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Visual Permutation Learning

Rodrigo Santa Cruz  Basura Fernando Anoop Cherian  Stephen Gould

Abstract—We present a principled approach to uncover the structure of visual data by solving a deep learning task coined visual
permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In
the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation
matrix. Permutation matrices are discrete, thereby posing difficulties for gradient-based optimization methods. To this end, we resort to
a continuous approximation using doubly-stochastic matrices and formulate a novel bi-level optimization problem on such matrices that
learns to recover the permutation. Unfortunately, such a scheme leads to expensive gradient computations. We circumvent this issue

by further proposing a computationally cheap scheme for generating doubly stochastic matrices based on Sinkhorn iterations. To
implement our approach we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is
demonstrated on three challenging computer vision problems, namely, relative attributes learning, supervised learning-to-rank, and
self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for
relative attributes learning, chronological and interestingness image ranking for supervised learning-to-rank, and competitive results in
the classification and segmentation tasks of the PASCAL VOC dataset for self-supervised representation learning.

Index Terms—permutation learning, self-supervised learning, relative attributes, representation learning, learning-to-rank.
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1 INTRODUCTION

ACHINE learning algorithms often use the structure of
data in order to provide accurate and efficient solutions
to difficult problems. For instance, in supervised learning-to-rank,
list-wise methods exploit structural information beyond pairs of
samples in order to learn better rankers [10]. Structured prediction
models such as CRFs [40] and Structured SVMs [71] explicitly
model what structural information should be exploited by the
learning algorithm. Therefore, we can say that the structural infor-
mation implicit in data is crucial to machine learning applications.
Similarly, visual data encompasses rich spatial (and temporal)
structure, which is often useful for solving a variety of problems.
For instance, surrounding background usually offers strong cues
for object recognition, sky and ground usually appear at pre-
dictable locations in an image, and objects are made up of known
parts at familiar relative locations. Such structural information
within visual data has been used to solve several problems, such
as object detection and semantic segmentation [51, 62, 49].
Following these ideas, we present a learning framework that
uses the inherent structure in data to solve visual recognition tasks.
As an example, consider the task of assigning a meaningful order
(with respect to some visually salient attribute) to the images
shown in the left panel of Figure 1. Indeed, it is difficult to solve
this task by just processing a single image or even a pair of images
at a time where extracting visual cues related to the attributes is
limited. The task becomes feasible, however, if one exploits the
structure and the broader context by considering the entire set of
images jointly. Only then do we start to recognize shared patterns
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Fig. 1. lllustration of the proposed permutation learning task. The goal of
our method is to jointly learn visual features and the predictors to solve

the visual permutation problem. This can be applied to ordering image
sequences (left) or recovering spatial layout (right).

that could guide the algorithm towards a solution. A similar task
involves recovering the spatial structure in images. For example,
consider the task shown in the right panel of Figure 1. Here we
ask the question “given shuffled image patches, can we recover
the original image?”. Although this is a difficult task (even for a
humans), it becomes straightforward once we identify the object in
the patches (e.g., a cat), and arrange the patches for the recognized
object, thereby recovering the original image.

Such shuffled images can be generated cheaply and in abun-
dance from natural images. The problem of recovering the original
image from shuffled ones can be cast in an unsupervised learning
setting. Here the recovery task does not require any human
annotations (and is thus unbiased given sufficient data [70]).
Instead it uses the spatial structure as a supervisory signal. Such
a learning task is commonly known as self-supervised learn-
ing [14, 23, 50, 53, 54, 24], and is very useful to learn rich features,
especially in the context of training deep learning models, which
often require large amounts of annotated datasets.

In this self-supervised context, Doersch et al. [14] show that
the spatial layout of objects is a strong supervisory signal to learn
transferrable image representations, while others [53, 50, 43] cast
the problem of recovering the original image from shuffled ones
as the prediction of a subset of permutations of image regions.
Our current work reformulates the “unshuffling” problem allowing
new applications and overcoming limitations of existing methods.
More specifically, Misra et al. [S0] model the problem via binary
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classification and learn to discriminate between correct and incor-
rect permutations of a sequence. Noroozi and Favaro [53] learn
a multi-class classifier to distinguish between a few prototype
permutations selected by a clustering procedure. Similarly, Lee
et al. [43] formulate a multi-class problem on pairwise features.
While making good progress towards the goal of recovering
order, these approaches fail to consider structural information
beyond pairs or subset of samples. Differently, we explore the
entire structure of natural images encoded as sequences of image
patches using a permutation prediction scheme which allows us
to efficiently represent all possible permutations of the image
regions.

As is clear, the aforementioned tasks essentially involve learn-
ing a function that can recover the order, i.e., infer the shuffling
permutation matrix (see Figure 3). In learning such a function
the model needs to infer the scene structure, visual attributes,
or semantic concepts in visual data. Moreover, the knowledge
acquired using such a learning framework could then be used to
solve many other computer vision tasks, such as image ranking
[22], image reconstruction [8], and object recognition [51].

Likewise, many machine learning applications can be de-
scribed by the aforementioned permutation learning framework.
For instance, the list-wise learning-to-rank problem [77] can be
seen as a scheme to predict the correct permutation of a random
set of samples given some criteria. Recommendation problems can
be cast as selecting a subset of items permuted according to the
users’ profiles. In archeology, broken relics may be re-assembled
by permuting fragments[8]. Therefore, a well defined learning
framework for such a task would benefit different applications.

However, learning the correct permutation that shuffled the
data is challenging. First, enumerating every possible permutation
for a given set is usually infeasible since the number of permu-
tations scales factorially with the cardinality of the set. As such,
naively learning discriminative functions over enumeration of per-
mutations is prohibitive. Second, a large amount of data is required
to effectively learn the variations of a permutation problem, which
requires more computational resources and efficient methods.

In this paper, we address the problem of learning to predict
visual permutations. Towards this end, we propose a novel permu-
tation prediction formulation and a model based on convolutional
neural networks that can be trained end-to-end. This allows us to
learn image representations suitable for predicting permutations
and to exploit the structure existent in the data. Moreover, our
formulation admits an efficient solution and allows our method to
be applied to a range of important computer vision problems.

Our contributions are threefold. First, we propose the Visual
Permutation Learning problem as a generic task to learn structural
concepts intrinsic to natural images and ordered image sequences.
Second, we formulate such a problem as the prediction of the
permutation matrix that recovers the structure of the data from
shuffled samples of it. Since permutation matrices are discrete, we
extend our formulation to their nearest convex surrogate, doubly-
stochastic matrices. From this proposed formulation, we develop
an exact solution by deriving and solving a bi-level optimization
problem and an approximated solution by using the iterative
procedure Sinkhorn normalization. Last, we propose the Deep-
PermNet model, a end-to-end learning framework to solve the
visual permutation problem using convolutional neural networks.
Since our approaches are defined over continuous matrices and
differentiable functions, the proposed model can be efficiently
learned via backpropagation and stochastic gradient descent.
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Initially, we evaluate how well our model can learn to predict
permutation matrices from shuffled image sequences. We observe
that our model can leverage the structure of large sequences to
infer the shuffling permutation, while naive approaches are only
able to explore small sequences. With our proposed approach
validated, we apply our DeepPermNet model to three different
applications: relative attributes, image ranking and self-supervised
representation learning.

