A Probabilistic Deduplication, Record Linkage and Geocoding System

Peter Christen¹ and Tim Churches²

Data Mining Group, Australian National University

² Centre for Epidemiology and Research, New South Wales Department of Health

Contact: peter.christen@anu.edu.au

Project web page: http://datamining.anu.edu.au/linkage.html

Funded by the ANU, the NSW Department of Health, the Australian Research Council (ARC), and the Australian Partnership for Advanced Computing (APAC)

Outline

- Data cleaning and standardisation
- Record linkage / data integration
- Febrl overview
- Probabilistic data cleaning and standardisation
- Blocking / indexing
- Record pair classification
- Parallelisation in Febrl
- Data set generation
- Geocoding
- Outlook

Data cleaning and standardisation (1)

- Real world data is often dirty
 - Missing values, inconsistencies
 - Typographical and other errors
 - Different coding schemes / formats
 - Out-of-date data
- Names and addresses are especially prone to data entry errors
- Cleaned and standardised data is needed for
 - Loading into databases and data warehouses
 - Data mining and other data analysis studies
 - Record linkage and data integration

Data cleaning and standardisation (2)

- Remove unwanted characters and words
- Expand abbreviations and correct misspellings
- Segment data into well defined output fields

Record linkage / data integration

- The task of linking together records representing the same entity from one or more data sources
- If no unique identifier is available, probabilistic linkage techniques have to be applied
- Applications of record linkage
 - Remove duplicates in a data set (internal linkage)
 - Merge new records into a larger master data set
 - Create customer or patient oriented statistics
 - Compile data for longitudinal studies
 - Geocode data

Data cleaning and standardisation are important first steps for successful record linkage

Record linkage techniques

- Deterministic or exact linkage
 - A unique identifier is needed, which is of high quality (precise, robust, stable over time, highly available)
 - For example Medicare, ABN or Tax file number (are they really unique, stable, trustworthy?)
- Probabilistic linkage (Fellegi & Sunter, 1969)
 - Apply linkage using available (personal) information
 - Examples: names, addresses, dates of birth
- Other techniques (rule-based, fuzzy approach, information retrieval)

Febrl – Freely extensible biomedical record linkage

- An experimental platform for new and improved linkage algorithms
- Modules for data cleaning and standardisation, record linkage, deduplication and geocoding
- Open source https://sourceforge.net/projects/febrl/
- Implemented in Python
 http://www.python.org
 - Easy and rapid prototype software development
 - Object-oriented and cross-platform (Unix, Win, Mac)
 - Can handle large data sets stable and efficiently
 - Many external modules, easy to extend

Probabilistic data cleaning and standardisation

Three step approach

- 1. Cleaning
 - Based on look-up tables and correction lists
 - Remove unwanted characters and words
 - Correct various misspellings and abbreviations
- 2. Tagging
 - Split input into a list of words, numbers and separators
 - Assign one or more tags to each element of this list (using look-up tables and some hard-coded rules)
- 3. Segmenting
 - Use either rules or a hidden Markov model (HMM)
 to assign list elements to output fields

Hidden Markov model (HMM)

- A HMM is a probabilistic finite state machine
 - Made of a set of states and transition probabilities between these states
 - In each state an observation symbol is emitted with a certain probability distribution
 - In our approach, the observation symbols are tags and the states correspond to the output fields

HMM data segmentation

- For an observation sequence we are interested in the most likely path through a given HMM (in our case an observation sequence is a tag list)
- The Viterbi algorithm is used for this task (a dynamic programming approach)
- Smoothing is applied to account for unseen data (assign small probabilities for unseen observation symbols)

Probabilistic data cleaning and standardisation – Example

- Uncleaned input string: 'Doc. peter Paul MILLER'
 Cleaned into string: 'dr peter paul miller'
- Word and tag lists:

```
['dr', 'peter', 'paul', 'miller']
['TI', 'GM/SN', 'GM', 'SN']
```

