Dynamic Algorithm Selection Using Reinforcement Learning

Warren Armstrong* Peter Christen

Eric McCreath Alistair P Rendell

Department of Computer Science,
College of Engineering and Computer Science,
The Australian National University,

Canberra ACT 0200, Australia
{first name.surname}@anu.edu.au

Abstract

It is often the case that many algorithms exist to solve
a single problem, each possessing different performance
characteristics. The usual approach in this situation is
to manually select the algorithm which has the best aver-
age performance. However, this strategy has drawbacks in
cases where the optimal algorithm changes during an invo-
cation of the program, in response to changes in the pro-
gram’s state and the computational environment. This pa-
per presents a prototype tool that uses reinforcement learn-
ing to guide algorithm selection at runtime, matching the
algorithm used to the current state of the computation. The
tool is applied to a simulation similar to those used in some
computational chemistry problems. It is shown that the low
dimensionality of the problem enables the optimal choice
of algorithm to be determined quickly, and that the learn-
ing system can react rapidly to phase changes in the target
program.

1 Introduction

Recent years have seen much research into adaptive op-
timisation and dynamic compilation [4] [5] [14], crucial to
the fast execution of dynamic languages such as Java. How-
ever, this research is not immediately applicable to the large
body of computational science code written in C, C++ and
Fortran.! Optimisation of such code is a static affair, per-
haps guided by offline profiling. However, this profiling
can only inform optimisations that will generalise to future
executions. Moreover, such optimisations will last for the
whole execution of the program, they can’t be changed on

*Corresponding author.

I'That these languages are common in this domain can be seen by look-
ing at the SPEC floating point benchmarks - the 2006 version contains 17
applications from a variety of scientific disciplines, all written in C, C++
or Fortran. [1]

the fly. As a program moves through phases, dynamic hot-
swapping of optimisations could well be beneficial.

This paper presents initial research into the development
of an execution environment which facilitates the adaptive
optimisation of statically compiled binaries. Such an envi-
ronment would have many different actions available, and
many rules guiding the application of these actions. Deter-
mining these rules based on some arbitrary benchmark is
undesirable since it is costly and leads to non-optimal so-
lutions. Rather the environment should be intelligent: it
should learn how to optimise the program which is currently
running.

There are many decisions to be made when building such
an environment. Should the framework be a virtual ma-
chine, or should it be a system which sits apart from its tar-
get, working on it through binary modification? What kind
of data will it receive, for example, will it use measurements
from hardware performance counters [8]? How will it anal-
yse large volumes of data quickly enough that the results are
relevant - should it use techniques from data stream min-
ing [9]? After the analysis, what sort of optimisations can
be applied? When does the overhead of monitoring and op-
timising outweigh the benefits? Which learning algorithms
should be used?

The focus of this paper is on the final question in an
attempt to show the feasibility of reinforcement learning
techniques within this domain. Results are presented from
a prototype environment, using binary modification to im-
plement a single optimisation technique. This technique
involves switching between algorithms which perform the
same computation in different ways, and hence perform
better at different phases in the execution of a program.
The target program is a computational kernel whose phase-
changing behaviour echoes that found in many computa-
tional science programs.

The rest of this paper is organised as follows. Section
2 describes the computational chemistry based task we use
to illustrate the viability of this system, as well as back-

ground information on binary modification and reinforce-
ment learning, as well as a review of related work. Section
3 describes the design and implementation of our system, at
both a high and low level of abstraction. Experimental re-
sults are presented and discussed in Section 4, while Section
5 details future work.

2 Background

This section provides background for the rest of the pa-
per. It introduces our sample program and the methods used
to optimise it: reinforcement learning and binary modifica-
tion. It also describes our experimental platform, and re-
views related work.

2.1 The Sample Program

The sample program used is a simulation, with character-
istics that match many computational science programs. In
a computational chemistry simulation of an inert gas, like
argon, the force exerted on an individual atom is largely
determined by the neighbouring atoms. The effect of dis-
tant atoms is negligible and hence may be ignored. During
the simulation, events occur which change the distribution
of the particles. The target simulation we use incorporates
both of these aspects. It works with a three-dimensional dis-
tribution of point particles. Execution involves a sequence
of steps, each consisting of two consecutive passes: an anal-
ysis pass and an action pass. The action pass moves all the
particles in the field towards the origin. This step is gov-
erned by a contraction factor ¢, which is used as follows:

d(pi,t + 1) = cd(pi, t)

where d(p;, t) is the Euclidean distance from the origin to
the ith particle p; at time ¢t. When the simulation starts, the
particles are distributed with a uniform density. The action
pass causes them to coalesce into a densely packed cluster.

