial software
products are available which address this task. A complete review is beyond the
scope of this paper (an overview can be found in [16]). Address (and name)
standardisation is also closely related to the more general problem of extracting
structured data, such as bibliographic references or name entities, from unstruc-
tured or variably structured texts, such as scientific papers or Web pages.

The most common approach for address standardisation is the manual spec-
ification of parsing and transformation rules. A well-known example of this
approach in biomedical research is AutoStan [12], the companion product to
the widely-used AutoMatch probabilistic record linkage software. AutoStan first
parses the input string into individual words, and using a re-entrant regular
expression parser each word is then mapped to a token of a particular class (de-
termined by the presence of that word in user-supplied look-up tables, or by the
type of characters found in the word). This approach requires both an initial and
ongoing investment in rule programming by skilled staff. More recent rule-based
approaches, which aim at automatically induce rules for information extraction
from unstructured text, include Rapier [5], which is based on inductive logic
programming; Whisk [18], which can handle both free and highly structured
text; and Nodose [1], which is an interactive graphical tool for determining the
structure of text documents and for extracting their data.

An alternative to these rule-based, deterministic approaches are probabilis-
tic methods. Statistical models, especially hidden Markov models (HMMs), have
widely been used in the areas of speech recognition and natural language process-
ing to help solve problems such as word-sense disambiguation and part-of-speech
tagging [15]. More recently, HMMs and related models have been applied to the
problem of extracting structured information from unstructured text. An ap-
proach using HMMs to find names and other non-recursive entities in free text
is described in [3], where word features are used similar to the ones implemented



in our system, and experimental results of high accuracy are presented using
both English and Spanish test data. HMMs are also used for information extrac-
tion by [9], which addresses the problem of lack of training data by applying the
statistical techniques of shrinkage to improve HMM parameter estimations (dif-
ferent hierarchies of expected similarities are built from a model). The issue of
learning the structure of HMMs for information extraction is discussed in [17],
where both labelled and un-labelled data is used, and good accuracy results
are presented. A supervised approach for segmenting text (including US and
Indian addresses) is presented by [4]. Their system Datamold uses hierarchical
features and nested HMMs, and does allow the integration of external hierarchi-
cal databases for improved segmentation. Their results indicate that Datamold

consistently performs better than the rule-base system Rapier. An automatic
system that only uses external databases is presented in [2]. The authors de-
scribe attribute recognition models (ARMs), based on HMMs, which capture the
characteristics of the values stored in large reference tables. The topology for
an ARM consists of the three states Beginning, Middle, and Trailing. Feature
hierarchies are then used to learn the HMM topology as well as transition and
emission probabilities. Results presented on various data sets show an up to 50%
reduction in segmentation errors compared to Datamold.

Earlier work [8] by one of the authors of this paper describes a supervised
name and address standardisation approach that uses a lexicon-based tokeni-
sation in combination with HMMs, work that was strongly influenced by [4].
Instead of directly using the elements of the input records for HMM segmenta-
tion, a tagging step allocates one or more tags (based on user definable look-up
tables and some hard coded rules) to each input element, and sequences of tags
are then given to a previously trained (using manually prepared tag sequences)
HMM. Results on real world administrative health data showed better accuracy
than the rule-based system AutoStan for addresses [8]. Training of this system
is facilitated by a boot-strapping approach, allowing a reasonable amount of
training data to be manually created within a couple of hours.

In this paper we present work which is mainly based on [2] and [8]. The main
contribution of our work is the combination of techniques used in these two
approaches, with specific application (but not limited) to Australian postal ad-
dresses. We use national address guidelines and a large national address database
to automatically train a HMM, without the need of any manual preparation of
training data. Our system is part of a free, open source data linkage system
known as Febrl (Freely extensible biomedical record linkage) [6], which is writ-
ten in the free, open source object-oriented programming language Python.

3 Probabilistic Address Standardisation

Our method is based on a probabilistic HMM which is automatically trained
using information taken from national address guidelines (which are available in
many countries) as well as a comprehensive national address database. The de-
tailed approach on how this HMM is trained using these two sources is discussed



in Section 4. Here we present the actual steps involved in the standardisation of
raw input addresses, assuming such a trained HMM is available.

