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Abstract. Modern processors and computer systems are designed to be
eÆcient and achieve high performance with applications that have regu-
lar memory access patterns. For example, dense linear algebra routines
can be implemented to achieve near peak performance. While such rou-
tines have traditionally formed the core of many scienti�c and engineer-
ing applications, commercial workloads like database and web servers, or
decision support systems (data warehouses and data mining) are one of
the fastest growing segments in the high-performance computing mar-
ket. Many of these commercial applications are characterised by complex
codes and irregular memory access patterns, which often result in a de-
creased performance. Due to their complexity and the lack of source
code, performance analysis of commercial applications is not an easy
task. Hardware performance counters allow acquisition of low level, reli-
able data, necessary to perform detailed analysis of program behaviour.
In this paper we describe experiments and present �rst results conducted
with various KDD applications on an UltraSPARC III platform.

1 Introduction

Commercial applications like database and web servers, or decision support sys-
tems (data warehouses and data mining) represent one of the most rapidly
growing segments in the high-performance computing market. While modern
processors and memory systems are designed to be eÆcient and achieve high
performance with applications that have regular memory access patterns (like
dense linear algebra software) they often perform poorly when running commer-
cial applications. Such applications are characterised by complex codes, irregular
memory access patterns and large dynamic data structures.

A rapidly growingmarket segment is KDD (Knowledge Discovery in Databases)
or Data Mining [11], which deals with the analysis of large and complex data
sets. KDD applications combine techniques from machine learning, statistics,
databases and high-performance computing. Tasks involved are data exploration
and preprocessing, clustering, predictive modelling, association rules, decision
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tree induction, and others. A common characteristic of these tasks is that they
are (1) compute intensive, (2) operate on large and complex data sets, and (3) in-
volve irregular memory access patterns due to their dynamic and often recursive
data structures (like hash tables, trees or linked lists). The �rst two characteris-
tics makes them attractive for implementation on high-performance platforms,
especially for shared memory multiprocessors (where all CPUs have access to one
memory system), while the last characteristic is an obstacle for eÆcient system
utilisation and high performance. Traditional compiler optimisation techniques
based on spatial and temporal locality - which proved to be successful for many
scienti�c and engineering applications - cannot successfully be applied for KDD
and related applications.

Hardware performance counters are an easy to use instrument which can
provide reliable data, necessary to perform detailed analysis of application per-
formance behaviour at low level. Such counters are available on most modern
microprocessors, including UltraSPARC, Pentium and Alpha. They can count
various events, including number of loads, stores and oating-point operations,
cache and TLB misses, branch mispredictions, or cycles per instruction. The
number and types of events that can be counted di�er widely on various hard-
ware platforms. However, some core set of events such as memory references and
instructions counts are available on most of the processors. Machine and oper-
ating system dependent libraries (like the Solaris libcpc [10]) provide access
to hardware counters on a speci�c platform and operating system. Platform in-
dependent counter libraries are currently under development in several research
projects. Two such libraries are the Performance Counter Library (PCL) [3]
and the Performance Application Programming Interface (PAPI) [6]. Their aim
is to provide a set of platform independent interfaces to the counters, that al-
low easy portability of programs instrumented with these libraries, and to allow
inter-platform performance comparisons.

In the next section we present some work that has been done previously in
the area of performance analysis of commercial applications, and in Section 3
we present our setup consisting of three freely available KDD applications and
one platform optimised linear algebra routine. We also discuss the data set we
were using. Experiments and �rst results are presented in Section 4, and �nally
we give an outlook on future plans in Section 5.

2 Related Research

There is much ongoing research in dedicated KDD and data mining algorithms
and in their parallel implementations. In contrast, we are only aware of a small
number of publications dealing with the performance analysis of KDD applica-
tions [4, 5, 12, 14]. More work has been done on analysing database servers and
related commercial applications [2, 19]. To our knowledge, no performance analy-
sis of KDD applications has been done using hardware counters. This can partly
be explained by the lack of available source code for KDD applications and, in
the past, lack of user-friendly software interfaces to access hardware counters.



The memory behaviour of a parallel association rule algorithm is discussed
in [14]. The authors looked at custom memory placement scheme and found
that simple schemes (like the di�erent hash tree building blocks being allocated
in a single memory region) can be quite eÆcient improving the execution time
for some data sets up to a factor of two. They state that the data structures
used by association rules algorithms (hash trees and lists) exhibit poor locality,
and the arbitrary allocation of memory makes it diÆcult to detect and eliminate
false sharing. A run time memory allocation library based on the Unix malloc()
library is presented, which allows customised memory allocation.