The analysis pass consists of finding pairs of particles
whose separation is less than a prescribed threshold. More
precisely, the program looks for the set of pairings P, where

P = {(pi,pj)|i # j A distance_between(p;,p;) < d}

with the threshold § being a parameter of the problem.

To carry out the analysis pass, two algorithms have been
implemented. The first is a loop over all pairs of particles,
and therefore scales as O(n?) where n is the number of the
particles in the system. The second algorithm partitions the
domain into a series of disjoint cubic boxes of side length
0, placing each particle in a unique cube, and then checking
all pairs (p;, p;) where both p; and p; are in the same cube,
or adjoining cubes. Under certain conditions this algorithm

scales as O(n), but incurs a large prefactor from distributing
the particles over the cubes.

The performance characteristics of these algorithms dif-
fer, and which one is faster depends not only on the number
of particles, but also on the density of the particle distribu-
tion. For a uniform distribution and on all but the smallest
problem sizes, the complex algorithm performs better, be-
cause the prefactor is outweighed by the reduction in the
number of checks performed. For certain values of the
threshold and compactness of the distribution, however, ev-
ery particle falls within the same few cubes, so every par-
ticle needs to be checked and the prefactor associated with
sorting particles into cubes is not compensated for. Under
these conditions, the simple algorithm is fastest.

In the simulation used here it would be expected that
the fastest algorithm would change from the cube based
approach to the simple algorithm as the particles contract
towards the origin. The exact location of that transition is
dependent on the problem case, the simulation software and
the actual hardware being used to run the simulation.

2.2 Reinforcement Learning

The optimiser makes use of reinforcement learning to
guide its actions. Here we provide a brief overview of rel-
evant concepts from this field. Further details can be found
in, for example, [15].

Reinforcement learning involves an agent perceiving and
acting within an environment. Sensors supply the agent
with perceptions of the environment. The agent takes ac-
tions, which affect the state of the environment. The agent
also receives rewards, which are a measure of how the agent
is succeeding at its task. The agent’s goal is to take actions
such that it will maximise the reward it receives. A policy
is used by the agent for determining actions in a particu-
lar situation, effectively it is a mapping from situations onto
actions.

A defining feature of reinforcement learning is that it is
not given explicit training examples like supervised learn-
ing, rather, it will explore different actions to search the
space of possible policies. Rewards are scaler values that
are relative to each other, hence in general, the agent will
not know that an action is ’correct’ or optimal’, as would
be expected in supervised learning. Moreover, the rewards
may be delayed in which case success must be attributed to
previous actions.

It is necessary for the agent to experiment, to explore the
range of possible actions. An agent which does not explore
runs a high risk of being stuck with a suboptimal policy.
However, an agent which explores too much will not get
the full benefit if it does happen across an optimal (or near
optimal) policy. Thus, the agent must balance exploration
with exploitation.

Our problem fits nicely within the reinforcement learn-
ing framework. The actions are choices of the best algo-
rithm to use next, rewards are the negation of the execution
time, and the environment is a conglomeration of architec-
ture, program and input.

2.3 Dynamic Binary Modification

The system presented depends on the ability to modify a
running binary, both to insert sensors and to apply optimi-
sations. Dynlnst [6] is a suite of tools which provides this
ability. Only a subset of its facilities are used, as detailed
below.

The first ability harnessed is a mechanism for inserting
code into a running binary. Dynlnst does this by means of
trampolines. At the insertion point, «, the old instruction,
L, is overwritten by a jump to a handler function. This func-
tion invokes the user-designated code, executes ¢, and then
jumps back to the address oo+ 1. DynlInst can only do this at
certain points, and not at arbitrary addresses. This facility
is used to insert “sensors” into the program.

The second use made of Dynlnst is to change the tar-
get of a function call. In other words, it is possible to find
an instruction sequence call foo, and modify it to be
call bar. This has some limitations, obviously: Both
foo and bar must share both signatures and calling con-
ventions. Furthermore, any assumptions the compiler has
made about the interaction between calling and called func-
tions must hold for both foo and bar. For example, if the
compiler assumes that foo does not modify data in some
register, and makes use of that assumption, bar must also
leave that register alone (or at least, appear to do so, when
viewed from the calling function).