In Section 5.3, we demonstrate that our proposed approach
can be used to compare images according to visual attributes by
predicting permutations of unordered sets of images. We evaluate
this strategy on the relative attributes task where we outperform
state-of-the-art methods on the Public Figures and OSR datasets
[57]. We also notice that our model is able to localize attributes
without any explicit supervision.

In Section 5.4, we extend our inference for image sequences
of arbitrary length by predicting permutations of fixed-length
subsequences and aggregating the results with a sorting algorithm.
Using this approach, we evaluate our model on learning-to-rank
applications such as ranking scenes according to how interesting
they look [30] and ranking cars according to their manufacturing
date [44]. In both applications, we outperform the state-of-the-art
methods in all utilized ranking metrics.

In Section 5.5, we show that our proposed formulation can be
used to learn features in a self-supervised manner by exploring
the structure and visual priors of natural images. Using our
formulation as a self-supervised representation learning method,
we achieve performance similar to the state-of-the-art methods
on object classification, detection and segmentation on the Pascal
VOC dataset [18, 17].

The current manuscript is an extension of the work Santa Cruz
et al. [61] and it differs in the following ways. First, we present
a deeper literature review and a preliminary section on topics
important to the development of our framework in Sections 2 and
3, respectively. Second, in Section 4.3.1, we extend the visual
permutation learning framework through bi-level optimization
exploring an optimum solution to the doubly-stochastic matrix
approximation. We also evaluate how such solutions impact upon
applications performance. Last, in Section 5.4, we introduce a new
application of our method that validates the effectiveness of our
proposed model for long sequences.

2 RELATED WORK

Broadly speaking, the permutation learning problem consists of
learning a meaningful order for a collection of images based on
some predetermined criterion. Variations of this task have been
studied extensively by many scientific communities. In computer
graphics, the jigsaw puzzle problem consists of reconstructing an
image by a set of puzzle parts [11, 65]. In the same fashion,
structured problems including DNA or RNA modeling in biology
[48] and re-assembling relics in archeology [8], can be modeled
as permutation learning problems. Although in this paper we limit
our scope to computer vision, and review below topics that are
relevant to the applications considered in the sequel.

Visual Attributes. Visual attributes are human understandable vi-
sual properties shared among images. They may range from simple
visual features (such as “narrow eyes” and “bushy eyebrows” in
faces) to semantic concepts (like “natural” and “urban” scenes),
or subjective concepts (such as “memorability” and “interesting-
ness” of images). Due to the expressiveness of visual attributes,
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researchers have successfully used them for many applications,
including image search [38], fine-grained recognition [7], and
zero-shot learning [57, 41].

Visual attributes are traditionally treated as binary predicates
indicating the presence or absence of certain properties in an
image. From this perspective, most of the existing methods use
supervised machine learning, whose goal is to provide mid-level
cues for object and scene recognition [19], or to perform zero-shot
transfer learning [41].

However, there are also methods that can discover binary
visual attributes in an unsupervised way [64, 31]. Huang et al.
[31] use unsupervised discriminative clustering and cluster mem-
bership as a soft form of supervision to discover shared attributes.
In contrast, our formulation directly learns the properties of visual
attributes in a data driven manner in a single end-to-end trainable
network by using the entire structure of the data.

A more natural view on visual attributes is to measure their
strength in visual entities. For instance, Parikh and Grauman [57]
introduced the problem of relative attributes, in which pairs of vi-
sual entities are compared with respect to their relative strength for
any specific attribute. This problem is usually cast as a learning-
to-rank problem using pair-wise constraints. Following this idea,
Parikh and Grauman [57] propose a linear relative comparison
function based on the well-known Rank-SVM [35], while Yu and
Grauman [80] uses a local learning strategy.

With the recent success of deep learning methods in com-

puter vision, CNN-based methods to tackle the relative attributes
problem have been developed. Souri et al. [69] jointly learn
image representation and ranking network to perform pair-wise
comparisons according to a certain attribute. Similarly, Singh and
Lee [67] propose to combine spatial transformer networks [33]
and rank networks to localize, in addition to compare visual
attributes. Differently from our proposed approach, the afore-
mentioned methods use only pair-wise relationships and do not
leverage structure within longer image sequences.
Supervised Learning-to-Rank. The objective of supervised
learning-to-rank is to learn how to order an unseen sequence
from a training set of correctly ordered sequences according to
some predefined criterion. This topic has been explored by the
scientific community with applications in active learning [46],
zero-shot learning [57] and person re-identification [73]. In this
paper, however, we will focus on image ranking where the goal is
to order sequences of images according to some visual criterion.

Learning-to-rank algorithms can be categorized by the way
they process the training sequences. Point-wise methods [12] learn
from individual elements in the sequence and are easy to train,
but prone to over-fitting. Pair-wise methods [35, 63] formalize
the learning task as classification of pairs into correctly and
incorrectly ordered pairs. They are efficient, but limited to ranking
information of training pairs. List-wise methods [10, 78] optimize
objective functions defined over entire sequences. However, they
are more computationally expensive, yet very effective because
they are able to explore the structural information present in the
training sequences. Recently, Fernando et al. [22] introduced an
approach between pair-wise and list-wise methods that explores
subsequences in order to learn a global ranking function. Our
proposed method belongs to this family of rankers, however, our
method is CNN based and is able to learn image representations
and ranking function jointly from the pixel data.

Self-Supervised Representation Learning. The main idea of
self-supervision is to exploit supervisory signals, intrinsically in
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the data, to guide the learning process. In this learning paradigm, a
model is trained on an auxiliary task that provides an intermediate
representation that can be used as generic features in other tasks.
In deep learning, these approaches are well-suited as a pre-training
procedure in situations when there is not sufficient data to support
fully supervised learning [26, 47].

Self-supervised learning has attracted a lot of attention recently
and many methods have been proposed by the computer vision
community. The only common objective of these methods is to
learn visual representations without human supervision, and they
differ greatly in the proposed pretext task and supervisory signal.
For example, Doersch et al. [14] use spatial co-location of patches
in images, Wang and Gupta [74] use object tracking in videos
to provide similar representations for corresponding objects, Fer-
nando et al. [23] use odd-one-out question answering, Pathak
et al. [58] explore image context to recover missing parts in an
image, Pathak et al. [59] exploit low-level motion-based grouping
cues, Noroozi et al. [54] propose to count visual primitives in
images, and Gidaris et al. [24] explore geometric transformations
of images like 2d rotations. In contrast, our proposed method is
generic and can be used to solve a broader set of problems.

On the other hand, there are pretext tasks that can be useful
themselves. Isola et al. [32] learn to group visual entities based
on their frequency of co-occurrence in space and time. Zhang
et al. [81] propose a model to provide plausible color versions for
grayscale images. Donahue et al. [16] build a generative model
for natural images. Note, however, that these methods are highly
engineered for their training task and they can not be easily
extended to deal with other applications. On the other hand, our
method is a general framework able to solve different problems.