We assume that the raw input address records are stored as text files or
database tables, and are made of one or more text strings. The task is then to
allocate the words and numbers from the raw input into the appropriate output
fields, to clean and standardise the values in these output fields, and to verify
if an address (or parts of it) really exist (i.e. is available in the national address
database). Our approach is based on the following four steps, which will be
discussed in more detail in the four sections given below.

1. The raw input addresses are cleaned.
2. They are each split into a list of words, numbers and characters, which are

then tagged using features and look-up tables that were generated using the
national address database.

3. These tagged lists are then segmented into output fields using a probabilistic
HMM.

4. Finally, the segmented addresses are verified using the national address
database.

3.1 Cleaning

The cleaning step involves converting all letters into lower case, followed by vari-
ous general corrections of sub-strings using correction lists. These lists are stored
in text files that can be modified by the user. For example, variations of nursing

home, such as ‘n-home’ or ‘n/home’ are all replaced with the string ‘nursing

home’. Various kinds of brackets and quoting characters are replaced with a ver-
tical bar ‘|’, which facilitates tagging and segmenting in the subsequent steps.
Correction lists also allow the definition of strings that are to be removed from
the input, for example ‘n/a’ or ‘locked’. The output of this first step is a
cleaned address string ready to be tagged in the next step.

3.2 Tagging

After an address string has been cleaned, it is split at white-space boundaries
into a list of words, numbers, punctuation marks and other possible characters.
Each of the list elements is assigned one or more tags. These tags are based
on look-up tables generated using the values in a national address database, as
well as more general features. For example, a list element ‘road’ is assigned the
tag ‘ST’ (for street type, as ‘road’ was found in the street type attribute in
the database), as well as the tag ‘L4’ (as it is a value of length four characters
containing only letters). The tagging does not depend upon the position of a
value in the list. The number ‘2371’, for example, will be tagged with ‘PC’ (as
it is a known postcode) and ‘N4’ (as it is also a four digit number), even if it
appears at the beginning of an address (where it likely corresponds to a street
number). The segmentation step (described below) then assigns this element to
the appropriate output field.



Table 1. Example values from the national address database for features used for stan-
dardisation. Empty table entries indicate no such values are available in the database

Length Numbers Letters Alpha-numeric Others

1 3 a .
2 42 se b1 .,
3 127 lot 33a 1/7
4 1642 road 672a 3/1a
5 13576 place lot12 1/23b
6 to 8 2230229 street rmb1622 lot 1760
9 to 11 jindabyne coleville2 anderson’s
12 to 15 dondingalong bundanoon305 house no: 2/41
16 or more stonequarrycreek armidale-kempsey

Look-up tags specify to the HMM in which attribute(s) of the national ad-
dress database a list element appears. If it appears in several attributes, more
than one look-up tag will be assigned to it. However, if a list element in an input
address contains a typographical error, or does otherwise not exactly correspond
to any look-up table value, no tag would be assigned to it. Therefore, the features
are a more general way of representing the content of the different attributes in
the national address database. Features characterise the lengths of an attribute
value, as well as its content (if it is made of letters only, numbers only, if it is
alpha-numeric, or if it also contains other characters). For example, an attribute
value that only contains letters and has a length between 12 and 15 (feature tag
‘L12 15’) is in 73% a locality name, in 26% a street name, and in 1% a building
name, as this is the distribution of values with letters only and a length between
12 and 15 in the national address database. A feature tag ‘N6 8’, as another
example, corresponds to a number value with length between 6 and 8 digits.
Table 1 gives example attribute values from the national address database.

In the tagging step, the look-up tables are searched using a greedy matching
algorithm, which searches for the longest tuple of list elements that match an en-
try in the look-up tables. For example, the tuple (‘macquarie’,‘fields’) will
be matched with an entry in a look-up table with the locality name ‘macquarie
fields’, rather than with the single-word entry ‘macquarie’ from the same
look-up table.

The output of the tagging step is a list of words, numbers and separators,
and a corresponding list of look-up and feature tags (as shown in the example
given below). As more than one tag can be assigned to a list element (as in the
street type example above), different combinations of tag sequences are possible,
and the questions are which tag sequence is the most likely one, and how should
the list elements be assigned to the appropriate output fields. This problem is
solved using a probabilistic HMM in the segmentation step as discussed next.