2.4 Experimental Platform

All experiments were conducted on a 2.8 GHz Pentium
4, with a 1024 KB cache and 512 MB of RAM. The op-
erating system was a vanilla Linux kernel, version 2.6.17
with SMP enabled, running in single user mode. Binary
modification was carried out using Dynlnst 5.0 [2]. The tar-
get program was compiled by the GNU C++ compiler g++,
version 3.4.6.

The flags used were: -02 -march=prescott -
mfpmath=sse -fno-optimize-sibling-calls. The first
three flags were chosen in order to optimize the emitted
code. The first flag, -O2, turns on a variety of standard
optimisations. This is the second highest optimisation level
in g++. Using the highest level (-O3) produced a very slight
slowdown. The option -march=prescott is used to indicate
that emitted code may use instructions not available on
earlier x86 chips: it frees the instruction selector from the
constraints of backwards compatibility. The -mfpmath=sse

flag is used to enable Streaming SIMD Extensions (SSE),
additions to the instruction set which are used to speed up
floating point calculations.

The final flag turns off sibling call optimisation, which
is enabled by -O2. Using sibling call optimisation prevents
Dynlnst from working on the resulting binary. Disabling
this optimisation produced no measurable slowdown.

2.5 Related Work

Several approaches have been taken to using machine
learning to guide compilation. Long and O’Boyle used in-
stance based learning to select transformations in a Java
compiler [13]. Agakov ef al used various learning tech-
niques to build models, which they used to focus the search
for iterative optimisations [3]. Cavazos and O’Boyle used
offline logistic regression to learn heuristics for applying
optimisations at the granularity of methods [7].

All these works make use of program features, such as
the depth of a loop, or the presence of data-flow dependen-
cies, in order to classify a program. In contrast, this work
does not attempt to classify algorithms, merely to observe
their performance and react accordingly.

Outside the domain of explicit machine learning, much
work has gone into adaptive optimisation systems for lan-
guages such as Java. The closest in spirit to our work is
that of Lau et al [11], who propose and implement a Per-
formance Auditor. This is an on-line mechanism for evalu-
ating multiple implementations of a method and choosing
the fastest one. Their system uses statistical analysis to
deal with the fact that each version of the method might
be called with different inputs, or at a different stage of ex-
ecution. This work focuses on the use of different algo-
rithms, instead of judging the effects of various compiler
optimisations. This difference also distinguishes this work
from more traditional adaptive optimisation research, which
tends to describe more effective ways to target a compiler’s
time-intensive optimisations [5] [14].

3 System

This section presents the system design, first as a high
level overview, and then as a detailed discussion of each
component.

3.1 High Level Design

Conceptually, there are four components to the optimi-
sation system: the sensors, the actuators, the adjudicator
and the controller. These are each explained in more detail
below. Figure 1 shows the interactions between the compo-
nents, as well as the connection between the optimisation
system and the target process.

Adjudicator Reward

-

Y

.
é—l— | Controller |
Preprocessor
Collated State

Action
Target Process |
Sensor |$| foo:

Sensor | |
I

Sensor I__> bar:
I

State

A 4

Actuators

o0 oo

| Eall foo |
Figure 1. High level design of the optimisa-
tion system.

The sensors measure the target program and transmit its
state to the controller. In the current system, these sensors
are clocks. The actuators are responsible for acting on the
agent’s environment. Currently, the environment has actu-
ators for inserting function calls, manipulating a call-site,
and loading shared libraries into the target’s address space.
The adjudicator computes the reward signal of the current
state, and transmits that to the controller. The controller is
responsible for picking the best algorithm for use at a given
point in the target program’s execution.

3.2 Components

The above framework is very general. In this section, we
describe the implementations of each component, as well as
their interaction.

The sensors are implemented as procedure calls. These
calls could be to any procedure, in this paper, they call
gettimeofday. The calls are made by the target thread,
and their results need to be communicated to the optimiser.
This is handled by encasing each procedure within a wrap-
per. The wrapper encodes the result using an agreed proto-
col, and transmits it to the controller. Currently, the com-
munication is performed using pipes. The wrappers are col-
lected into a shared object library.

