THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-02-01

Performance Analysis of KDD
Applications using Hardware Event
Counters

Peter Christen and Adam Czezowski

February 2002

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Technical.Reports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs.anu.edu.au/techreports/

Recent reports in this series:

TR-CS-01-02 Jeremy E. Dawson and Rajeev Gore. Mechanising
cut-elimination for display logic. October 2001.

TR-CS-01-01 Stephen Roberts Peter Christen, Markus Hegland and Irfan
Altas. A scalable parallel fem surface fitting algorithm for data
mining. October 2001.

TR-CS-00-02 Peter Strazdins. A survey of simulation tools for cap project
phase iii. October 2000.

TR-CS-00-03 Bill Clarke. Sparc v9 instruction set specification. October
2000.

TR-CS-00-01 Jens Gustedt, Ole A. Maehle, and Jan Arne Telle. Java
programs do not have bounded treewidth. February 2000.

TR-CS-99-02 Samuel Taylor. A distributed visualisation tool for digital
terrain models. July 1999.

Performance Analysis of KDD Applications
using Hardware Event Counters

Peter Christen* and Adam Czezowski

CAP Research Group, Department of Computer Science
Australian National University, Canberra
ACT 0200, Australia

URL: http://cap.anu.edu.au/cap/projects/KDDMemPerf/

Abstract. Modern processors and computer systems are designed to be
efficient and achieve high performance with applications that have regu-
lar memory access patterns. For example, dense linear algebra routines
can be implemented to achieve near peak performance. While such rou-
tines have traditionally formed the core of many scientific and engineer-
ing applications, commercial workloads like database and web servers, or
decision support systems (data warehouses and data mining) are one of
the fastest growing segments in the high-performance computing mar-
ket. Many of these commercial applications are characterised by complex
codes and irregular memory access patterns, which often result in a de-
creased performance. Due to their complexity and the lack of source
code, performance analysis of commercial applications is not an easy
task. Hardware performance counters allow acquisition of low level, reli-
able data, necessary to perform detailed analysis of program behaviour.
In this paper we describe experiments and present first results conducted
with various KDD applications on an UltraSPARC III platform.

1 Introduction

Commercial applications like database and web servers, or decision support sys-
tems (data warehouses and data mining) represent one of the most rapidly
growing segments in the high-performance computing market. While modern
processors and memory systems are designed to be efficient and achieve high
performance with applications that have regular memory access patterns (like
dense linear algebra software) they often perform poorly when running commer-
cial applications. Such applications are characterised by complex codes, irregular
memory access patterns and large dynamic data structures.

A rapidly growing market segment is KDD (Knowledge Discovery in Databases)
or Data Mining [11], which deals with the analysis of large and complex data
sets. KDD applications combine techniques from machine learning, statistics,
databases and high-performance computing. Tasks involved are data exploration
and preprocessing, clustering, predictive modelling, association rules, decision

* Corresponding author, E-Mail: Peter.Christen@anu.edu.au

tree induction, and others. A common characteristic of these tasks is that they
are (1) compute intensive, (2) operate on large and complex data sets, and (3) in-
volve irregular memory access patterns due to their dynamic and often recursive
data structures (like hash tables, trees or linked lists). The first two characteris-
tics makes them attractive for implementation on high-performance platforms,
especially for shared memory multiprocessors (where all CPUs have access to one
memory system), while the last characteristic is an obstacle for efficient system
utilisation and high performance. Traditional compiler optimisation techniques
based on spatial and temporal locality - which proved to be successful for many
scientific and engineering applications - cannot successfully be applied for KDD
and related applications.

Hardware performance counters are an easy to use instrument which can
provide reliable data, necessary to perform detailed analysis of application per-
formance behaviour at low level. Such counters are available on most modern
microprocessors, including UltraSPARC, Pentium and Alpha. They can count
various events, including number of loads, stores and floating-point operations,
cache and TLB misses, branch mispredictions, or cycles per instruction. The
number and types of events that can be counted differ widely on various hard-
ware platforms. However, some core set of events such as memory references and
instructions counts are available on most of the processors. Machine and oper-
ating system dependent libraries (like the Solaris 1ibcpce [10]) provide access
to hardware counters on a specific platform and operating system. Platform in-
dependent counter libraries are currently under development in several research
projects. Two such libraries are the Performance Counter Library (PCL) [3]
and the Performance Application Programming Interface (PAPI) [6]. Their aim
is to provide a set of platform independent interfaces to the counters, that al-
low easy portability of programs instrumented with these libraries, and to allow
inter-platform performance comparisons.