A recent work closely related to ours is Noroozi and Favaro
[53] that also proposes to train CNNs for solving image-based
jigsaw puzzles. However, different from us, they train a CNN to
predict only a tiny subset of possible permutations generated from
an image shuffling grid of size 3 x 3 (specifically, they use only
100 permutations from the set of 362k possible permutations).
Lee et al. [43] propose similar schema to order sequences of
frames in videos. Our method, instead, can handle the full set
of permutations and is scalable to finer shuffling grids (e.g., 4 x 4,
5 X 9, and so on). In addition, our scheme is generic and can also
be used to solve different kinds of learning-to-rank problems.

3 PRELIMINARIES

In this section, we review the following background topics that
we use in the subsequent sections for deriving our model for
permutation learning: permutation matrices, doubly stochastic
matrices and bi-level optimization.

3.1

In matrix theory, a permutation matrix is a binary square matrix
that has exactly a single unit value in every row and column, and
zeros elsewhere. These matrices are used to compactly represent
permutations of elements in an ordered sequence. For instance,
given an ordered sequence S = (ai,...,a,) of n elements
any permutation 7 : {1,...,n} — {1,...,n} can be uniquely
represented by a permutation matrix P,. Furthermore, if we
describe the original ordered sequence as a column vector, then
any desired permutation 7 can be obtained by a simple matrix-
vector multiplication,

Permutation Matrices

S, =P S (1)
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Fig. 2. Far Left: lllustration of Birkhoff polytope for n x n permutation matrices. From left to right: Boxplots of approximation error for the Sinkhron-
Knopp algorithm applied on nonnegative random matrices of size 3x3, 6x6 and 9x9, respectively.

where P; is formed by swapping the rows of the identity matrix
according to the desired permutation 7r.

The set of n X n permutation matrices is a subgroup in the
group of nonsingular matrices in R”*™ with cardinality n!. These
matrices have very interesting and useful properties. For instance,
permutation matrices are closed under multiplication, that is, the
product of two permutation matrices is again a permutation matrix
representing the combined permutation. Likewise, the inverse of a
permutation matrix is the inverse permutation, i.e., the permutation
that recovers the original sequence from the permuted sequence,
that can be efficiently computed by P~ = PT (orthogonality).

3.2 Doubly Stochastic Matrices

A nonnegative matrix with the property that all its rows sum to
one, is said to be a row stochastic matrix. Likewise, its transpose
is said to be column stochastic matrix, since all its columns sum
to one. A matrix that is simultaneously row and column stochastic
is said to be a doubly stochastic (DSM). Mathematically, the
requirements for a matrix A € R™*™ be doubly stochastic are,

Ai; >0, Al1=1, AT1=1, )
where 1 is an n-dimensional column vector of ones.

Permutation matrices are doubly stochastic matrices. In fact,
according to the Birkhoff-von Neumann theorem [4, 72], any
doubly stochastic matrix is a convex combination of finitely many
permutation matrices. Thus, the set of n X n DSMs forms a convex
hull for the set of n X n permutation matrices, known as the
Birkhoff polytope B". Consequently, it is natural to think of DSMs
as convex relaxations of permutation matrices. Figure 2 illustrates
the geometry of the Birkhoff polytope.

Doubly stochastic matrices, as well as permutation matrices,
have a prominent history in engineering ranging from cryptogra-
phy to topics in communication theory [9]. And approximating
doubly stochastic matrices is a key problem in many applica-
tions. Here, we briefly demonstrate two efficient and principled
approaches to fulfill such tasks. In later sections, we explain how
these approaches can be applied in gradient based learners to solve
our proposed permutation learning problem.

3.2.1 The Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp [68] theorem states that if A is a real
nonnegative squared matrix and has total support, then there exists
a doubly stochastic matrix @ of the form,

Q = DiAD, 3)

where D; and D, are diagonal matrices with positive main diag-
onals. Furthermore, there is a simple iterative procedure known as

Sinkhorn Normalization, which can find D; and D,. by repeatedly
rescaling the rows and columns of a given matrix.

Knight [37] analyzes the convergence guarantees of Sinkhorn-
Knopp algorithm. The author states that for a matrix A with entries
in [1,V], O(V |loge|) iterations suffice to reach e-near double
stochasticity. However, we noticed empirically that only a few it-
erations are sufficient to reach acceptable approximations for most
of the problems that we consider. Figure 2 shows empirical results
for approximating DSMs from nonnegative random matrices of
sizes 3 X 3, 6 x 6 and 9 x 9 using the Sinkhorn-Knopp algorithm.
We find it to converge to an acceptable accuracy in approximately
4-6 iterations in most cases.

3.2.2 Norm Approximation

Norm approximation is a well known problem in the field of
convex optimization [6]. The goal of the norm approximation
problem is to approximate a vector, matrix, or space, as closely
as possible, with deviation measured in the norm ||-||. Then, we
can cast the doubly stochastic approximation problem as a norm
approximation problem.

Formally, given an arbitrary matrix A € R™ ™, its closest
doubly stochastic matrix () € B™ can be obtained by solving the
following problem,

minimize [|Q — Al

Q c Ran

subjectto Q1=1 S
QT1=1

which is a convex problem. Thus, the solution is globally optimal.
Moreover, it can often be stated as a quadratic program (QP) which
can be solved efficiently by most publicly available solvers [29].

3.3 Bi-level Optimization

Given our interest in learning end-to-end models and solving
DSMs approximation problems optimally in the derivation of our
visual permutation learning framework, we need to deal with a
bi-level optimization problem. We describe our specific problem
in details in Section 4.3.1. Here we present a generic formulation
for bi-level optimization problems and discuss how to solve them.

A bi-level optimization problem consists of an upper problem
and a lower problem, whose objectives (and constraints) share a
set of variables. More specifically, the former defines an objective
over two sets of variables, say « and y, and the latter binds y
as an optimization problem parametrized by . We can state the
problem mathematically as,

minimize f (z,y)
xT
subject to  y € argmin h (z,y’) ©)
y/
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where f and h are the upper and lower level objectives, respec-
tively. Recently, bi-level optimization problems have found appli-
cations in machine learning and computer vision where they have
been applied to hyper-parameter learning [75], image denoising
[55], and video activity recognition [21].

We can solve such a problem by rewriting it as an equivalent
single-level problem. This can be done by replacing the lower-
level problem with an analytical solution (e.g., normal equations
for a least-square problem) or a set of sufficient conditions for
optimality (e.g., the KKT for convex problems). Then, the bi-level
problem can be solved using the resulting single-level problem.
However, for many lower-level problems either an analytical
solution does not exist or the optimality conditions are hard to
express. Furthermore, the resulting problem may be hard to solve.

However, if the lower-level problem can be solved efficiently,
and there exists a method for finding the gradient at the current
solution, we can solve the bi-level optimization problem via
gradient descent. The main idea is to compute the gradient of
the solution to the lower-level problem with respect to variables in
the upper-level problem and perform updates of the form,

x%z—a(a—f—kﬂ@)

Oor Oy Ox ©

(z,y*)

Note that the partial derivative % may be difficult to compute,
since it typically involves a parametrized argmin or argmax op-
timization problem. For a detailed explanation about procedures
to differentiating such problems, we refer the readers to Faugeras
[20] and Gould et al. [28].