3.3 Segmenting

Having a list of elements (words, numbers and separators) and one or more
corresponding tag lists, the task is to assign these elements to the correct out-
put fields. Traditional approaches have used rules (such as ”if an element has

a tag ‘ST’ then the corresponding word is assigned to the ‘street type’ out-

put field.”). Instead, we use a HMM [15], which has the advantages of being
robust with respect to previously unseen input sequences, and that it can be
automatically trained, as will be detailed in Section 4.

Hidden Markov models [15] (HMMs) were developed in the 1960s and 1970s
and are widely used in speech and natural language processing. They are a
powerful machine learning technique, able to handle new forms of data in a
robust fashion. They are computationally efficient to develop and evaluate. Only
recently have HMMs been used for address standardisation [4, 8, 17].

A HMM is a probabilistic finite state machine made of a set of states, tran-
sition edges between these states and a finite dictionary of discrete observation
(output) symbols. Each edge is associated with a transition probability, and each
state emits observation symbols from the dictionary with a certain probability
distribution. Two special states are the ‘Start’ and ‘End’ state. Beginning from
the ‘Start’ state, a HMM generates a sequence of length k of observation sym-
bols O = o1, o2, . . . , ok by making k − 1 transitions from one state to another
until the ‘End’ state is reached. Observation symbol oi, 1 ≤ i ≤ k is generated in
state i based on this state’s probability distribution of the observation symbols.
The same output sequence can be generated by many different paths through a
HMM with different probabilities. Given an observation sequence, one is often
interested in the most likely path through a given HMM that generated this se-
quence. This path can effectively be calculated for a given observation sequence
using the Viterbi [15] algorithm, which is a dynamic programming approach.
Figure 3 shows a HMM generated by our system for address standardisation.

Instead of using the original words, numbers and other elements from the ad-
dress records directly, the tag sequences (as discussed in Section 3.2) are used as
HMM observation symbols in order to make the derived HMM more general and
more robust. Using tags also limits the size of the observation dictionary. Once
a HMM is trained, sequences of tags (one tag per input element) as generated in
the tagging step can be given as input to the Viterbi algorithm, which returns
the most likely path (i.e. state sequence) of the given tag sequence through the
HMM, plus the corresponding probability. The path with the highest probability
is then taken and the corresponding state sequence will be used to assign the
elements of the input list to the appropriate output fields.

Example: Let’s assume we have the following (randomly created) input address
‘42 meyer Rd COOMA 2371’, which is cleaned and tagged (using both look-up
and feature tags) into the following word list and tag sequence:

[‘42’, ‘meyer’, ‘road’, ‘cooma’, ‘2371’ ]

[‘N2’, ‘SN/L5’, ‘ST/L4’, ‘LN/SN/L5’, ‘PC/N4’ ]



with look-up tags ‘SN’ for street name, ‘ST’ for street type, ‘LN’ for locality
name, and ‘PC’ for postcode; and feature tags for numbers (‘N2’ and ‘N4’) and
letter values (‘L4’ and ‘L5’). The number of combinations of the tag sequences
is 1 × 2 × 2 × 3 × 2 = 24, for example [‘N2’, ‘SN’, ‘ST’, ‘LN’, ‘PC’] or
[‘N2’, ‘L5’, ‘ST’, ‘SN’, ‘N4’]. These 24 tag sequences are given to the
Viterbi algorithm, and using the HMM from Figure 3, the tag sequence with
the highest probability that is returned is [‘N2’, ‘SN’, ‘ST’, ‘LN’, ‘PC’].
It corresponds to the following path through the HMM (with the corresponding
observation symbols – the output fields – in brackets).

Start → number first (N2) → street name (SN) → street type (ST)

→ locality name (LN) → postcode (PC) → End

The values of the input address will be assigned to the output fields as follows.

number first: ‘42’

street name: ‘meyer’

street type: ‘road’

locality name: ‘cooma’

postcode: ‘2371’

3.4 Verification

Once segmented an input address can be easily compared to the existing ad-
dresses in the national address database. Different techniques can be used for this
task, for example inverted indices as described in [7], which allow approximate
matching (for example if parts of an address are missing or wrong). Alternatively,
hash encodings (like MD5 or SHA) can be used to create a unique signature for
each address in the national database, allowing to efficiently compare a hash
encoded input address with the full database. Similarly, hash encodings of the
locality and street (and their combinations) allow the verification of only these
parts of an address. This component of our system is currently under develop-
ment, and more details will be published elsewhere.

