How Fast is \textit{fast}?
Performance Analysis of KKD Applications using Hardware Performance Counters on UltraSPARC-III

Peter Christen and Adam Czesowski

CAP Research Group
Department of Computer Science, Australian National University

Contact: peter.christen@anu.edu.au

Funded by the Fujitsu-ANU CAP project (see http://cap.anu.edu.au)

Outline

- Performance of modern computing platforms
- Characteristics of KDD / data mining applications
- Performance analysis
 - Hardware performance counters
 - Selected data mining applications
 - Decision tree induction \textit{C4.5}
 - Association rules \textit{APRIORI}
 - Additive models \textit{ADDFIT}
- Experimental results
- Conclusions

Performance of modern computing platforms

- There is an increasing gap between CPU and memory access speed (memory hierarchy)
 - Registers \rightarrow L1 caches \rightarrow External cache \rightarrow Main memory
- CPU caches are only useful (efficient) when many data items or instructions can be accessed (and re-used) directly from the cache (locality)
- Hardware and compilers assume regular memory access patterns
 - Regular data structures like matrices and vectors
 - Temporal and spacial locality
- High efficiency and high-performance for many scientific and engineering applications

Characteristics of data mining applications

- Operate on large and complex data sets
 (often access input data several times)
- Are compute and memory intensive
- Operate on dynamic and recursive data structures
 (hash tables, dynamic linked lists, trees, etc.)
- Data structure access is data dependent
 (often irregular and unpredictable)
- Size of data structures is data dependent
 (often not linear scalable with input data)
- Complex core routines
 (large instruction foot-prints)
Performance analysis

Modern CPUs and computer systems are becoming more and more complex
- Longer pipelines
- Multiple functional units and multiple instruction issued
- Speculative branch predictions
- Several cache levels
- Symmetric multiprocessing (SMP)

Many of today’s applications are very complex (multi-user, interactive, many functions and large data sizes)

Understanding program behaviour is important to achieve good efficiency and high performance

Performance analysis methods

- Profiling
 (information about where your program spent its time and which functions called which other functions while it was executing)
- Monitoring system utilisation
 (using commands like: ps, iostat, top, kstat, vmstat, cputrack, cpustat, pmap, har, etc.)

Simulation
- (possibility to modify hardware parameters)
- Hardware performance counters
 (CPU registers that count hardware events)

Hardware performance counters

- Most modern CPUs have hardware event counter registers
- Possibility to count various hardware events (like MIPS, FLOPS, cycles per instructions, address bus utilisation, cache hit and miss rates, etc.)
- Control and access through library calls (e.g. libcpc on SPARC/Solaris, PAPI, PCL, etc.)
- Easy to instrument source code
 - Possible to analyse only parts of the code (like the computational core routines)
 - Possible to analyse programs with short run times

Example libcpc code on SPARC III

```
#include <libcpc.h>

int cpc_cpuver;

void cpc_event_t cpc_event, start, stop;

char *cpc_arg="pic0=cycle_cnt, pic1=instr_cnt";

int cpc_cpuver = cpc_getcpuver(); /* Get CPU version */

int cpc_strtoevent(cpc_cpuver, cpc_arg, &cpc_event);

int cpc_bind_event(&cpc_event, 0); /* Bind counter to process */

int cpc_take_sample(&start);

/* ... add your code to analyse here ... */

int cpc_take_sample(&stop);

printf("cycle_cnt: %lld, instr_cnt: %lld\n",
   (stop.ce_pic[0]-start.ce_pic[0]),(stop.ce_pic[1]-start.ce_pic[1]));
```
Decision tree induction (C4.5)

- Given a data set with records (e.g. SQL table), where each record has the same attributes
- Build a classification model of the data (classify records into different classes)
- Tree is built using training data (labeled records)
- Primary (input) data structure
 - Array with pointers to vectors
 - Either a floating-point or an integer value
- Secondary data structure
 - Recursive tree
 - Not restricted to binary tree

Association rules (APRIORI)

- Freely available implementation by C. Borgelt
- Popular for market basket analysis
- Given a data set with transactions (which can have variable length)
- The task is to (1) find frequent large item sets and then (2) build rules from these item sets
- Primary (input) data structure
 - Vectors of item numbers (integers)
- Secondary data structure
 - Prefix tree and hash tables
 - Counter vector

Additive models (ADDFIT)

- Developed by the ANU Data Mining Group (2000)
- Build a predictive model of the data with additive functions \(f(x_1, \ldots, x_d) = f_0 + f_1(x_1) + \ldots + f_d(x_d) \)
- Two steps
 1. Assemble dense symmetric linear system from data
 2. Solve linear system sequential or in parallel
- Assembly is data dependent and results in irregular memory access patterns
- Primary data structure (input records) need to be accessed once only
- Secondary data structure is a dense linear system

Characteristics of test applications

<table>
<thead>
<tr>
<th>Program</th>
<th>BLAS (SUNPERF)</th>
<th>ADDFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
</tr>
<tr>
<td>Data</td>
<td>209 × 209</td>
<td>660 × 660</td>
</tr>
<tr>
<td>Run time</td>
<td>0.003 sec</td>
<td>1.10 sec</td>
</tr>
<tr>
<td>Iterations</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Heap size</td>
<td>1 MB</td>
<td>10 MB</td>
</tr>
<tr>
<td>User code</td>
<td>99.46%</td>
<td>97.09%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>APRIORI</th>
<th>C4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Data</td>
<td>10,000 rec</td>
<td>1,000,000 rec</td>
</tr>
<tr>
<td>Run time</td>
<td>3.36 sec</td>
<td>31.78 sec</td>
</tr>
<tr>
<td>Iterations</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Heap size</td>
<td>19,776 KB</td>
<td>70,512 KB</td>
</tr>
<tr>
<td>User code</td>
<td>89.37%</td>
<td>94.30%</td>
</tr>
</tbody>
</table>
Dynamic memory allocation in APRIORI and C4.5

First phase is loading data from file
Second phase is computing frequent item sets or decision tree
ADDFIT (like BLAS matrix-matrix multiplication) allocates all memory in one block at beginning

Cycles per instruction and run times

<table>
<thead>
<tr>
<th>Program</th>
<th>ADDFIT (s)</th>
<th>APRIORI (s)</th>
<th>C4.5 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>Un-optimised</td>
<td>1.1 sec</td>
<td>5.9 sec</td>
<td>3.4 sec</td>
</tr>
<tr>
<td>Optimised</td>
<td>0.5 sec</td>
<td>2.8 sec</td>
<td>2.2 sec</td>
</tr>
<tr>
<td>Improvement</td>
<td>52%</td>
<td>53%</td>
<td>34%</td>
</tr>
</tbody>
</table>

Cache miss rates

Irregular memory access patterns result in higher data cache miss rates (less locality)
Optimised compilation increases data cache miss rate
Higher instruction cache miss rates due to more complex and longer core routines
Branch rates and branch miss rates

Irregular data structures result in higher branch (miss) rates

- Data mining applications do not have long loops that are ‘predictable’ (e.g. over vectors)
- Optimised compilation ‘removes’ many loads and stores (e.g. for indices) from the code

Conclusions

- Performance analysis is important to understand behaviour of modern complex applications
- Find bottlenecks both in software (applications as well as OS) and hardware (CPU and memory system)
- Improve efficiency and performance of modern computer systems
- Hardware counters are a good performance analysis tool (but it's easy to drown in numbers, and results can be hard to understand)
- Various improvements can be done on data mining applications (e.g. try to use floating-point operations)