4 LEARNING VISUAL PERMUTATIONS

In this section, we describe our method for learning visual permu-
tations. We start by formalizing the visual permutation learning
task. Then, we describe our end-to-end learning algorithm, deep
learning model, and inference procedure. We finalize this section
by discussing alternative approaches to our method.

4.1 Task

Let us start by considering the tasks illustrated in Figure 3. Given a
sequence of images ordered by a pre-decided visual criterion, for
instance “smiling” (left) or spatial structure (right), we generate
shuffled sequences by applying randomly sampled permutation
matrices to the original sequences. Similarly, we can recover the
original sequences from the shuffled ones by “un-permuting” them
using the inverse of the respective permutation matrices. In this

context, we define the visual permutation learning task as one that
takes as input a permuted sequence and produces as output the
permutation matrix that shuffled the original sequence.

Formally, let us define X to be an ordered sequence of [
images in which the order explicitly encodes the strength of some
predetermined criterion c. For example, ¢ may be the degree of
“smilingness” in each image. In addition, consider an artificially
permuted version X where the images in the sequence X are
permuted by a randomly generated [ X [ permutation matrix
P. Formally, the permutation prediction task is to predict the
permutation matrix P from a given shuffled image sequence X
such that P~ = PT recovers the original ordered sequence X.

We hypothesize that deep models trained to solve this task
are able to capture high-level semantic concepts, structure, and
shared patterns in visual data (In Section 5, we provide empirical
evidence supporting this hypothesis). The ability to learn these
concepts is important to perform well on the permutation predic-
tion task, as well as to solve many other computer vision problems.
Therefore, we posit that the features learned by our models are
transferable to other related computer vision tasks as well.

Note that we describe our problem using only ordered se-
quences. This may seem a limitation, since structured information
may be better represented by higher dimensional data. However,
most of the time these higher order representations can be effi-
ciently encoded as ordered sequences. For instance, the placement
of 2-D image regions can be represented as an ordered sequence,
where every position in the sequence is mapped to a distinct
position in the 2D layout. Therefore, the proposed task can be used
to solve different problems encoded in terms of ordered sequences.

4.2 Learning

With the visual permutation learning task described, we now
focus on how to solve such a problem. We define a training set
D= {(X,P)| X € 8 and VP € P'} composed by tuples of
ordered image sequences X and permutation matrices P. Here,
S¢ represents a dataset of ordered image sequences, orderings
implied by a predetermined criterion c. Each X € S€ is composed
of X = (I1, I2,...,I;), an ordered sequence of images I;. The
notation P! represents the set of all / x [ permutation matrices.
Accordingly, the training set D is composed of all shufflings of
each X by all P. Note that given an ordered X, such a dataset
can be generated on-the-fly by randomly permuting the order, and
the size of such permuted sets scales factorially on the sequence
length [, providing a huge amount of data with low processing and
storage cost to train high capacity models.
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Fig. 4. DeepPermNet Architecture. It receives a permuted sequence of images as input. Each image in the sequence goes trough a different branch
that follows the AlexNet [39] architecture from conv1 up to fc6. Then, the outputs of fc6 are concatenated and passed as input to fc7. Finally, the
model predictions are obtained by applying the Sinkhorn Layer on the outputs of fc8 layer.

Directly working with permutation matrices for deriving
gradient-based optimization solvers is difficult as such solvers
often start with an initial point and iteratively refines it using
small steps (stochastic updates along gradient directions) towards
an optimum. In this respect, working directly with discrete per-
mutation matrices is not feasible. Thus, in this work, we propose
to approximate inference over permutation matrices to inference
over their nearest convex surrogate, the set of doubly-stochastic
matrices. As discussed in Section 3, it is natural to think of DSMs
as relaxations of permutation matrices.

Following these ideas, we propose to learn a parametrized
function fg : S¢ — B! that maps a fixed length image sequence
(of length [) denoted by X to an [ x [ doubly stochastic matrix Q).
In the ideal case, the matrix () should be equal to P. Then, our
permutation learning problem can be described as,

S A(Pf)+

(X,P)eD

R(0),

minimize
0

)

where X is the image sequence X permuted by the permutation
matrix P, A(-,) is a loss function, 6 captures the parameters
of the permutation learning function, and R(6) regularizers these
parameters to avoid overfitting.

4.3 Model

Having the task and learning objective defined, here we focus on
the parametrization of the function fy (). Note that we wish to
learn the image representation that captures the structure behind
our sequences and also solves the permutation problem jointly. As
such, the function fy(-) should learn intermediate feature repre-
sentations which encode semantic concepts about the input data.
We propose to implement the function fy(-) as a convolutional
neural network (CNN), which is able to exploit large datasets and
learn valuable visual features, that can be used as intermediate
representations, while jointly learning the required mapping.

More specifically, we use a Siamese type of convolutional
neural network in which each branch receives an image from a
permuted sequence X (see Figure 4). Each branch up to the first
fully connected layer fc6 uses the AlexNet architecture [39]. The
outputs of fc6 layers are concatenated and given as input to fc7.
All layers up to fc6 share the same set of weights. We refer to our
proposed model as DeepPermNet.

Note that, if we ignore the structure of permutation matrices,
this problem can have many different naive and infective solutions
which we discuss later in Section 4.5. However, incorporating the
inherent structure of permutation matrices can avoid the optimizer

from searching over impossible solutions, thereby leading to faster
convergence and better solutions. Thus, in the sequel, we discuss
approaches for the permutation learning problem that explore
the geometry of permutation matrices (using doubly-stochastic
approximations).

4.3.1 Bi-level Optimization

Note that we wish to provide the closest doubly stochastic matrix
Q € B from an arbitrary matrix Q € RV, e.g., CNN outputs. A
principled way to achieve such a objective is to define and solve
a convex quadratic program (QP). In this way, we can restate our
learning problem in Equation 7 as,

> A(PQ)+R(O)

(X,P)eD

miniemize
3

subject to Q € argmin
QeB!

|@-fa%)],

where B! is the Birkhoff polytope.

This formulation is an instance of a bi-level optimization
problem discussed in Section 3. Here, the loss minimization is
the upper problem and the doubly stochastic approximation is
the a lower problem. Furthermore, this formulation is well suited
for gradient-based optimization methods, provided that we can
compute the gradient of the argmin function in our lower level
problem as other authors observed [15, 55, 21].

In order to simplify the gradient computation, we can approx-
imate the lower level problem in Equation 8 by the following
function h (-),

h(q) = — 3o log (Gi)

€))

~ 2
311G — a3
AG=1

argmingcpn
subject to

where g, G € R" are the vectorized versions of ) and Q respec-
tively (n = 12). The equality constraints defined by A € R xn
and the log-barrier function approximates the Birkhoff polytope.
The hyper-parameter ;¢ > 0 controls the quality of the approxima-
tion. As . — 0 the solution to the problem in Equation 9 converge
to the solution to the lower problem in Equation 8.

Recently, Gould et al. [28] reviewed an earlier work of
Faugeras [20] and collected some results on differentiating argmin
and argmax optimization problems. Here, we will make use of
their Lemma 4.2 that is restated in Lemma 4.1 below.