4 Automated Hidden Markov Model Training

The automated HMM training approach is based on national address guidelines
and a large national address database, and only needs minimal initial manual
efforts. Guidelines for correctly addressing letters and parcels are increasingly
becoming important as mail is being processed (sorted and distributed) auto-
matically. Many national postal services therefore publish such guidelines1. Our
system uses these guidelines to build the initial HMM structure, as shown in
Figure 2. This is currently done manually, but in the future it is likely that elec-
tronic versions of such guidelines (for example as XML schemes) will become
available, making the initial manual building of the HMM structure automated

1 See for example: http://www.auspost.com.au/correctaddress



Start (hidden)

building_name

number_first

lot_number_prefix

postal_type

flat_type

flat_number

level_type

level_number

number_last

street_name

street_type

street_suffix

locality_name

state_abbrev

End (hidden)

postcode

lot_number

Fig. 2. Initial HMM topology manually constructed from postal address guidelines to
support the automated HMM training

as well. The structure is built with the national address database in mind, i.e.
the HMM states correspond to the database attributes, and aims to facilitate
the automated training process which uses the clean and segmented records in
such an address database.

A comprehensive, parcel based national address database has recently be-
come available in Australia: G-NAF (the Geocoded National Address File) [13].
Developed mainly for geocoding applications in mind, approximately 32 million
address records from several organisations were used in a five-phase cleaning and
integration process, resulting in a database consisting of 22 normalised tables.
G-NAF is based on a hierarchical model, which stores information about address
sites (properties) separately from streets and locations [14]. For our purpose, we
extracted 26 address attributes (or output fields) as listed in Table 2. The aim of
the standardisation process is to assign each element of a raw user input address
to one of these 26 output fields, as shown in the example in Figure 1. Only the
G-NAF records covering the Australian state of New South Wales (NSW) were
available to us, in total 4, 585, 707 addresses. There are two main steps in the
set-up and training phase of our address standardisation system as follows.



Table 2. G-NAF address attributes (or fields) used in the standardisation process

G-NAF fields

Address site flat number prefix, flat number, flat number suffix, flat type,
level number prefix, level number, level number suffix,
level type, building name, location description, private road,
number first prefix, number first, number first suffix,
number last prefix, number last, number last suffix,
lot number prefix, lot number, lot number suffix

Street street name, street type, street suffix

Locality locality name, state abbrev, postcode

4.1 Generation of Look-up Tables

The look-up tables are generated by extracting all the discrete (string) values
for locality name, street name and building name into tables and then com-
bining those tables with manually generated tables containing typographical
variations (like common misspellings of suburb names), as well as the complete
listing of postcodes and locality names from the national postal services. Other
look-up tables are generated using the official G-NAF data dictionary tables
(for fields such as street type, street suffix, flat type, or level type).
The resulting look-up tables are then cleaned using the same approach as de-
scribed in Section 3.1, and used in the tagging step to assign look-up tags to
address elements.

4.2 HMM Training

The required input data for the training are (1) the initial HMM structure as
built using the postal address guidelines and as shown in Figure 2, and (2) the
G-NAF database containing cleaned and segmented address records. The dis-
tribution of both transition and observation probabilities are learned based on
frequency counts of the occurrences of attribute values in the G-NAF database.
Each G-NAF record is an example path and observation sequence. Due to minor
deficiencies in the data contained in G-NAF, such as the lack of postal addresses,
postcodes, or the character slash ‘/’ (which is often used to separate flat from
street numbers), manually added tweaks must be automatically applied where
appropriate to the model during training to account for the lack of observations
and transitions, and to account for unusual but legitimate address types, such
as corner addresses. A HMM trained using G-NAF is shown in Figure 3. Be-
cause training data often does not cover all possible combinations of transitions
and observations, during application of a HMM unseen and unknown data is
encountered. To be able to deal with such cases, smoothing techniques [4] (such
as Laplace or absolute discount smoothing) need to be applied, which enable un-
seen data to be handled more efficiently. These techniques basically assign small
probabilities to all unseen transitions and observations symbols in all states.