All of the actuators are built on top of Dynlnst. The
simplest actuator loads a shared object library into the ad-
dress space of the target. This is used to load the library of

sensors. It is implemented as a single call into the DynInst
library.

The second actuator inserts procedure calls. This is im-
plemented by searching the process’s address space for two
procedures, « and 3. The search is made by procedure
name, and is carried out by Dynlnst. Once handles to «
and 3 have been found, these handles are passed back to
Dynlnst. DynlInst then modifies the code of « to call 3 as
either its first or last instruction - the choice is governed by
a flag passed along with the handles. As discussed in Sec-
tion 2.3, this is carried out using a mechanism known as
trampolines.

The final actuator is used to change the target of a call-
site. The target is a handle to a procedure found by search-
ing, as for the above actuator. Dynlnst is passed the target
and the callsite, and rewrites the call instruction so that it
points to the new target.

Communications are provided by a named pipe. Mes-
sages are written to the pipe by the sensors, and read by
a preprocessor, described next. Each message represents a
measurement, and contains the following information:

e the name of the procedure that was measured,

e whether the measurement was at the beginning or the
end of the procedure,

e the value that was measured.

The raw data provided over the communications chan-
nel is not very useful to the controller. Collating it into
an informative representation is done by the preprocessor.
This task involves matching the starting measurement of in-
vocation ¢ of routine p to the ending measurement of the
same invocation of the same routine. The summary mecha-
nism uses one stack per routine. Starting measurements are
pushed on to the stack, and end measurements are paired
with the top of the stack, which is then popped. As each
match is made, the difference J is computed. The prepro-
cessor maintains one list per method, and ¢ is appended to
this list. The set of lists forms the measured state, and is
passed on to the adjudicator and the controller.

The adjudicator is responsible for computing the re-
ward gained from being in the current state. The reward is
computed as the negation of the most recent time difference
resulting from using the currently swapped-in algorithm.

In reinforcement learning terms, the controller is an e-
greedy on-policy learning agent, as described in [15]. An
e-greedy agent makes a greedy choice in (100 - €) % of se-
lections. The other times, it makes a random choice, in the
hope that this will reveal information that brings it closer to
an optimum. In other words, it explores in € % of cases, and
exploits in the rest.

An on-policy agent is best explained by contrast with its
opposite. An off-policy agent learns one policy based on

actions generated under a different policy. Our system is
an on-policy agent because the policy it learns is the same
policy which generates the actions learned from.

The job of the controller is to process the data from the
sensors and issue commands to the actuators. We have im-
plemented a variety of methods to achieve this, as discussed
next.

3.3 Learning Algorithms

In this paper, we have implemented two reinforcement
learning algorithms, and evaluated each of them as the con-
troller component. This section describes the algorithms, as
well as a theoretical perfect agent by which we will judge
them.

In order to compare the speedups achieved by the vari-
ous algorithms, we consider a perfect algorithm. Such an
algorithm will spend no time at all executing fruitless ex-
ploration - every time it explores, the option it investigates
will be the correct action to choose from that point on.

Our first agent is a simple temporal difference agent, 7D.
It knows of two possible actions, aoop and apartition, COI-
responding to the two algorithms given in Section 2.1. The
utilities of these actions are given by U(a) < 0. The agent
works in a series of episodes. In each episode, the agent re-
ceives a percept P = (r, a), where r is the reward observed,
and a is the action which generated the reward. Note that
this may or may not be the same as the last action. On re-
ceiving each percept, the agent updates its utility estimate
for the relevant action, by using the update rule

U(a) =Ul(a) + a(reward — U(a))

In this rule, « is a learning rate parameter, and is usually
bounded within the interval (0, 1]. The agent then chooses
the desired action, in accordance with the e-greedy strategy,
where a random action is chosen in 100 — €% of cases. In
all others, the action which maximises U is chosen. The
results reported later were obtained with € = 0.96.

Our second agent, referred to as the regression agent,
plots the reward signal against time for each option, and
uses linear regression via a least squares fit to determine a
straight line through each set of points. From this, the agent
can predict which algorithm will be best at a given point in
the future, and hence which algorithm would be best to run
at the current time. Frequency of exploration is thus less
important - more important is the length of the exploration
phase. The longer the phase, the more datapoints the agent
has to work with. This should lead to improved accuracy,
but this is not always the case: when the environment under-
goes a phase change, the earlier data should be discarded in
order to avoid confusing the model. If this data was on the
suboptimal algorithm, then this was wasted exploration. It
should also be noted that this phase-changing aspect means

that prediction does not totally do away with the reliance
on exploration frequency. An agent with low exploration
frequency could predict with out of date data, and incur a
substantial penalty.