Lemma 4.1.: Let f : R x R™ — R be a continuous function
with first and second derivatives. Let A € R”*™ and b € R™
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with rank(A) = m. Let g(z) = argmin,, 4, _, f(,y). Let
H = fyy(z,g(z)). Then,

-1
g (z) = <H‘1AT (AH—lAT) AH — H—1>

fxy(z,g(x)) (10)

where fyy V2, fey) € R™" and fxy =
%Vyf(x,y) c R™.

However, note that h (-) is a vector-valued function on vec-
tor domain. As such, we compute the derivative with respect
to each input entry separately Vg, h(g) € R™ and aggregate
the results to compose the gradient Vh(q) € R™*™. Finally,
H = V?mf(q,tj) € R™*" and a%vqf(q@) € R™ where
f(g,d) € R is the objective in Equation 9, can be obtained using
the following partial derivatives,

- fed) L
H; ;= “Pa0s, i =1 (1+ ug;?) (11)
8 ~ _ y —
o Veflq,q) = —Ti =kl (12)

where [-] is the indicator function, evaluating to one if its ar-
gument is true and zero otherwise. Note the gradient V,,h(q)
can be efficiently computed because H is a diagonal matrix and
the derivative %V,; f(q, g) does not depend on g. Finally, the
gradient of the loss with respect to the inputs can be easily
obtained by applying the chain rule.

4.3.2 Sinkhorn Normalization

Despite providing the optimal solution for the DSM approxima-
tion, the bi-level optimization approach may be computationally
expensive, since we need to solve an optimization problem for
every sample in the training batches. Alternatively, we can resort to
an approximate solution based on the Sinkhorn-Knopp algorithm
discussed in Section 3.

Inspired by Adams and Zemel [2], here we propose a CNN
layer that performs Sinkhorn normalization. Consider a matrix
Q € ]lel, which can be converted to a doubly stochastic matrix
by repeatedly performing row and column normalizations. Define
row R (-) and column C (-) normalizations as follows,

Qi j Qi j
Ri;j(Q)=— " Ci;(Q)=—="—"
> k=1 @ik > k=1 @k
Then, the Sinkhorn normalization for the n-th iteration can be
defined recursively as:

5™(Q) ={

13)

Q, ifn=0

C(R(S"1(Q))), otherwise. 1

The Sinkhorn normalization function S™ (-) is differentiable
and we can compute its gradient w.r.t. the inputs by unrolling
the normalization operations and propagating the gradient through
the sequence of row and column normalizations. For instance, the
partial derivatives of the row normalizations can be defined as,

NN [ L=al _ Q } as)

o . l 2

0Qp.q j=1 8RPJ Zk:l Qp.k (22:1 Qp’k)
where () and R are the inputs and outputs of the row nor-

malization function. The derivative of the column normalization
can be obtained by transposing indexes appropriately. In practice,

7

before applying the Sinkhorn normalization, we add a small value
(=~ 1073) to each entry of () as a regularization term to avoid
numerical instability.

Despite being a principled and efficient approach, the Sinkhorn
normalization layer may have a notorious drawback from the CNN
optimization point of view — the problem of vanishing gradients in
deep networks [27]. This may happen because each normalization
can be seen as an extra layer to the network which makes the
network deeper. However, as observed for random matrices in
Figure 2, a small number of normalizations are sufficient to
approximate the doubly stochastic matrix from CNNs raw outputs,
and consequently the vanishing gradients problem is avoided.

4.4

Finally, we describe the last component of our approach, the
inference procedure. Our main goal is to recover the original
image sequence from a permuted sequence. Thus, our inference
consists of approximating the closest permutation matrix P from
the predicted doubly stochastic matrix (). This problem can be
described as,

Inference

P cargmin  ||P - Q| »
P

P-1=1

1. pP=1

Pc {01}

subject to (16)

where P is our approximated permutation matrix from Q.

This problem is an instance of a mixed-boolean program and
can be efficiently solved by branch-and-bound methods available
in public solvers [13]. These methods begin by finding the optimal
solution to the convex relaxation of the problem without the
boolean constraints. If the optimal solution has any non-boolean
variables, it creates new subproblems where the variables are more
tightly constrained and this process is repeated until a solution that
satisfies all boolean constraints is found.

After solving this problem to obtain P, we transpose it to
compute the inverse permutation matrix since P7 = P~!. Then
we can recover the original sequence X from the permuted
sequence X as,

X =PTX. a7

4.5 Alternative Approaches

In this section, we describe alternative approaches to solve the
visual permutation learning problem. Overlooking all nice proper-
ties of permutation matrices, we can reformulate the permutation
learning problem as a regression on the correct ordered sequence.
More specifically, we can explicitly lean to predict the correct
position of each item in a given shuffled input sequence by
minimizing the euclidean loss between the correct sequence and
the predictions. However, this solution may focus on correcting
outliers, like swapping the first element by the last, which gener-
ates most part of the overall loss leading to a suboptimal solution.

Likewise, we can follow a discriminative setup (as done in [53,
43]) and cast our problem as a multi-class classification problem
which we enumerate every possible permutation as a independent
class. However, this solution is not feasible in practice since the
number of parameter and predictors in the model scales factorial
with the the input length. For instance, for a sequence of length 8
we need 40320 classes, which is intractable even for deep models.
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Fig. 5. Datasets used in our experiments: PubFig and OSR [57], CarDb
[44], Interestingness [44], Pacal VOC [18, 17] and ImageNet [39].

On the other hand, we can use the permutation matrices for-
mulation only to avoid the aforementioned enumeration problem
and cast our problem as an (2 binary classification problem by
optimizing the combination of sigmoid outputs and cross-entropy

loss,
Ix1

1
APQ) ==5 2 {Pi,j log (Qi,5) -
ij

+ (1= Pij)log (1 - Q)]

where each entry P; ; is a binary entry in the target permutation
matrix P and @); ; is an arbitrary prediction outputted by the
function fy (5( ). We refer to this solution as naive approach since
it is more related to our proposed model. Note this solution do not
explore the geometry of permutation matrices and has a series of
inefficiencies which will be demonstrated in our experiments.

5 EXPERIMENTS

We now describe how our model can tackle different computer
vision problems and measure our models performance on well
established benchmarks. First, we give some details of the datasets
used in our experiments. Second, in Section 5.2, we analyze how
effectively our proposed model solves the permutation prediction
problem under different settings. Third, in Section 5.3, we evaluate
our model on the relative attributes task. Fourth, in Section 5.4,
we evaluate our model for long sequences using image ranking
applications. Last, in Section 5.5, we evaluate our method for self-
supervised representation learning.

5.1

We evaluate our proposed model in different computer vision
applications using the following datasets (see Figure 5):

Public Figures (PubFig) [57]. This dataset consists of 800 facial
images of eight public celebrities annotated with eleven physical
attributes, such as big lips, white, and young. This is a relative

Datasets
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attribute dataset with category level annotation, i.e., all images in
a specific category may be ranked higher, equal, or lower than all
images in another category, with respect to an attribute. Our goal
is to rank subsets of images according to these visual attributes.
Outdoor Scene Recognition (OSR) [57]. This is another relative
attribute dataset with category level annotation. It consists of
2688 images of eight different types of outdoor scenes such as
Mountain, Forest, and Coast, annotated with six different visual
attributes such as natural and open. This dataset has more ties
between pair of images than PubFig, which may impose some
difficulties to our model as discussed in later sections.