Memory characteristics of a parallel implementation of the self-organising
map (SOM) neural network model is discussed in [12]. Four characteristics were
examined and compared. First, the working set size (temporal locality), second
the spatial locality and memory block utilisation, third the communication char-
acteristics and scalability, and fourth the TLB performance. The authors use a
simulation tool adapted from the Augmint multiprocessor simulator. They con-
clude that the size of the working set is not sensitive to the number of input
records.

In [4, 5] the popular decision tree induction algorithm C4.5 [15] is analysed in
its memory and parallelisation characteristics. The authors are using RSIM [13]
to simulate three di�erent instruction level parallelism (ILP) processors. One of
their conclusions is that such an algorithm is limited by the memory latency and
bandwidth, and cache size has a signi�cant e�ect on performance as well. In [5]
a parallel version of C4.5 optimised for a ccNUMA architecture is presented and
analysed. This parallel version puts signi�cantly less pressure on the memory
hierarchy, and has a larger working set.

The memory system characteristics of some commercial workloads is stud-
ied in [2]. The authors present detailed performance studies of three di�erent
important classes of workloads: Online transaction processing (OLTP), decision
support systems (DSS) and Web index search. They use monitoring experiments
and SimOS [16] to study the e�ects of architectural variations. One of their
�ndings is that operating system activity and I/O latencies do not dominate the
behaviour of well-tuned database workloads. For OLTP a large o�-chip cache is
in favour, while DSS and the Web index search are primarily sensitive to the
size and latency of on-chip caches.

The performance analysis of the TPC-C benchmark on a four-processor Pen-
tium based SMP is presented in [19]. The authors analytically model the per-
formance and then validate their results with simulations (using SimOS ) and
hardware counter experiments. They conclude that experimentally based evalu-
ation of complex commercial applications is time consuming, and that analytical
modelling is a feasible alternative.

3 Applications and Data Sets

We choose three KDD applications and one vendor optimised linear algebra
code for hardware counter performance analysis using libcpc [10] on a Ultra-



SPARC/Solaris platform. We only counted events in the core computation rou-
tines, i.e. without �le in- or output. The programs we analysed use mainly text
�les (which is generally slow). Commercial versions of such programs would ei-
ther read data from binary �les or access them directly from a database server.

3.1 Decision Tree Induction { C4.5

The freely available popular decision tree induction program C4.5 1 [15] was
chosen as a typical KDD application. This application has already been analysed
in its memory access behaviour using a machine simulator [4, 5].

C4.5 is written in ANSI C, it reads data from a text �le and then builds
a decision tree. Only the tree building routine, i.e. the function BestTree(),
was analysed, with the complete primary data set (the table loaded from disk)
stored in memory. This data is stored in an array with pointers to vectors, with
each vector (one data record) having a length corresponding to the number of
attributes. Every element in this vector consists of a short and a float variable.
In the case of a categorical type attribute, the category number is stored as a
short, while a continuous attribute (a real number) is stored as a float. Thus
one of the two variables is always unused. The decision tree is a complex recursive
data structure that is built dynamically in the tree building routine.

3.2 Association Rule Induction { APRIORI

Mining association rules is a popular data mining algorithm. It is for example
used to analyse market basket data to �nd frequent item sets and extract rules
like `if a customer buys milk then he will most likely also buy cheese.' For our
performance analysis we use a freely available implementation2 of the APRIORI
algorithm [1]. An older version of this program is incorporated in the data mining
tool Clementine 5.0. The program is written in C, it reads a text �le with
transactional data and writes the resulting rules either into a text �le or prints
them. The items in the input transactions are stored in a vector data structure
as integer numbers. Once all data is loaded, the items are sorted with descending
frequency, and a pre�x tree is built, which is then modi�ed and updated for item
sets of increasing length. Besides pointers to parent and (variable number of)
child nodes, the pre�x tree contains a counter vector, stored as integer numbers.
Once all frequent item sets are found, they are sorted and the extracted rules
are printed or saved.

3.3 Additive Models { ADDFIT

The ADDFIT algorithm [7] was developed by the ANU Data Mining3 group and
implemented sequentially and on distributed memory platforms (using C/MPI) [8].

