Data Matching of Bibliographic Data: Recent Advances and an Open Source Matching System

Peter Christen

Department of Computer Science,
ANU College of Engineering and Computer Science,
The Australian National University,
Canberra, ACT 0200

Contact: peter.christen@anu.edu.au

Project Website: http://datamining.anu.edu.au/linkage.html

Outline

- Short introduction to data matching
- Applications and challenges
- The matching process and matching techniques
- Data matching for bibliographic data
- Recent research developments
- ANU Research Office matching pilot project
- Example chemistry article titles
- Application of an advanced matching system
- Overview and demonstration of Febrl (Freely Extensible Biomedical Record Linkage)

Short introduction to data matching

- The process of matching records from one or more data sources that represent the same entity (such as a patient, customer, business, or a publication)
- Also called record or data linkage, entity resolution, data scrubbing, object identification, merge-purge, etc.
- Challenging if no unique entity identifiers available
 For example, which of these three records refer to the same person?

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Smith, Peter</td>
<td>42 Miller Street 2602 O'Connor</td>
<td></td>
</tr>
<tr>
<td>Pete Smith</td>
<td>42 Miller St, 2600 Canberra A.C.T.</td>
<td></td>
</tr>
<tr>
<td>P Smithers</td>
<td>24 Mill Street, Canberra ACT 2600</td>
<td></td>
</tr>
</tbody>
</table>

Data matching challenges

- Real world data is dirty
 (typographical errors and variations, missing and out-of-date values, different coding schemes, etc.)
- Scalability
 - Comparison of all record pairs has quadratic complexity
 (however, the maximum number of matches is in the order of the number of records in the databases)
 - Some form of blocking, indexing or filtering required
- No training data in many matching applications
- No record pairs with known true match status
- Possible to manually prepare training data (but, how accurate will manual classification be?)

The data matching process

1. Database A
 - Cleaning and standardisation
 - Blocking / Indexing

2. Database B
 - Cleaning and standardisation
 - Weight vector classification
 - Matches → Non-matches → Possible matches → Clerical review → Evaluation

Data matching techniques

- Deterministic matching
 - Exact matching (if a unique identifier of high quality is available: precise, robust, stable over time)
 Examples: DOI, Medicare, ABN or Tax file number (?)
 - Rules based matching (complex to build and maintain)
- Probabilistic matching
 - Use available (personal) information for matching
 (like names, addresses, article titles, etc.)
 - Can be wrong, missing, coded differently, or out-of-date
- Modern approaches
 (based on machine learning, data mining, database, or information retrieval techniques)
Probabilistic data matching

- Computer assisted data matching goes back as far as the 1950s (based on ad-hoc heuristic methods)
- Basic ideas of probabilistic matching were introduced by Newcombe & Kennedy (1962)
- Theoretical foundation by Fellegi & Sunter (1969)
 - Compare common record attributes (or fields)
 - Compute matching weights based on frequency ratios (global or value specific ratios) and error estimates
 - Sum of the matching weights is used to classify a pair of records as match, non-match, or possible match
 - Problems: Estimating errors and threshold values, assumption of independence, and clerical review

Fellegi and Sunter classification

- For each compared record pair a vector with matching weights is calculated
 - Record A: [0.6, 0.2, 0.5, 0.7]
 - Record B: [0.2, 0.5, 0.8, 0.4]
 - Matching weights: [0.2, 0.3, 0.5, 0.2, 0.4]
 - Fellegi and Sunter approach sums all weights
 - then uses two thresholds to classify record pairs as matches, non-matches, or possible matches

Matching bibliographic data

- Most computer science research in data matching uses bibliographic data for experiments
 - Publicly available (‘Cora’, a small machine learning publication data set)
 - No privacy and confidentiality issues (compared to personal data, such as patient records)
 - Complex domain with different entity types
 - Most research has focused on matching quality
 - Collective matching of a complete database
 - Use relational information (connections between entities), rather than just attribute similarities

Collective matching example

- Several approaches have been developed (by machine learning, data mining and database communities)
- Combine graph and clustering based techniques (iteratively refine connection weights)
- Generally achieve much improved matching quality (compared to traditional matching based only on attribute similarities between two records)
- However, the computational complexity of these approaches is generally high
 - For matching two databases with n records each, \(n \times n \) calculation steps (or more) are required
 - Not scalable to large databases

Adapted from Kalashnikov and Mehrotra, ACM TODS, 31(2), 2006
ANU Research Office matching

- For ERA, match Thompson ISI with ANU ARIES database (ISI: 1,420,083 authors, 414,897 publications; ARIES: 116,142 authors, 15,166 publications; 2,569 ARIES publications are in non-ISI journals)
- ANU RO has conducted SQL based matching
- Different matching criteria ('rule based')
- Author names so far not considered
- Successfully matched 9,232 ARIES publications (74%)
- Apply more sophisticated matching
- Deal with cases that have typographical errors and variations in authors, journals and articles
- Combine article and author matches

Example chemistry article titles

- 'Undecacarbonylmethylcyclopentadienyli-triradium-tetraedro-phenanthrene-5,6,7-tris(phenanthrene-2-one, 1,2,3-triphenylcyclopenta[l]phenanthrene-2-ol, 1-chloro-1,2,3-triphenylcyclopenta[l]phenanthrene, 1-bromo-1,2,3-
 - triphenylcyclopenta[l]phenanthrene, and 1,2,3-triphenyl-1H-cyclopenta[l] phenanthrene'

ANU RO matching challenges

- Only author surnames and initials in both ARIES and ISI (many records with 'M Smith' or 'J Williams')
- Journal abbreviations and name changes
- Domain specific article titles (very similar when seen as text strings – such as examples on previous slide)
- What relative matching weights to give to journals, articles and authors?
- Different number of authors (have to normalise number of matched authors by number of listed authors)
- Initial matching using Febal found all but 7 of the RO matches (and many thousand more new potential matches, including many false positives)

Overview of Febal

- Has been developed since 2002 (as part of a project between the ANU and the NSW Department of Health)
- Is implemented in Python (open source, object oriented, good for rapid prototype development)
- Source code is available (easy to extend and modify)
- Includes many recently developed data matching algorithms and techniques
- A tool to experiment with and learn about data matching
- **Is a prototype tool, not production software!**
- Freely available at: https://sourceforge.net/projects/febrl/

Main Febal features

- Three main functionalities
 - Cleaning and standardisation (of names, addresses, dates, and phone numbers)
 - Deduplication of one data set
 - Matching of two data sets
- A variety of data matching techniques
 - Seven blocking / indexing methods
 - Twenty-six similarity functions (mainly for name strings)
 - Six record pair classifiers
- Includes a data generator and various test data sets (including Core)

Initial Febal graphical user interface
Date and phone standardisers

Indexing (blocking) definition

Comparison functions

Matching weights histogram

Conclusions

- Recent advances in matching bibliographic databases using collective matching approaches (however, currently not scalable to very large databases)
- Data matching is domain and data dependent
 - Requires domain knowledge
 - Requires knowledge about data matching techniques
 - Requires manual intervention
- Matching for ERA will likely require specific matching approaches and tools (possibly domain dependent approaches, such as for physics, medicine, engineering, humanities, etc.)