Historical Car (CarDb) [44]. This dataset consists of 12k images
of cars annotated with manufacturing information such as model
and manufacturing year. In this work, we are interested in ranking
the cars according to their manufacturing date. Different from the
PubFig and OSR datasets, CarDb has instance-level annotations,
i.e., each image may be ranked higher, equal or lower than other
image. This is a harder problem, since fine-grained comparisons
have to be made in order to correctly rank the images.
Interestingness Annotations. This dataset comes from an inves-
tigation of human interest in photos by Gygli et al. [30]. Using
psychophysical experiments on Mechanical Turk, they annotate
the images from OSR dataset with an interestingness score which
measures the degree of interestingness of an image. Our goal is
to rank images according to how interesting they are. Similar to
CarDDb, this dataset is instance-level annotated and we use the OSR
train/test splits in our experiments.

ImageNet [39]. This is a large scale dataset for object recognition.
It consists of approximately 1.3M images of 1k different object
categories. In our experiments, we use the training set images of
this dataset discarding the labels to learn image representations in
a self-supervised fashion.

Pascal VOC [18, 17]. This is a fine-grained object recognition
dataset. It has 9,963 images containing 24,640 annotated objects of
20 different classes. This dataset provides image, bounding boxes
and pixel level annotations and it is widely used in the literature. In
this work, we evaluate our self-supervised image representations
in this dataset for object classification, detection and segmentation.

5.2 Permutation Prediction

In this experiment, we evaluate our proposed method on the
permutation prediction task and compare with a naive approach
which combines sigmoid outputs and cross-entropy loss by casting
the permutation prediction problem as a multi-label classification
problem. In this experiment, we use the Public Figures dataset
[57] and its default train and test splits.

In our implementation, we use stochastic gradient descent with
mini-batches of 32 image sequences, images of 256 X 256 pixels
and different sequence lengths. During preprocessing, we subtract
the mean and randomly crop each image to size 227 x 227. We
initialize our network from convl to fc6 layers using an AlexNet
model pre-trained on the ILSVRC 2012 [39] dataset for the task
of image classification, while other layers are randomly initialized
from a Gaussian distribution. We set the learning rate to 10~° and
fine-tune our model for permutation prediction over 25k iterations
using the multi-class cross entropy loss. With the exception of
the self-supervised representation learning experiments in Sec-
tion 5.5, these hyper-parameters and implementation details are
used throughout all of our experiments.

As performance metrics for the permutation prediction task,
we use Kendall-tau and Hamming similarity. Kendall tau is defined
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Fig. 6. Evaluating and comparing naive approach, Sinkhorn normalization and bi-level optimization variants of the proposed model on the
permutation prediction task using the Public Figures Dataset [57]. The models are trained and tested for each attribute separately. We report
the mean and standard deviation of the the performance metrics (Kendall Tau, Hamming similarity, and normalization error) across the attributes.

as KT = ﬁli), where ¢t and ¢~ denote the number of all

pairs in the sequence that are correctly and incorrectly ordered,
respectively. It captures how close we are to the perfect rank.
The Hamming similarity measures the number of equal entries
in two vectors or matrices normalized by the total number of
elements. It indicates how similar our prediction is to the ground
truth permutation matrix. In addition, we measure the averaged ¢;
normalization error of rows and columns of the predicted doubly
stochastic matrices.

We train a CNN model for each attribute in the Public Figures
dataset by sampling 30K ordered image sequences from the
training images. We then evaluate the trained models on 20K
image sequences generated from the test set by sampling correctly
ordered sequences and randomly permuting them. We averaged
the results over the 11 attributes and repeat the experiment for
image sequences of length 4 , 6 and 8. Figure 6 presents the results
for our proposed methods and the naive approach.

We observe the naive approach works well for small sequences
and is able to learn the normalization by itself. As the sequence
length increases, however, the performance of the naive approach
degenerates and the ¢; normalization error increases. On the
other hand, the Sinkhorn Normalization and Bi-level optimization
approaches reach better results in both Kendall-Tau and Hamming
similarity while keeping the normalization error almost unchange-
able even for longer sequences. This fact suggests that exploring
the geometrical structure of the space of doubly-stochastic matri-
ces (and thereby the permutation matrices) is useful.

It is worth noting that we could train our model for all
attributes jointly by sharing the convolution layers and adding as
many fully connected layers as the number of attributes. Such an
approach is well known in multi-task CNNs [1] and usually pro-
vides more generalizable models. However, this approach requires
more memory resources which would slow down our experiments.

5.3 Relative Attributes

In this experiment, we use DeepPermNet to compare images in
a given sequence according to a certain attribute by predicting
permutations and applying their inverse. This procedure can be
used to solve the relative attributes task, the goal of which is to
compare pairs or sets of images according to the “strength” of a
given attribute. In this context, we compare our proposed approach
to state-of-the-art methods for relative attributes.

For this application, we use the OSR scene dataset [57], the
Public Figures Dataset [57], and the implementation details and
hyper-parameters described in the previous section. We train our
model for each attribute with 30k ordered image sequences of
length 8 generated from the training set. Then, we report our
models performance in terms of pairwise accuracy measured
on the predicted ordering for 20k image sequences of length 8
generated from the test set using stratified sampling.

Different from the existing methods [69, 67] which also use
deep features and pre-trained models, we directly predict the order
of sequences of images instead of pairs. Our scheme allows us to
make use of the structure in the sequences as a whole, which is
more informative than pairs providing better performance. For a
fair comparison to prior methods, we measure our performance by
computing the pairwise accuracy for all pairs in each sequence.
Tables 1 and 2 present our results.

On the Public Figures dataset, DeepPermNet outperforms the
state-of-the-art models by a margin of 3% in pairwise accuracy. It
is a substantial margin, consistently observed across all attributes.
Note that, we outperform the recent method Souri et al. [69],
which uses a pre-trained VGG16 model that has significantly more
modeling capacity than the AlexNet [39] architecture that we use.
On the other hand, our method works slightly worse than [69] on
the OSR dataset. We also provide results by building our scheme
on a VGG16 model. As is clear, using this variant, we demonstrate
even better results outperforming the state-of-the-art methods.
In addition, the bi-level variant of our model, despite providing
optimal solution to the doubly stochastic approximation, works
on par with the Sinkhorn layer, which shows that the Sinkhorn
operator is a sufficient approximation for our problem.

It is worth noting that DeepPermNet works better when we
use longer sequences for training, because they provide rich
information that can be directly used in our method. For instance,
the performance of DeepPermNet drops 7% in terms of average
pairwise accuracy on the Public Figures dataset when we train our
model using just pairs. In addition, the proposed model is not able
to explicitly handle equality cases, since the permutation learning
formulation assumes each permutation is unique, which is not true
in the relative attributes task. Perhaps, this is the reason for the
difference in performance between the Public Figures and OSR
datasets. Nonetheless, DeepPermNet is able to learn very good
attribute rankers from data as shown in our experiments.