Two example paths through HMM

Blocking / indexing

- Number of possible links equals the product of the sizes of the two data sets to be linked
- Performance bottleneck in a record linkage system is usually the (expensive) evaluation of similarity measures between record pairs
- Blocking / indexing techniques are used to reduce the large amount of record comparisons
- Febrl contains (currently) three indexing methods
 - Standard blocking
 - Sorted neighbourhood approach
 - Fuzzy blocking using n-grams (e.g. bigrams)

Record pair classification

For each record pair compared a vector containing matching weights is calculated

Example:

```
Record A: ['dr', 'peter', 'paul', 'miller']

Record B: ['mr', 'pete', '', 'miller']

Matching weights: [0.2, 0.8, 0.0, 2.4]
```

- Matching weights are used to classify record pairs as links, non-links, or possible links
- Fellegi & Sunter classifier simply sums all the weights, then uses two thresholds to classify
- Improved classifiers are possible (for example using machine learning techniques)

Parallelisation

- Implemented transparently to the user
- Currently using MPI via Python module PyPar
- Use of super-computing centres is problematic (privacy) → Alternative: In-house office clusters
- Some initial performance results (on Sun SMP)

Data set generation

- Difficult to acquire data for testing and evaluation (as record linkage deals with names and addresses)
- Also, linkage status is often not known (hard to evaluate and test new algorithms)
- Febrl contains a data set generator
 - Uses frequency tables for given- and surname, street name and type, suburb, postcode, age, etc.
 - Uses dictionaries of known misspellings
 - Duplicate records are created via random introduction of modifications (like insert/delete/transpose characters, swap field values, delete values, etc.)

Data set generation – Example

Data set with 4 original and 6 duplicate records

```
REC ID,
                      ADDRESS1,
                                         ADDRESS2,
                                                   SUBURB
 rec-0-org,
                   wylly place,
                                    pine ret vill,
                                                    taree
rec-0-dup-0,
                    wyllyplace,
                                    pine ret vill,
                                                   taree
                                     wylly place,
rec-0-dup-1, pine ret vill,
                                                   taree
                  wylly place,
rec-0-dup-2,
                                   pine ret vill,
                                                   tared
rec-0-dup-3,
                  wylly parade,
                                   pine ret vill,
                                                   taree
 rec-1-org,
                 stuart street,
                                        hartford,
                                                   menton
 rec-2-org, griffiths street,
                                                    kilda
                                          myross,
                                                   kilda
rec-2-dup-0, griffith sstreet,
                                          myross,
                                                    kilda
rec-2-dup-1,
               griffith street,
                                         mycross,
 rec-3-org, ellenborough place, kalkite homestead,
                                                   sydney
```

Each record is given a unique identifier, which allows the evaluation of accuracy and error rates for record linkage

Geocoding

- The process of matching addresses with geographic locations (longitude and latitude)
- Geocoding tasks
 - Preprocess the geocoded reference data (cleaning, standardisation and indexing)
 - Clean and standardise the user addresses
 - (Fuzzy) match of user addresses with the reference data
 - Return location and match status
- Match status: address, street or locality level
- Geocode reference data used: G-NAF

Geocoded national address file

- G-NAF: Available since early 2004 (PSMA, http://www.g-naf.com.au/)
- Source data from 13 organisations (around 32 million source records)
- Processed into 22 normalised database tables

Febri geocoding system

- Only NSW G-NAF data available (around 4 million address, 58,000 street and 5,000 locality records)
- Additional Australia Post and GIS data used (for data imputing and to compute neighbouring regions)

Outlook

- Several research areas
 - Improving probabilistic data standardisation
 - New and improved blocking / indexing methods
 - Apply machine learning techniques for record pair classification
 - Improve performances (scalability and parallelism)
- Project web page

http://datamining.anu.edu.au/linkage.html

Febrl is an ideal experimental platform to develop, implement and evaluate new data standardisation and record linkage algorithms and techniques