In the next section we present some work that has been done previously in
the area of performance analysis of commercial applications, and in Section 3
we present our setup consisting of three freely available KDD applications and
one platform optimised linear algebra routine. We also discuss the data set we
were using. Experiments and first results are presented in Section 4, and finally
we give an outlook on future plans in Section 5.

2 Related Research

There is much ongoing research in dedicated KDD and data mining algorithms
and in their parallel implementations. In contrast, we are only aware of a small
number of publications dealing with the performance analysis of KDD applica-
tions [4,5,12,14]. More work has been done on analysing database servers and
related commercial applications [2, 19]. To our knowledge, no performance analy-
sis of KDD applications has been done using hardware counters. This can partly
be explained by the lack of available source code for KDD applications and, in
the past, lack of user-friendly software interfaces to access hardware counters.

The memory behaviour of a parallel association rule algorithm is discussed
in [14]. The authors looked at custom memory placement scheme and found
that simple schemes (like the different hash tree building blocks being allocated
in a single memory region) can be quite efficient improving the execution time
for some data sets up to a factor of two. They state that the data structures
used by association rules algorithms (hash trees and lists) exhibit poor locality,
and the arbitrary allocation of memory makes it difficult to detect and eliminate
false sharing. A run time memory allocation library based on the Unix malloc()
library is presented, which allows customised memory allocation.

Memory characteristics of a parallel implementation of the self-organising
map (SOM) neural network model is discussed in [12]. Four characteristics were
examined and compared. First, the working set size (temporal locality), second
the spatial locality and memory block utilisation, third the communication char-
acteristics and scalability, and fourth the TLB performance. The authors use a
simulation tool adapted from the Augmint multiprocessor simulator. They con-
clude that the size of the working set is not sensitive to the number of input
records.

In [4, 5] the popular decision tree induction algorithm C4.5[15] is analysed in
its memory and parallelisation characteristics. The authors are using RSIM [13]
to simulate three different instruction level parallelism (ILP) processors. One of
their conclusions is that such an algorithm is limited by the memory latency and
bandwidth, and cache size has a significant effect on performance as well. In [5]
a parallel version of C4.5 optimised for a ccNUMA architecture is presented and
analysed. This parallel version puts significantly less pressure on the memory
hierarchy, and has a larger working set.

The memory system characteristics of some commercial workloads is stud-
ied in [2]. The authors present detailed performance studies of three different
important classes of workloads: Online transaction processing (OLTP), decision
support systems (DSS) and Web index search. They use monitoring experiments
and SimOS [16] to study the effects of architectural variations. One of their
findings is that operating system activity and I/O latencies do not dominate the
behaviour of well-tuned database workloads. For OLTP a large off-chip cache is
in favour, while DSS and the Web index search are primarily sensitive to the
size and latency of on-chip caches.

The performance analysis of the TPC-C benchmark on a four-processor Pen-
tium based SMP is presented in [19]. The authors analytically model the per-
formance and then validate their results with simulations (using SimOS) and
hardware counter experiments. They conclude that experimentally based evalu-
ation of complex commercial applications is time consuming, and that analytical
modelling is a feasible alternative.

3 Applications and Data Sets

We choose three KDD applications and one vendor optimised linear algebra
code for hardware counter performance analysis using libcpce [10] on a Ultra-

SPARC/Solaris platform. We only counted events in the core computation rou-
tines, i.e. without file in- or output. The programs we analysed use mainly text
files (which is generally slow). Commercial versions of such programs would ei-
ther read data from binary files or access them directly from a database server.

3.1 Decision Tree Induction — C4.5

The freely available popular decision tree induction program C4.5' [15] was
chosen as a typical KDD application. This application has already been analysed
in its memory access behaviour using a machine simulator [4, 5].