We also compute the saliency maps of different attributes using
the method proposed by Simonyan et al. [66]. More specifically,
we take the derivative of the estimated permutation matrix w.r.t.
the input, given a set of images. We perform max pooling across
channels to generate the saliency maps. Figure 7 presents qual-
itative results and saliency maps generated by DeepPermNet for
different attributes.

This map is a simplified way to visualize which pixels, regions,
and features of a given image are more relevant to the respective
permutation predicted by our method. For instance, the attribute
“bushy eyebrows” is sensitive to the region of eyes, while the
attribute “smiling” is more sensitive to the mouth region. An
interesting observation is the possibility of localizing such features
without any explicit supervision (e.g., bounding boxes), which
could be used for unsupervised attribute localization.
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TABLE 1
Evaluating the proposed model on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.
Method Lips Eyebrows | Chubby | Male | Eyes Nose Face | Smiling | Forehead | White | Young | Mean
Parikh and Grauman [57] 79.17 79.87 76.27 81.80 | 81.67 | 77.40 | 82.33 79.90 87.60 76.97 83.20 80.56
Li et al. [45] 81.87 81.84 79.97 85.33 | 83.15 | 80.43 | 86.31 83.36 88.83 82.59 84.41 83.37
Yu and Grauman [80] 90.43 89.83 87.37 91.77 | 91.40 | 89.07 | 86.70 87.00 94.00 87.43 91.87 89.72
Souri et al. [69] 93.62 94.53 92.32 95.50 | 93.19 | 94.24 | 94.76 95.36 97.28 94.60 94.33 94.52
DeepPermNet (Sinkhorn Norm.) | 99.55 97.21 97.66 99.44 | 96.54 | 96.21 | 99.11 97.88 99.00 97.99 99.00 98.14
DeepPermNet (Bi-level Opt.) 99.53 96.65 98.54 98.99 | 97.21 | 94.72 | 99.44 98.55 98.77 95.66 98.77 97.89
TABLE 2
Evaluating the proposed model on the OSR dataset. We report the pairwise accuracy as well as its mean across the attributes.
Method Depth-Close | Diagonal-Plane | Natural | Open | Perspective | Size-Large | Mean
Parikh and Grauman [57] 87.53 86.5 95.03 90.77 86.73 86.23 88.80
Li et al. [45] 89.54 89.34 95.24 92.39 87.58 88.34 90.41
Yu and Grauman [80] 90.47 92.43 95.7 94.1 90.43 91.1 92.37
Singh and Lee [67] 96.1 97.64 98.89 97.2 96.31 95.98 97.02
Souri et al. [69] 97.65 98.43 99.4 97.44 96.88 96.79 97.77
DeepPermNet (Sinkhorn Norm.) 96.09 94.53 97.21 96.65 96.46 98.77 96.62
DeepPermNet (Bi-level Opt.) 97.99 98.21 97.76 97.10 97.21 96.65 97.49
DeepPermNet (Sinkhorn Norm. + VGG16) 96.87 97.99 96.87 99.79 99.82 99.55 98.48
DeepPermNet (Bi-level Opt. + VGG16) 98.12 99.92 98.13 97.78 98.72 97.87 98.42

5.4 Supervised Learning to Rank

A sequence of length [ is correctly ordered if and only if all of
its subsequences of length [ are correctly ordered. Therefore, we
can use our method to order subsequences and a classic sorting
algorithm like bubble sort or merge sort to rank image sequences
of arbitrary length according to a predefined criterion. Then, this
pipeline can be used for supervised learning to rank applications.

We select two supervised image ranking applications to com-
pare our method with other supervised learning-to-rank algo-
rithms, namely, ranking images based on interestingness and
ordering car images by manufacturing date. For the former, we use
the annotations provided by [30] which assign an interestingness
score for images of the OSR dataset. For the latter, we use the car
dataset [44] which is composed by images of cars manufactured
from 1920 to 1999. As implementation details, we use the same
model hyper-parameters described in Section 5.2.

In this experiment, we train our model by sampling 30k
sequences of length 4 from the training images, and use our
learned model and the basic bubble sorting algorithm to rank 20k
sequences of length 20 sampled from the test images. The final
rank obtained is evaluated with rank metrics like NDCG (Nor-
malized Discounted Cumulative Gain), Kendall-tau and Pairwise
accuracy. Table 3 presents the results.

TABLE 3
Evaluating the proposed model on ranking scenes according how
interesting they look and ranking cars according to their manufacturing
date. We report normalized discounted cumulative gain (NDCG),
Kendall Tau (KT), and pairwise accuracy.

Scene Interestigness Car Chronology
Method NDCG KT Pair. Acc. | NDCG KT Pair. Acc.
Joachims [35] 0.870 0.317 65.8 0928  0.482 74.1
Xu and Li [78] 0.745  -0.077 46.1 0.827  0.118 55.9
Wu et al. [76] 0.860 0.315 64.3 0.935  0.409 70.6
Cao et al. [10] 0.821 0.118 55.9 0.872  0.291 64.5
Xia et al. [77] 0.862 0.282 64.1 0.854  0.278 63.9
Fernando et al. [22] 0.887 0.347 67.4 0.949 0.553 76.9
Ours (Sinkhorn Norm.) 0.922 0.360 68.0 0.968 0.724 86.2
Ours (Bi-level Opt.) 0.923 0.363 68.2 0.964  0.700 84.9

We observe that our method improves the accuracy of the
ranking consistently for all evaluation criteria. It is worth pointing

that the proposed model work drastically better than other neural
network models such as ListNet [10]. We argue that this improve-
ment is caused by the image representation implicitly learned
in a end-to-end fashion by our method. We again observe that
the Sinkhorn normalization presents results as good as the exact
solution provided by the bi-level optimization variant.

5.5 Self-Supervised Representation Learning

Yosinski et al. [79] observed that pre-training a network helps to
regularize the model reaching better performance on the test set.
Doersch et al. [14] and Noroozi and Favaro [53] observed that the
spatial structure of objects is a strong supervisory signal to learn
transferable weights. Following their work, we exploit such a self-
supervisory signal and generate ordered sequences of patches to
train our model and transfer the learned weights for target tasks
such as object classification, detection, and segmentation.

More specifically, we use the train split of the ImageNet
dataset [39] as training set discarding its labels. For each image,
we split it into a grid with 3 x 3 cells, extract a patch of size 64 x 64
pixels within each grid cell and generate a sequence where the
ordering is defined by the spatial position of each patch in the grid
(see Figure 1 right). We then train our models to predict random
permutations of these generated patch sequences as before.

It has been observed in the literature that self-supervised
learning methods can exploit “shortcuts” involving information
useful for solving the pre-text task but not for a target task [14, 53].
For instance, chromatic aberration and edge continuity are good
cues for solving the visual permutation task, but are not useful for
generic object detection or image classification. In order to avoid
these “shortcuts”, we follow image preprocessing procedures
described by Doersch et al. [14]. We first resize the images having
the smallest side equal to 256 pixels. Then, we randomly crop a
squared region of the image and resize to 225 x 225 pixels. Then
we split the resized crop into a 3 x 3 grid cell, each with 75 x 75
pixels. Finally, we randomly select 64 x 64 pixels tiles from each
cell and train our model as described above. This allows us to
have an 11 pixel gap between tiles. Noroozi and Favaro [53] show
improvements in the target task by using additional procedures
such as augmenting the data with gray-scale images, jittering the
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color channels, and increasing the gap between sampled tiles. We
did not investigate these additional procedures, but they can be
easily added to our framework.