Start (hidden)

building_name

0.059

flat_type

0.007

flat_number

0.112

level_type

0.0002

number_first

0.701

number_last

0.0001

street_name

0.04

locality_name

0.0001

postal_type

0.029

postal_number

0.0510.48

0.004

0.053

0.0002

0.434

0.0001

0.027

1.0

0.005

slash (hidden)

0.095

0.005

level_number

0.0005

0.994

0.0005

0.236

0.764

1.0

0.091

0.053

0.846

0.01

0.979

0.021

0.128

street_type

0.563

street_suffix

0.001

0.3080.006

0.997

0.24

0.24

0.5

state_abbrev

0.02 0.123

0.377

postcode

0.05

End (hidden)

0.450.5

0.5

0.2

0.8

0.3

0.7

0.7

0.3

Fig. 3. HMM (simplified) after automated training using the G-NAF national address
database (but before smoothing is applied)

5 Experimental Results and Discussion

Special care must be taken when evaluating HMM based systems. If the records
used to train a HMM are from the same or similar data set as the records used to
evaluate the performance of the same HMM, the model may become over-fitted
to the training data and may not accurately reflect the real performance of the
HMM. To test the accuracy of our probabilistic standardisation approach raw
addresses from three data sets were used. The first contained 500 records with
addresses taken from a midwives data collection, the second 600 nursing home
addresses, and the third a 150 record sample of unusual and difficult addresses
from a large administrative health data set. There are three major variations
possible in our system for standardising addresses:

1. Features and look-up tables (F&LT)
During the tagging step of standardisation, each element in the address is
assigned one or more tags depending if it can be found in one or more look-



up tables. Once all tables have been checked, the element will also be given
a feature tag as described in Section 3.2. However, elements of one character
length are only given a feature tag and look-up tables are not searched.

2. Look-up tables only (LT)
This is similar to the supervised system [8] as previously implemented in
Febrl [6]. An address element is given one or more look-up tags, depending
if it can be found in the look-up tables. If it is not assigned any tags, it is
given a feature tag. Again, elements of one character length are only given
feature tags.

3. Features only (F)
Single address elements are only given feature tags and look-up tables are
not used. Any sequence the greedy matching algorithm finds of length two
or more elements is assigned a tag from the look-up tables as normal. Unlike
the other two options, elements were not placed into their canonical form,
since there is no look-up table used to check for original forms.

While HMM’s were trained using all three options of smoothing (no smoothing,
absolute discount, and Laplace), no smoothing was not tested as it is deemed to
be highly inflexible and unable to cope with unseen input data. Laplace smooth-
ing was tested, but not analysed extensively as initial tests showed a quite poor
performance. All results, unless specified, are therefore assumed to be from a
HMM with absolute discount smoothing applied. Comparison test were also per-
formed using the supervised Febrl address standardiser [6, 8].

Records were judged to be accurately standardised if all elements of an input
address string were placed into the correct output fields. It was not appropriate
to check for correct canonical correction, since feature based tagging will not
transform any words. Addresses not fully correct were judged on an individual
basis for level of correctness, either ‘close’ or ‘not close’, depending upon the
criticality of the error. For example, numbers being classified as number last

instead of number first were considered ‘close’, whereas street types being
judged localities are considered ‘not close’. A second measure of accuracy, called
‘could be accuracy’, was used to show the level of accuracy of the HMM when
including ‘close’ (but incorrectly standardised) records as correct.

In many data sets the majority of input addresses are of fairly simple struc-
ture. We therefore counted the frequency of the following three sequences and
included their numbers (labelled as ‘Easy addresses’ ) in the results Table 3.

(number first,number last,street name,street type,locality name,postcode)

(number first,street name,street type,locality name,postcode)

(street name,street type,locality name,postcode)

As expected, the data set with unusual addresses contained much less easy ad-
dresses, while for the other two data sets around 90% were easy addresses.