4 Results

This section presents and discusses the performance of
the optimisation system. The system was tested on two con-
figurations of the simulation. These configurations differed
in the number of particles being simulated, the volume over
which the particles are initially distributed, and the number
of simulation steps. The details of the problems are given
in Table 1.

Size Particles Side Length’> Simulation Steps
Small 8000 26 100
Large 10000 30 120

Table 1. A list of problems, which consist of
parameters used for the simulation.

4.1 Static Algorithm Choice

The first set of results are from the simulation running
without the benefit of the optimisation system. The simula-
tion consists of a number of runs. The time required by each
algorithm to complete one run has been plotted in Figure 2.
The horizontal axis of this plot measures simulation steps,
while the vertical axis shows CPU time elapsed for a single
step.

The crossover point can clearly be seen, and represents
the point at which the optimal choice of algorithm changes.
In the rest of the paper, the term phase is used to denote
a group of simulation steps during which the optimal algo-
rithm choice remains constant. Thus, in Figure 2, there are
two phases.

The system performs multiple runs of each simulation.
Between each run, the system is reset to a uniform distri-
bution of particles. This results in another phase change.
Figure 3 shows three runs of the system, and the associated
six phase changes.

2The particles are distributed over a cubic volume with side length
given by this column.

05t A]
] %
Z 04r N .
E +
g A o
g 03¢ + 1
5] F
: v
S 02f M]
5 e ‘
0.1 E
Partitioning algorithm +
0))) . Looping Algorithm .
0O 10 20 30 40 50 60 70 80 90 100

Simulation Step

Figure 2. One simulation run, showing a sin-
dle phase change.

4.2 Perfect Agent

This section establishes the metric by which the agents
will be measured. This metric is the reduction in execu-
tion time achieved by a perfect agent, one which has ac-
cess to the knowledge of which choice should be made at
each point in time. Such an agent does not make suboptimal
choices. The performance of this agent is thus unattainable
by any of the agents discussed below - it serves as an upper
bound on their performance. Table 2 presents the results for
using each algorithm exclusively (labelled Loop and Par-
tition), and for optimisation by a perfect system (labelled
Perfect). From this data, it can be seen that the perfect agent
achieves a reduction of the total CPU time used of between
21% and 22%.

4.3 Agent Performance

The first agent examined is the 7D agent. Table 2 shows
results for this agent run with two different configurations.
These are labelled as TD T = 5 and TD T = 25, where T'
represents the inverse of the degree of exploration. Larger
values of 7" reduce the agent’s affinity for exploration. This
agent is found to reduce the time taken to execute the pro-
gram by 6% to 10%, depending on the exact value of 7T'.

The temporal difference agent achieves just over half of
the speedup achieved by the perfect agent. There are several
factors contributing to this. First, it cannot predict changes -
its internal model of the time each algorithm will take is just
time = c, where c is a constant. This means it must expe-
rience changes in order to react to them. Thus, it will very
frequently make at least one suboptimal choice per phase
change. The second impediment to this agent reaching
perfection is that it must make the occasional non-greedy

L : ! T
05 % + +
+ + -
2 o4t ! N S
st A & + -
Z 03¢} + 1)]
Q + T %
B i 7 4
) 02 r p W 1
= L w@ ; Wﬁ“&
O
0.1 r E
Partitioning algorithm +
0) ‘ Looping Algorithm -

0 50 100 150 200 250 300
Simulation Step

Figure 3. Three simulation runs, showing six
phase changes.

choice, lest it get stuck in a rut. For example, during one
of the phases where the loop algorithm is faster, the agent’s
model might look like: timejoop = 0.8, timepartition =
0.9. A greedy agent would always use the loop algorithm
from that point forward, getting better and better estimates
of its performance, but not exploring the performance of
the partition algorithm, which at some point will improve
markedly.

The performance of the regression agent is also sensitive
to the value of T". Results, labelled Regression, T = 5 and
Regression, T = 25, in Table 2, show that this agent reduces
execution time by between eight and ten percent. Despite
its predictive ability, this agent does not perform better than
the temporal difference agent in all cases. This is due to
the way the two algorithms behave for a given problem size
over the lifetime of a simulation: their performances can be
very accurately modelled by the temporal difference agent’s
model. The only significant non-constant periods are when
the phase-changes take place, and these are too brief to have
much effect.