It is important to emphasize that we do not use any pre-
trained models or human annotated labels in this self-supervised
learning experiment. Instead, we train our CNN models from
scratch using random initialization and self-supervised labels. The
model is trained for 400k iterations using a initial learning rate of
0.001, which is dropped by one-tenth every 100k iterations. We
use batches of 256 sequences each of 64 x 64 image patches.

Using a CNN to recover an image from its parts is a challeng-
ing task because it requires the network to learn semantic concepts,
contextual information, and objects-parts relationships, in order to
predict the right permutation. In order to evaluate how well the
proposed models can solve such a task, we use 50k images on the
ImageNet validation set and apply random permutations using the
3 x 3 grid layout. In this self-supervised setting, DeepPermNet
reaches a score of 0.72 on the Kendall-tau metric.

Following the literature on self-supervised pre-training [14, 16,
58, 53, 42, 60], we test our models on the commonly used self-
supervised benchmarks on the PASCAL Visual Object Challenge
and compare against supervised and self-supervised procedures
for pre-training. We transfer our learned weights to initialize from
Convl to Conv5 layers of AlexNet [39], Fast-RCNN [25] and Fully
Convolutional Network [47] models and fine-tune them for ob-
ject classification, detection, and segmentation tasks respectively,
using their default training parameters. For object classification
and detection, we report the mean average precision (mAP) on

PASCAL VOC 2007 [18], while for object segmentation, we
report mean average intersection over union (mIU) on PASCAL
VOC 2012 [17]. In order to make the competing methods directly
comparable, we use stride 2 in the first layer of our network during
the training of visual permutation learning task, while we use
a standard AlexNet (stride 4 on the first layer) in the transfer
learning experiments. Table 4 presents our results.

We observe that the self-supervised methods are still behind
the supervised approach, but this gap reduces gradually. Our Deep-
PermNet works as well as most of the self-supervised competitors,
while it is marginally superseded by very recent approaches. It also
overcomes its direct competitor [53] in object classification and
segmentation by exploiting our permutation prediction schema. In
addition, DeepPermNet is a more generic method than the method
proposed by Noroozi and Favaro [53], since our method can be
used to solve many different computer vision tasks as shown in our
previous experiments. We also notice that the bi-level approach
performs slightly worse than the Sinkhorn normalization approach
in this self-supervised experiment. Perhaps, the reason for that is
computation of the gradient which requires inverting a matrix, and
can cause numerical issues.

Interestingly, when finer grid schemes are used (e.g., 4 X 4),
we do not observe any improvement in the target tasks. This
agrees with the ablation study presented in [53], which shows
that the performance in the target task increases with the total
number of permutations, but decreases with the increasing of
the similarity between these permutations in their jigsaw task.
Therefore, we believe when we deal with all possible permutations
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and increase the grid partition, we end up increasing the general
similarity between the target permutations, which is prejudicial
for transfer learning. Perhaps, a solution to this issue is to weight
the permutations according to their average similarity to the other
permutations, which is a compelling direction for future work.

TABLE 4

Classification and detection results on PASCAL VOC 2007 test set

under the standard mean average precision (mAP), and segmentation
results on the PASCAL VOC 2012 validation set under mean

intersection over union (mlU) metric. "Noroozi and Favaro [53] and our
methods use a more computationally intensive ConvNet architecture
with a finer stride at conv1 during the self-supervised training, but we

use standard Alex-net architecture when finetune in the target task

allowing a fair comparison with all competing methods.

Pre-training Method Cls. Det. | Seg.
ImageNet 78.2 56.8 | 48.0
Random Gaussian 53.3 434 | 19.8
Agrawal et al. [3] 52.9 41.8 -
Doersch et al. [14] 55.3 46.6 -
Wang and Gupta [74] 58.4 44.0 -
Pathak et al. [58] 56.5 445 | 29.7
Donahue et al. [16] 58.9 457 | 34.9
Zhang et al. [81] 65.6 479 | 35.6
Noroozi and Favaro [53]" 67.6 532 | 37.6
Owens et al. [56] 61.3 44.0 -
Bojanowski and Joulin [5] 65.3 49.4 -
Noroozi et al. [54] 67.7 514 | 36.6
Lee et al. [43] 63.8 46.9 -
Pathak et al. [59] 61.0 52.2 -
Zhang et al. [82] 67.1 46.7 | 36.0
Larsson et al. [42] 65.9 - 38.0
Jenni and Favaro [34] 69.8 52.5 | 38.1
Gidaris et al. [24] 7297 | 544 | 39.1
Kim et al. [36] 69.2 524 | 39.3
Nathan Mundhenk et al. [52] 69.6 55.8 | 41.2
Ren and Jae Lee [60] 68.0 52.6 -
DeepPermNet (Sinkhorn Norm.)™ | 69.4 | 49.5 | 37.9
DeepPermNet (Bi-level Opt.)" 65.5 45.7 | 364

6 DisScuSsSSION AND CONCLUSION

In this paper, we tackled the problem of learning the structure of
visual data by introducing the task of visual permutation learning.
We formulated an optimization problem for this task with the goal
of recovering the permutation matrix responsible for generating a
given randomly shuffled image sequence based on a pre-defined
visual criteria. We proposed novel CNN layers that can convert
standard CNN predictions to doubly-stochastic approximations of
permutation matrices using Sinkhorn normalizations and bi-level
optimization. Thus, the proposed CNN model can be trained in an
end-to-end manner.

Through a variety of experiments, we assess the proposed
method and demonstrate that permutation learning can be applied
to different tasks. More specifically, we first validate the hypoth-
esis of exploring the geometrical structure of doubly-stochastic
matrices helps to learn visual permutations. As shown in Fig-
ure 6, both variants of the proposed DeepPermNet outperform
the naive approach. We then continued our evaluation for real-
world applications and state-of-the-art methods such as relative
attributes (Section 5.3), supervised learning to rank (Section 5.4),
and self-supervised representation learning (Section 5.5). In all
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experiments, we present state-of-the-art results demonstrating the
usefulness of the proposed permutation learning schema.

It is important to highlight the advantages and disadvantages of
our two variants of the proposed approach. The bi-level optimiza-
tion variant optimally solves the doubly-stochastic approximation
problem, while the Sinkhorn normalization variant is an efficient
and approximate solution for such a problem. However, in practice
the Sinkhorn variant works slightly better than the bi-level variant
in most of the cases which, perhaps, is a consequence of the quality
of image representations learned as evidenced in Section 5.5. Even
so, the bi-level variant is able to provide improvements in some
cases, e.g, four attributes in Pubfig (Table 1), two attributes in
OSR (Table 2), and Scene Interestingness (Table 3). However, it
comes to the cost of solving a QP problem for every input during
training and inference.

As future work, we intend to explore structured information
beyond 2D images. We believe that our model is also effective for
other modalities such as text, videos and 3D data. One compelling
direction is to evaluate our model in other tasks such as video
summarization, motion representation and view synthesis.
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