C4.5 is written in ANSI C, it reads data from a text file and then builds
a decision tree. Only the tree building routine, i.e. the function BestTree(),
was analysed, with the complete primary data set (the table loaded from disk)
stored in memory. This data is stored in an array with pointers to vectors, with
each vector (one data record) having a length corresponding to the number of
attributes. Every element in this vector consists of a short and a float variable.
In the case of a categorical type attribute, the category number is stored as a
short, while a continuous attribute (a real number) is stored as a float. Thus
one of the two variables is always unused. The decision tree is a complex recursive
data structure that is built dynamically in the tree building routine.

3.2 Association Rule Induction — APRIORI

Mining association rules is a popular data mining algorithm. It is for example
used to analyse market basket data to find frequent item sets and extract rules
like ‘if a customer buys milk then he will most likely also buy cheese.” For our
performance analysis we use a freely available implementation? of the APRIORI
algorithm [1]. An older version of this program is incorporated in the data mining
tool Clementine 5.0. The program is written in C, it reads a text file with
transactional data and writes the resulting rules either into a text file or prints
them. The items in the input transactions are stored in a vector data structure
as integer numbers. Once all data is loaded, the items are sorted with descending
frequency, and a prefix tree is built, which is then modified and updated for item
sets of increasing length. Besides pointers to parent and (variable number of)
child nodes, the prefix tree contains a counter vector, stored as integer numbers.
Once all frequent item sets are found, they are sorted and the extracted rules
are printed or saved.

3.3 Additive Models — ADDFIT

The ADDFIT algorithm [7] was developed by the ANU Data Mining® group and
implemented sequentially and on distributed memory platforms (using C/MPI) [8].

! http://www.cse.unsw.edu.au/~quinlan/
2 http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html
% http://datamining.anu.edu.au

This algorithm builds an additive model of the data by assembling a dense sym-
metric linear system in a first step, which is then solved in a second step using
either a sequential or parallel solver [8,17]. For the performance analysis we are
not interested in the first step, as it involves reading the data from (binary) files
once and assembling each data record into a matrix at data dependent locations.
The primary data structure (the records from disk) is loaded and then the as-
sembly is started. Only the assembly routine is analysed. The data dependent
assembly results in irregular memory access patterns. For each continuous at-
tribute in a data record four non-zero values are added into the matrix, while
for a categorical attribute only one value is added. The locations where these
values are added are data dependent and can be anywhere in the matrix. As
the assembled linear system is symmetric, only a dense upper triangular matrix
with corresponding vector is allocated, whereby each entry is a double sized
floating-point value. The size of this linear system is determined by the number
of categories for categorical and the resolution of the model for continuous at-
tributes, but it is completely independent from the size i.e., number of records,
in the primary input data.

3.4 Dense Matrix-Matrix Multiplication — BLAS (SUNPERF)

To allow a comparison with a platform optimised application with regular mem-
ory access patterns we also instrumented a dense matrix-matrix multiplication
(the BLAS routine dgemm() as implemented in Sun’s SUNPERF library) with
calls to the libcpc hardware counter library. The dgemm() routine is typically
used in the core of various scientific and engineering applications. For the per-
formance analysis two Hilbert matrices were created and dense matrix-matrix
multiplications of two such matrices were performed and analysed.

3.5 Data Sets and Data Structures

For C4.5 and ADDFIT we used the Census-Income data set which is freely
available from the UCI KDD Archive*. This data consists of a training file which
contains 199 523 records and a test set with 99 762 records. For our purpose we
concatenated both files into one to get large enough test data. The Census-
Income data set contains 5 continuous and 37 categorical attributes.

For APRIORI we created synthetic data sets of various size and complexity
as described in [1]. For the tests we then chose a smaller data set with 10 000
records and a larger one with one million records.

The primary data structures used by the KDD applications hold the input
data. They are mainly arrays or vectors, and their size and dimension usually
increases linearly with the size of the input data set. In the case of ADDFIT,
this data is only used once, i.e., each data record is access once, but for C4.5
and APRIORI usually several iterations over the input data are needed, each
accessing the primary data structure.