To extract the maximum speedup from each agent, it is
necessary to tune several parameters - for these results, only
T has been varied. The optimal value of the parameters will,
in general, depend not only on the nature of the learner,
but on the detailed performance characteristics of the algo-
rithms being swapped, as well as the architecture the system
has been deployed on.

4.4 Learning Speed

This section examines how quickly the agents can learn
an optimal policy, when that policy does not change over
time. A total of 1000 runs were made, each consisting of
50 epochs, an epoch being one cycle of perception, analysis

Algorithm Time
Raw Standard Normalised

Mean Error Mean
Small Problem
Loop 164.76 0.02 1.02
Partition 162.30 0.08 1.00
Perfect 126.95 0.04 0.78
TDT=5 14591 0.97 0.90
TDT=25 152.00 1.36 0.94
Regression T=5 147.56 1.89 0.91
Regression T =25 149.07 0.71 0.92
Large Problem
Loop 309.18 0.04 1.00
Partition 320.93 0.24 1.04
Perfect 244.79 0.08 0.79
TDT=5 27845 3.12 0.90
TDT=25 287.20 6.78 0.93
Regression T=5 279.54 3.24 0.90
Regression T =25 285.56 6.39 0.92

Table 2. Total CPU time in seconds for all con-
figurations. These data are taken from twenty
measurements. The values in the last column
are normalised against the fastest static al-
gorithm. The resolution of the timer was 0.01
seconds.

and action undertaken by the agent. Each run began with a
different number and configuration of particles, where the
number of particles n was calculated as:

n = 1000 + R(2) x 3000 + 50 — R(101)

where, for any integer p, R(p) returns a pseudo-random in-
teger 0 < r < p. This formulation gives sizes in two bands:
n € [950,1050] and n € [3950, 4050]. These bands were
employed so that each algorithm had an equal chance of be-
ing the optimal algorithm on any given run: in the first case,
the looping algorithm was quicker, while the partitioning
algorithm was optimal in the second case. The results are
plotted in Figure 4 for two different exploitation periods 7T'.
A random choice is made if R(7T") = 0, thus, higher values
of T denote less frequent exploration.

It can be seen that the temporal difference agent con-
verges quickly, taking around five epochs to discover the

100 ++4'—F++'43;+ N S A A e
90 [+ o™, 00%00000,09%0" %040 % 0000t |
+XW ° © 00 "g%0ee®
k3] 80 VY]
= hat
S 0+ e
S
<
= 60 :
Q
&
a~ 50
v TD learner T=25 +
40 % Regression learner T=25 v
TD learner T =5 X
30 . Regressionlearner T=5 @

0 5 10 15 20 25 30 35 40 45 50
Epoch

Figure 4. Epochs required to converge to op-
timal policy, showing the percentage of cor-
rect decisions per epoch, averaged over 1000
repetitions.

optimal policy. The regression agent, on the other hand,
requires more time, around twenty epochs. In each case,
smaller values of T result in faster convergence to the op-
timal policy, because of the frequency with which alterna-
tives can be checked and discarded. In both cases, the av-
erage value is about what would be theoretically predicted:
(100 — €)%, where € = . This rapid convergence is due to
the simple nature of the learning task, however, it demon-
strates that a reinforcement learning agent in this kind of
domain would not have to undertake large amounts of ex-

ploration in order to learn good policies.

5 Future Work

The work presented here involves a prototype environ-
ment for dynamic algorithm selection; there are many issues
to be addressed in future work.

One issue is that the system has so far been applied only
to a target program designed to exhibit the kinds of be-
haviour found in scientific applications. It is a necessary
next step to apply future versions of this system to actual
scientific codes.

Another issue is the nature of the mechanism which al-
lows performance monitoring and program modification.
This is currently done using a binary editing tool [6]. An
alternative approach would be to use a virtual machine,
such as the Low Level Virtual Machine (LLVM) [10]. This
would impose greater runtime overheads on the system, and
would require re-compilation into the virtual machine’s in-
put language. The benefits of this approach come from
the facilities that systems like LLVM offer, specifically, the

ability to adaptively recompile code at runtime. While the-
oretically possible with a system like Dynlnst, it would be
a much tougher task.