1 http://www.cse.unsw.edu.au/�quinlan/
2 http://fuzzy.cs.uni-magdeburg.de/�borgelt/software.html
3 http://datamining.anu.edu.au



This algorithm builds an additive model of the data by assembling a dense sym-
metric linear system in a �rst step, which is then solved in a second step using
either a sequential or parallel solver [8, 17]. For the performance analysis we are
not interested in the �rst step, as it involves reading the data from (binary) �les
once and assembling each data record into a matrix at data dependent locations.
The primary data structure (the records from disk) is loaded and then the as-
sembly is started. Only the assembly routine is analysed. The data dependent
assembly results in irregular memory access patterns. For each continuous at-
tribute in a data record four non-zero values are added into the matrix, while
for a categorical attribute only one value is added. The locations where these
values are added are data dependent and can be anywhere in the matrix. As
the assembled linear system is symmetric, only a dense upper triangular matrix
with corresponding vector is allocated, whereby each entry is a double sized
oating-point value. The size of this linear system is determined by the number
of categories for categorical and the resolution of the model for continuous at-
tributes, but it is completely independent from the size i.e., number of records,
in the primary input data.

3.4 Dense Matrix-Matrix Multiplication { BLAS (SUNPERF)

To allow a comparison with a platform optimised application with regular mem-
ory access patterns we also instrumented a dense matrix-matrix multiplication
(the BLAS routine dgemm() as implemented in Sun's SUNPERF library) with
calls to the libcpc hardware counter library. The dgemm() routine is typically
used in the core of various scienti�c and engineering applications. For the per-
formance analysis two Hilbert matrices were created and dense matrix-matrix
multiplications of two such matrices were performed and analysed.

3.5 Data Sets and Data Structures

For C4.5 and ADDFIT we used the Census-Income data set which is freely
available from the UCI KDD Archive4. This data consists of a training �le which
contains 199 523 records and a test set with 99 762 records. For our purpose we
concatenated both �les into one to get large enough test data. The Census-
Income data set contains 5 continuous and 37 categorical attributes.

For APRIORI we created synthetic data sets of various size and complexity
as described in [1]. For the tests we then chose a smaller data set with 10 000
records and a larger one with one million records.

The primary data structures used by the KDD applications hold the input
data. They are mainly arrays or vectors, and their size and dimension usually
increases linearly with the size of the input data set. In the case of ADDFIT,
this data is only used once, i.e., each data record is access once, but for C4.5
and APRIORI usually several iterations over the input data are needed, each
accessing the primary data structure.

4 http://kdd.ics.uci.edu/



Table 1. Program and Test Characteristics

Program BLAS (SUNPERF) ADDFIT
small medium large small large

Data 209� 209 660� 660 2090 � 2090 Census with Census with
matrices matrices matrices 10,4858 records 209,715 records

Run time 0.075 sec 1.255 sec 44.5 sec 1.3 sec 7.4 sec
Iterations 100 10 1 10 10
Heap size 1,024 KB 10,240 KB 102,400 KB 10,024 KB 90,408 KB
User code 98:54% 99:16% 98:90% 99:89% 98:85%

Program APRIORI C4.5
small large small large

Data T5I4D10K with T10I8D1000K with Census with Census with
10,000 records 1,000,000 records 8,322 records 266,305 records

Run time 3.1 sec 42 sec 3.2 sec 423 sec
Iterations 10 1 5 1
Heap size 19,776 KB 70,512 KB 3,960 KB 62,152 KB
User code 97:98% 98:53% 99:61% 76:24%

The secondary data structures built by the KDD applications, { the decision
tree in C4.5, the pre�x tree in APRIORI, and the dense matrix used by ADDFIT
{ are not directly proportional to the size of the input data. Rather, they are
data dependent (e.g. a C4.5 decision tree) or their size is determined by some
parameters (e.g. model resolution in ADDFIT ). The size of the pre�x tree built
by APRIORI depends both on the data as well as on parameters like support
and con�dence[1], which have to be set by the user. It is therefore very hard to
specify the amount of memory a KDD application will use.