* http://kdd.ics.uci.edu/

Table 1. Program and Test Characteristics

Program BLAS (SUNPERF) ADDFIT
small medium large small large
Data 209 x 209 660 x 660 2090 x 2090 Census with Census with
matrices matrices matrices 10,4858 records 209,715 records
Run time 0.075 sec 1.255 sec 44.5 sec 1.3 sec 7.4 sec
Iterations 100 10 1 10 10
Heap size 1,024 KB 10,240 KB 102,400 KB 10,024 KB 90,408 KB
User code 98.54% 99.16% 98.90% 99.89% 98.85%
Program APRIORI C4.5
small large small large
Data T5I4D10K with T10I8D1000K with Census with Census with
10,000 records 1,000,000 records 8,322 records 266,305 records
Run time 3.1 sec 42 sec 3.2 sec 423 sec
Iterations 10 1 5 1
Heap size 19,776 KB 70,512 KB 3,960 KB 62,152 KB
User code 97.98% 98.53% 99.61% 76.24%

The secondary data structures built by the KDD applications, — the decision
tree in C4.5, the prefix tree in APRIORI, and the dense matrix used by ADDFIT
— are not directly proportional to the size of the input data. Rather, they are
data dependent (e.g. a C4.5 decision tree) or their size is determined by some
parameters (e.g. model resolution in ADDFIT). The size of the prefix tree built
by APRIORI depends both on the data as well as on parameters like support
and confidence[l], which have to be set by the user. It is therefore very hard to
specify the amount of memory a KDD application will use.

4 Results

The presented experiments were conducted on a Sun Blade 1000 workstation
with two UltraSPARC III processors running at 750 MHz, and having 2 GBytes
of main memory. The Level-2 cache (E-Cache) of the machine is 8 MBytes, while
the Level-1 Data cache (D-Cache) is 64 KBytes and the Level-1 Instruction cache
(I-Cache) 32 KBytes. The measurements were performed on a single processor
which was fully reserved for our application. Other processes, including system
related processes, were scheduled to run on the remaining processor. Table 1
shows the characteristics of the test programs and data sets we used. All results
for a given program/data set pair presented here are averaged over the number
of iterations as listed in the table.

We have conducted measurements in the user, system and combined domains.
As only a very small percentage of the execution time is spent in the system mode
we show only user (usr) and combined (all) results.

Memory allocation

for APRIORI and C4.5
(s) - C4.

0 100 .2rbr8e 300 400 500
80000 ; : : ; 50 . .
[+ APRIOR]] oo L1 Data BLAS
+—+ APRIORI . A A[2BLAS
401~ eeLlDataC45 |+
60000~ AA[2C45
[. o0 s o0, TT e
e C45 30 | | O

40000 [

Heap size (KB)

20000

10 20 30 40
Time (s) - APRIORI

a)

50

Cache miss ratio (%)

Cache misses for BLAS and C4.5

0 10 2

0 3
Time (s)

0 40 50

Fig. 1. (a) Dynamic Memory Allocation for APRIORI and C4.5 (b) Level-1 and Level-2
cache miss rate for BLAS and C4.5

MIPS MFLOPS
900 all e— 500 " all —]
800 usr — USK m—
700 1) 400
[o
g 60 S 300
2 500 s
S 400 g 200
300 -
100
200
100 AL . . A aw wm A N
©@mO e 06 06 0 @ MmO e 06 06 0
BLAS ADDFIT APRIORI C4.5 BLAS ADDFIT APRIORI C4.5
Fig. 2. MIPS and MFLOPS
4.1 Memory Allocation and Overall Performance

The maximal allocated memory for data (the heap size) is listed in Table 1.
While BLAS and ADDFIT allocate all the memory they need (basically the
dense matrices plus some buffers for input and temporary data) at the beginning,
both APRIORI and C/.5 dynamically allocate smaller memory blocks at run
time. Figure 1a shows the heap sizes of C4.5 and APRIORI as measured with
the Unix command pmap for the larger test data sets. Two phases are clearly
distinguishable, the first is loading the input data (steeper slope of the graphs),
while the second is computing the decision tree or the frequent item sets (prefix
tree), respectively. Such dynamic memory allocation and re-allocation results in
many system calls and also prevents good data locality.