Performance was averaged over 10 runs of the system for each category of
execution. All standardisation runs were performed on a moderately loaded Intel
Pentium M Centrino 2.0 GHz with 512 MBytes of RAM.



Table 3. Experimental accuracy and standardisation timing results on three test data
sets using absolute discount HMM smoothing. See text for discussion what easy ad-

dresses are

Midwives Nursing homes Unusual

Total number of addresses 500 600 150

Easy addresses (F&LT) 446 542 31
Easy addresses (LT) 438 538 27
Easy addresses (F) 445 542 31
Easy addresses Febrl 410 529 22

Accuracy (F&LT) 97.40% 96.67% 92.67%
Accuracy (LT) 95.40% 98.50% 72.67%
Accuracy (F) 96.60% 92.67% 79.33%
Accuracy Febrl 96.80% 96.00% 96.00%

‘Could be’ accuracy (F&LT) 98.00% 97.80% 94.67%
‘Could be’ accuracy (LT) 97.40% 98.50% 80.00%
‘Could be’ accuracy (F) 97.00% 96.50% 80.67%
‘Could be’ accuracy Febrl 97.60% 98.30% 96.00%

Milli-seconds per record (F&LT) 92 445 720
Milli-seconds per record (LT) 11 18 37
Milli-seconds per record (F) 6 7 7
Milli-seconds per record Febrl 7 9 10

5.1 Discussion

As can be seen by the difference between actual accuracy and ‘could be’ accuracy
in Table 3, not only is the accuracy of the new system quite high, especially when
using the (F&LT) variation, but quite a large number of the incorrect records
were only marginally incorrect in non-critical parts of an address. Perhaps half
of the remaining errors were caused by a known deficiency in the greedy tagging
system, which has to do with the value ‘st’ being a known abbreviation both
for ‘Saint’ and ‘Street’. Most remaining errors were examined in depth, but in
general it was impossible even for a human to determine the exact correct output.
Accuracy using our automatically trained system versus a manually trained Febrl

HMM is equal to or better than in all cases tested. Quite surprisingly, accuracy
using the (F) HMM was quite comparable to the (LT) based HMM.

Also, the Febrl address HMM failed on almost all non NSW addresses given,
due to them generally being outside the scope of its look-up tables, thus the
tagging was ineffective. However the (F&LT) and (F) HMM’s both success-
fully standardised most non NSW addresses by using the feature information
where the look-up tables came up blank. This has promising possibilities for
using the HMM to standardise addresses outside the domain of G-NAF without
any retraining necessary. There are also possible applications where licensing or
other reasons are non permissive for distribution of the G-NAF national address
database and corresponding look-up tables generated.



Timing performance using the (F&LT) HMM is relatively poor due to the
large number of possible combinations of tag sequences, however still quite ac-
ceptable, especially since accuracy is generally more highly valued than time
taken, and the fact that addresses can be easily standardised in parallel.

6 Outlook and Future Work

In this paper we have presented an automated approach to address cleaning and
standardisation based on national postal address guidelines and a comprehensive
national address database (G-NAF), and using a probabilistic hidden Markov
model (HMM) which can be trained without manual interaction. Standardising
addresses is not only an important first step before address data can be loaded
into databases or data warehouses, or be used for data mining, but it is also
necessary before address data can be linked or integrated with other data.

There are still various improvements possible to our system. Currently corner
addresses are implicitly supported, but explicitly creating HMM states such as
a second street name and type is a more complete solution. Characters such as
dash, brackets, commas, etc. are currently processed in the cleaning step, but
handling them in the HMM could improve accuracy. Other minor improvements
include training the HMM using corrected G-NAF data, and ways to minimise
the number and size of manual tweaks to the HMM. The look-up tables contain
some common typographical error correction data, drawn from manually created
lists. It should be possible to build far more comprehensive lists automatically by
matching between the G-NAF address data and correctly standardised example
addresses, in order to find typographical variations.

Each distinct tag sequence given to the HMM will always have the same
output states and Viterbi probability. This can be used to advantage by caching

the set of input tags and the resulting probability during execution. Since up
to 90% of addresses in some data sets have the same output fields, it is highly
likely that there will be a considerable number of addresses with the same tag
sequence. These redundant calculations can be eliminated by checking the tag
sequence against a cache of sequences. If found in the cache, directly return the
probability, otherwise the sequence will be run through the HMM and the result-
ing probability and input tags will be added to the cache. Using the (F&LT)
variation, addresses can have dozens of possible tag sequences, thus the caching
of results should give considerable performance improvements.