Finally, it would be beneficial to exploit the many other
opportunities for learning, which fall into two areas: learn-
ing parameters like cache blocking factors which affect the
target process, and learning values for variables such as the
exploration rate, which guide the optimiser. The second
area is at least as important as the first, given that the op-
timal combination of parameters will likely vary with the
architecture, the environment and the target program.

6 Conclusion

During the early days of computing execution cycles
were at a premium. This was demonstrated by the oppo-
sition of von Neumann to the use of a computer to translate
assembly language into machine code:

He [Donald Gillies, a student of von Neumann]
took time out to build an assembler, but when von
Neumann found out about he was very angry, say-
ing (paraphrased), "It is a waste of a valuable sci-
entific computing instrument to use it to do cleri-
cal work.”[12]

A paradigm shift has clearly taken place in the way we
view the cost and function of a computing device. Our re-
search aims to continue this progression by off-loading the
selection of functionally equivalent algorithms from the hu-
man operator or programmer to the computer.

Scientists who run large simulations on super-computers
spend considerable time configuring the software to pro-
duce results efficiently. This configuration is time consum-
ing yet important as it may impact significantly on the total
execution time. In addition, programmers will spend con-
siderable time selecting and tuning the algorithms used by
a single program. Often, neither approach will produce the
best solution. Moreover, there may not be a single optimal
solution as the most efficient algorithm may change during
execution. Clearly hybrid algorithms could be constructed,
however this would be complex to do as it would require
an exact model of the problem configuration and execution
environment. In this paper we have demonstrated the via-
bility of using simple reinforcement learning approaches to
dynamically select the algorithm that performs best given a
particular execution environment. The solution we present
is robust as it focuses on selecting the algorithm that gives
the best execution time during the actual use of the program.
Thus the approach does not need to model the complexities
of a particular algorithm, executing on a particular architec-
ture, and within a particular problem configuration.

Many reinforcement learning domains require numerous
runs for a good policy to be converged upon, however, given

the restricted nature of the domain we only require a few
runs to find a good policy. This is encouraging as the over-
head of introducing such an approach is small in compari-
son to the possible benefits of reducing human effort along
with improved execution performance.

References

[1] http://www.spec.org/cpu2006/CFP2006/.

[2] http://www.dyninst.org/rel5.0/srcDist_v5.0.tar.gz.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. E P. O’Boyle, J. Thomson, M. Toussaint, and C. K. L.
Williams. Using machine learning to focus iterative opti-
mization. In CGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization, pages
295-305, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
A survey of adaptive optimisation in virtual machines. In
Proceedings of the IEEE, volume 92, pages 449-466, 2005.

[5] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-
directed optimization of java. pages 111-129, 2002.

[6] B. R. Buck and J. K. Hollingsworth. An API for runtime
code patching. Journal of High Performance Computing Ap-
plications, 14, 2000.

[7] J. Cavazos and M. O’Boyle. Method-specific dynamic com-
pilation using logistic regression. Accepted for OOPSLA
2006.

[8] A. Czezowski and P. Christen. How fast is ’-fast’? Perfor-
mance analysis of KDD applications using hardware perfor-
mance counters on UltraSPARC-III. In Proceedings of the
Australasian Data Mining Workshop, December 2002. pp.
117-129.

[9] L. Golab and M. T. Ozsu. Issues in data stream management.
SIGMOD Rec., 32(2):5-14, 2003.

[10] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. 2004.
http://www.llvm.org.

[11] J. Lau, M. Arnold, M. Hind, and B. Calder. Online per-
formance auditing: using hot optimizations without getting
burned. In PLDI ’06: Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language design and im-
plementation, pages 239-251, New York, NY, USA, 2006.
ACM Press.

[12] J. A. N. Lee. John Louis von Neumann, 2002.
http://ei.cs.vt.edu/ history/VonNeumann.html.

[13] S. Long and M. O’Boyle. Adaptive java optimisation using
instance-based learning. In ICS *04: Proceedings of the 18th
annual international conference on Supercomputing, pages
237-246, New York, NY, USA, 2004. ACM Press.

[14] M. Paleczny, C. A. Vick, and C. Click. The java hotspotTM
server compiler. In Java™ Virtual Machine Research and
Technology Symposium. USENIX, 2001.

[15] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