MIPS and MFLOPS are popular measures to show the overall performance
mainly for scientific and engineering codes. In Figure 2 one can clearly see that
only the BLAS dense matrix-matrix multiplication is actually dominated by
floating-point operations. The three KDD programs do mainly integer and other
operations, which is what one can expect from applications working on strings
and integer numbers. It is also interesting to see that for all four applications
the MIPS numbers decrease with larger input data sizes (except BLAS having
a peak performance with a medium sized matrix).

Data-Cache Miss Rate Instruction-Cache Miss Rate

20 [all s 0.35 F 4l e

usSr e— 0.3 USr —
o 1 s 025
s g o2
8 10 8
° 5 015
o a
s 01 i
0.05
Ll W S R T O PP P 1L
) mM O & O & O 6 O) m O s O & O & O
BLAS ADDFIT APRIORI C45 BLAS ADDFIT APRIORI C45
Fig. 3. Data- and Instruction-Cache miss rates
External-Cache (L2) Miss Rate Data-TLB Miss Rate
8 Al — 6 I all e—
usSr — usSr e—
7 5
[} 6 (]
g5 g4
g4 8 3
d 3 e,
2
1
1 1
0 [T L le L | I\I . L L 0 L e B0 L mes me B0 L L
) m O ¢ O & O) O s m O) O = O & O
BLAS ADDFIT APRIORI C45 BLAS ADDFIT APRIORI C4.5

Fig. 4. Level-2 Cache and Data TLB miss rates

4.2 Cache Performance

Irregularity of the memory access patterns for the KDD applications is apparent
when we compare Level-1 and Level-2 cache miss rates for BLAS and C/.5 as
presented in Figure 1b. For BLAS the average Level-1 and Level-2 miss rate is
around 2.5% and 0.6% respectively and is maintained at such level through the
duration of the computations. The same miss rates for C4.5 exhibit very large
fluctuations with some values for Level-1 cache misses being as high as 40%.
This “fatal” cache utilisation is the major cause of such poor performance of all
three KDD applications, presented in Figure 2, and C4.5 in particular.

As can be seen form Figure 3 the data cache miss rate is approximately two
orders of magnitude higher than the instruction cache miss rate. Small I-Cache
miss ratio is typical for applications with low branch rate. The branch rate for
BLAS is around 5 times less than for C4.5 and this is clearly reflected in I-Cache
miss rate measured in the user domain.

The highest data cache miss rates can be seen for APRIORI and C4.5. This
is due to the erratic memory access patterns. While, for KDD applications, the
data cache miss rate generally increases with larger input data sets, it remains
nearly constant for BLAS.

The large discrepancies between user and combined (sys+usr) domains in
I-Cache misses results, indicates, high I-Cache miss rate in the system domain.

Although, this has little bearing on the overall performance of applications being
tested®, we have established that infrequent system calls are the main reason for
this.

The measurements for the Level-2 (external) cache as well as for the data
translation look-aside buffer (TLB) in Figure 4 show again that the system Level-
2 miss rate is much higher than the user miss rate. Interesting to see is the high
rate both Level-2 as well as D-TLB misses for C4.5 with the large data set. This
has to be due to the sorting of entire categorical attributes (using recursive quick-
sort) in C4.5, which results in almost no locality for data access. The instruction
TLB miss rate (not shown here) is less than 0.02% for all applications.

5 Outlook

In this paper we presented first experiments of analysing KDD applications with
hardware counters on an UltraSPARC III platform. To better understand the
memory access characteristics of KDD applications further experiments with var-
ious data sets and other hardware event counters are needed. Running KDD ap-
plications on a machine simulator e.g., SPARC Sulima [9], will allow us to change
parameters of the architecture and thus help to find bottlenecks in such applica-
tions. We are also planning to conduct similar experiments on a Fujitsu Prime-
power SPARC server. The HAL SPARC [18] processor in the Primepower allows
simultaneous counting of more hardware events than the SUN UltraSPARC-III
processor by dedicating one register to each event being counted.

6 Acknowledgement

This research is funded by the ANU /Fujitsu CAP program. The authors would
like to thank Alistair Rendell for sharing his Sun Blade 1000 with us.