While developed with and using Australian address data, our approach can
easily be modified to other countries, or even other domains (for examples names,
medical data, etc.) as long as standardisation guidelines and a comprehensive
database with standardised records are available.

Acknowledgements

This work is supported by an Australian Research Council (ARC) Linkage Grant
LP0453463 and partially funded by the NSW Department of Health.



References

1. Adelberg, B: Nodose: a tool for semi-automatically extracting structured and
semistructured data from text documents. In proceedings of ACM SIGMOD In-
ternational Conference on Management of Data, New York, pp. 283–294, 1998.

2. Agichtein, E. and Ganti, V.: Mining reference tables for automatic text segmenta-
tion. In proceedings of the ACM SIGKDD’04, Seattle, pp. 20–29, August 2004.

3. Bikel, D.M., Miller, S., Schwartz, R. and Weischedel, R.: Nymble: a high-
performance learning name-finder. In proceedings of ANLP-97, Haverfordwest,
Wales, UK, Association for Neuro-Linguistic Programming, pp. 194–201, 1997.

4. Borkar, V., Deshmukh, K. and Sarawagi, S.: Automatic segmentation of text into
structured records. In proceedings of the 2001 ACM SIGMOD international con-
ference on Management of data, Santa Barbara, California, 2001.

5. Califf, M.E. and Mooney, R.J.: Relational learning of pattern-match rules for in-
formation extraction. In proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence (AAAI-99), Menlo Park, CA, pp. 328–334, 1999.

6. Christen, P., Churches, T. and Hegland, M.: A Parallel Open Source Data Linkage
System. Proceedings of the 8th PAKDD’04 (Pacific-Asia Conference on Knowledge
Discovery and Data Mining), Sydney. Springer LNAI-3056, pp. 638–647, May 2004.

7. Christen, P., Churches, T. and Willmore, A.: A Probabilistic Geocoding System
based on a National Address File. Proceedings of the 3rd Australasian Data Mining
Conference, Cairns, December 2004.

8. Churches, T., Christen, P., Lim, K. and Zhu, J.X.: Preparation of name and ad-
dress data for record linkage using hidden Markov models. BioMed Central Med-
ical Informatics and Decision Making 2002, 2:9, Dec. 2002. Available online at:
http://www.biomedcentral.com/1472-6947/2/9/

9. Freitag, D. and McCallum, A.: Information extraction using HMMs and shrink-
age. In papers from the AAAI-99 Workshop on Machine Learning for Information
Extraction, Menlo Park, CA, pp. 31–36, 1999.

10. Gill, L: Methods for Automatic Record Matching and Linking and their use in
National Statistics. National Statistics Methodology Series No. 25, London 2001.

11. Han, J. and Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2000.

12. AutoStan and AutoMatch, User’s Manuals. MatchWare Technologies, 1998.
13. Paull, D.L.: A geocoded National Address File for Australia: The G-NAF What,

Why, Who and When? PSMA Australia Limited, Griffith, ACT, Australia, 2003.
Available online at: http://www.g-naf.com.au/

14. Paull, D.L. and Marwick, B.: Understanding G-NAF. Proceedings of SSC’2005
(Spatial Intelligence, Innovation and Praxis), Spatial Sciences Institute, Mel-
bourne, September 2005.

15. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, vol. 77, no. 2, Feb. 1989.

16. Rahm, E. and Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Engineering Bulletin, 2000.

17. Seymore, K., McCallum, A. and Rosenfeld, R.: Learning Hidden Markov Model
Structure for Information Extraction. In proceedings of AAAI-99, workshop on
Machine Learning for Information Extraction, 1999.

18. Soderland, S: Learning information extraction rules for semi-structured and free
text. Machine Learning, vol. 34, no. 1–3, pp. 233–272, February 1999.

19. Winkler, W.E.: The State of Record Linkage and Current Research Problems.
RR99/03, US Bureau of the Census, 1999.