4 Results

The presented experiments were conducted on a Sun Blade 1000 workstation
with two UltraSPARC III processors running at 750 MHz, and having 2 GBytes
of main memory. The Level-2 cache (E-Cache) of the machine is 8 MBytes, while
the Level-1 Data cache (D-Cache) is 64 KBytes and the Level-1 Instruction cache
(I-Cache) 32 KBytes. The measurements were performed on a single processor
which was fully reserved for our application. Other processes, including system
related processes, were scheduled to run on the remaining processor. Table 1
shows the characteristics of the test programs and data sets we used. All results
for a given program/data set pair presented here are averaged over the number
of iterations as listed in the table.

We have conducted measurements in the user, system and combined domains.
As only a very small percentage of the execution time is spent in the system mode
we show only user (usr) and combined (all) results.
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4.1 Memory Allocation and Overall Performance

The maximal allocated memory for data (the heap size) is listed in Table 1.
While BLAS and ADDFIT allocate all the memory they need (basically the
dense matrices plus some bu�ers for input and temporary data) at the beginning,
both APRIORI and C4.5 dynamically allocate smaller memory blocks at run
time. Figure 1a shows the heap sizes of C4.5 and APRIORI as measured with
the Unix command pmap for the larger test data sets. Two phases are clearly
distinguishable, the �rst is loading the input data (steeper slope of the graphs),
while the second is computing the decision tree or the frequent item sets (pre�x
tree), respectively. Such dynamic memory allocation and re-allocation results in
many system calls and also prevents good data locality.

MIPS and MFLOPS are popular measures to show the overall performance
mainly for scienti�c and engineering codes. In Figure 2 one can clearly see that
only the BLAS dense matrix-matrix multiplication is actually dominated by
oating-point operations. The three KDD programs do mainly integer and other
operations, which is what one can expect from applications working on strings
and integer numbers. It is also interesting to see that for all four applications
the MIPS numbers decrease with larger input data sizes (except BLAS having
a peak performance with a medium sized matrix).
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Fig. 4. Level-2 Cache and Data TLB miss rates

4.2 Cache Performance

Irregularity of the memory access patterns for the KDD applications is apparent
when we compare Level-1 and Level-2 cache miss rates for BLAS and C4.5 as
presented in Figure 1b. For BLAS the average Level-1 and Level-2 miss rate is
around 2.5% and 0.6% respectively and is maintained at such level through the
duration of the computations. The same miss rates for C4.5 exhibit very large
uctuations with some values for Level-1 cache misses being as high as 40%.
This \fatal" cache utilisation is the major cause of such poor performance of all
three KDD applications, presented in Figure 2, and C4.5 in particular.

As can be seen form Figure 3 the data cache miss rate is approximately two
orders of magnitude higher than the instruction cache miss rate. Small I-Cache
miss ratio is typical for applications with low branch rate. The branch rate for
BLAS is around 5 times less than for C4.5 and this is clearly reected in I-Cache
miss rate measured in the user domain.

The highest data cache miss rates can be seen for APRIORI and C4.5. This
is due to the erratic memory access patterns. While, for KDD applications, the
data cache miss rate generally increases with larger input data sets, it remains
nearly constant for BLAS.

The large discrepancies between user and combined (sys+usr) domains in
I-Cache misses results, indicates, high I-Cache miss rate in the system domain.



Although, this has little bearing on the overall performance of applications being
tested5, we have established that infrequent system calls are the main reason for
this.

The measurements for the Level-2 (external) cache as well as for the data
translation look-aside bu�er (TLB) in Figure 4 show again that the system Level-
2 miss rate is much higher than the user miss rate. Interesting to see is the high
rate both Level-2 as well as D-TLB misses for C4.5 with the large data set. This
has to be due to the sorting of entire categorical attributes (using recursive quick-
sort) in C4.5, which results in almost no locality for data access. The instruction
TLB miss rate (not shown here) is less than 0.02% for all applications.

5 Outlook

In this paper we presented �rst experiments of analysing KDD applications with
hardware counters on an UltraSPARC III platform. To better understand the
memory access characteristics of KDD applications further experiments with var-
ious data sets and other hardware event counters are needed. Running KDD ap-
plications on a machine simulator e.g., SPARC Sulima [9], will allow us to change
parameters of the architecture and thus help to �nd bottlenecks in such applica-
tions. We are also planning to conduct similar experiments on a Fujitsu Prime-
power SPARC server. The HAL SPARC [18] processor in the Primepower allows
simultaneous counting of more hardware events than the SUN UltraSPARC-III
processor by dedicating one register to each event being counted.
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