References

1. R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules, in Pro-
ceedings of the 20th VLDB Conference, Santiago, Chile, 1994.

2. L. Barroso, K. Gharachorloo and F. Bugnion, Memory System Characterization of
Commercial Workloads, Proceedings of the 25th Annual International Symposium
on Computer Architecture (ISCA-98), 1998.

3. R. Berrendorf and B. Mohr, PCL — The Performance Counter Library: A Common
Interface to Access Hardware Performance Counters on Microprocessors (Version
2.0), Research Centre Juelich, Central Institute for Applied Mathematics, Septem-
ber 2000.
http://www.kfa-juelich.de/zam/PCL/

® The system instructions constitute only small portion of the overall program size
with the exception of C4.5 with the large data set. For details see Table 1.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

J.P. Bradford and J. Fortes, Performance and Memory-Access Characterization of
Data Mining Applications, Workshop on Workload Characterization, 1998. Work-
shop held in conjunction with the 31st Annual International Symposium on Mi-
croarchitecture.

J.P. Bradford and J. Fortes, Characterization and Parallelization of Decision Tree
Induction, School of Electrical and Computer Engineering, Purdue University,
1999.

S. Browne, J. Dongarra, N. Garner, K. London and P. Mucci, A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware
Counters, Proceedings SC’2000, November 2000.
http://icl.cs.utk.edu/projects/papi/

P. Christen, M. Hegland, O.M. Nielsen, S. Roberts, P.E. Strazdins and I. Altas,
Scalable Parallel Algorithms for Surface Fitting and Data Mining, Elsevier Journal
of Parallel Computing, special issue on Aspects of Parallel Computing for Linear
Systems and Associated Problems, September 2001.

P. Christen, O.M. Nielsen, M. Hegland and P.E. Strazdins, Parallel Data Mining
on a Beowulf Cluster, Accepted by the HPC Asia 2001 Conference, Gold Coast,
Queensland, Australia, September 2001.

B. Clarke, A. Czezowski and P. Strazdins, Implementation Aspects of Sparc V9
Complete Machine Simulator , to appear in ACSAC-2002, the Australasian Com-
puter Systems Architecture Conference, Melbourne, Australia, January 2002.

R. Garg and I. Sharapov, Techniques for Optimizing Applications, SUN Blueprints,
Sun Microsystems Press, 2002.

J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kauf-
mann, 2000.

J.S. Kim, X. Qin and Y. Hsu, Memory characterization of a parallel data mining
workload, in Workload Characterization: Methodology and Case Studies. Based
on the First Workshop on Workload Characterization. IEEE Comput. Soc, Los
Alamitos, CA, USA, 1999.

V. Pai. P. Ranganathan and S. Adve, RSIM: An Ezecution-Driven Simulator for
ILP-Based Shared-Memory Multiprocessors and Uniprocessors, In Proceedings of
the Third Workshop on Computer Architecture Education, February 1997.

S. Parthasarathy, M.J. Zaki and W. Li, Custom Memory Placement for Parallel
Data Mining, Technical Report 653, University of Rochester, Computer Science
Department, 1997.

J.R. Quinlan, Programs for Machine Learning, Morgan Kaufmann, 1993.

M. Rosenblum, S.A. Herrod, E. Witchel and A. Gupta, Complete Computer Sys-
tem Simulation: The SimOS Approach, IEEE parallel and distributed technology:
Systems and applications, vol. 3, no. 4, 1995.

P.E. Strazdins and J.G. Lewis, An Efficient and Stable Method for Parallel Fac-
torization of Dense Symmetric Indefinite Matrices, in Proceedings of the 5th In-
ternational Conference and Exhibition on High-Performance Computing in the
Asia-Pacific Region (HPC Asia 2001), Gold Coast, September 2001.

W.W. Wilcke, Architectural Overview of HaL Systems, in Proceedings of the 40th
IEEE Computer Society International Conference, San Francisco, USA, 1995.

X. Zhang, Z. Zhu and X. Du, Analysis of Commercial Workload on SMP Multi-
processors, Proceedings of Performance’99, August, 1999.

