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Abstract—Unsupervised classification plays an important role
in understanding polarimetric synthetic aperture radar (PolSAR)
images. One of the typical representations of PolSAR data is in
the form of Hermitian positive definite (HPD) covariance ma-
trices. Most algorithms for unsupervised classification using this
representation either use statistical distribution models or adopt
polarimetric target decompositions. In this paper, we propose
an unsupervised classification method by introducing a sparsity
based similarity measure on HPD matrices. Specifically, we first
use a novel Riemannian sparse coding scheme for representing
each HPD covariance matrix as sparse linear combinations of oth-
er HPD matrices, where the sparse reconstruction loss is defined
by the Riemannian geodesic distance between HPD matrices. The
coefficient vectors generated by this step reflects the neighborhood
structure of HPD matrices embedded in the Euclidean space
and hence can be used to define a similarity measure. We apply
the scheme for PolSAR data, in which we first over-segment the
images into superpixels, followed by representing each superpixel
by an HPD matrix. These HPD matrices are then sparse coded,
and the resulting sparse coefficient vectors are then clustered
by spectral clustering using the neighborhood matrix generated
by our similarity measure. Experimental results on different
fully PolSAR images demonstrate the superior performance of
the proposed classification approach against the state-of-the-art
approaches.

Keywords—Polarimetric synthetic aperture radar, unsupervised
classification, Riemannian sparse coding, sparse induced similarity

I. INTRODUCTION

The fully Polarimetric Synthetic Aperture Radar (PolSAR)
is a technology for long-term monitoring of the Earth’s surface
based on multi-dimensional measurements via transmitting mi-
crowave pulses with two distinct orthogonal polarizations. The
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PolSAR system has beeen used in numerous remote sensing
applications [1] [2] [3], because it can operate both during
day and night, as well as in all weather conditions. Further, it
also provides the ability to capture the geometrical structure
and geophysical properties of terrain objects. In this paper, we
address unsupervised classification of PolSAR images, which
is an important PolSAR application.

A. Motivation and Objective
Classification of PolSAR images [1] [4] [5] is an active

research topic in SAR applications. Various algorithms have
been proposed for supervised and unsupervised classification
in the last decades. Supervised approaches need annotated data
samples to train a classifier [6], which might be expensive or
challenging to obtain. Compared against supervised schemes,
the unsupervised ones do not need annotated training samples,
but use implicit information among the samples. Practically,
limited number of labelled data might not provide sufficient
support for learning an appropriate classification model [5],
and thus we resort to unsupervised techniques.

In recent years, sparse representation theory has achieved
great success for land cover classification in the field of
remote sensing [7] [8]. Graph-based classification methods
have also been found to be useful in interpreting PolSAR
images and are seen to perform better than the traditional
Wishart classifier [5] [9]. However, previous methods based
on sparse representations, such as [5] [8], need to extract
several polarimetric features first, which may lead to loss of
useful information in the PolSAR data [7]. In addition, the
classification performance strongly depends on what kinds of
features are used– choosing the right features is a challenging
practical problem. A natural question is why not use sparse
coding on covariance matrices directly, which is the main
motivation for the approach in this paper. For graph-based
classification methods, an important difficulty is to choose the
appropriate similarity measure to compute the affinity structure
of the data. Combining these two ideas, we propose a novel
unsupervised PolSAR image classification framework based on
the recently proposed Riemannian sparse coding objective [10]
and the new sparsity induced similarity measure [11].

B. Related Work
1) Unsupervised classification methods for PolSAR images:

Unsupervised PolSAR image classification algorithms can be
roughly categorised into two types. The first type is based on
the analysis of the polarimetric scattering mechanisms. This
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kind of approach can preserve physical scattering characteris-
tics of the data. In the algorithm proposed by Van Zyl [12],
the polarization properties of pixels in a PolSAR image are
compared with simple classes of even number of reflections,
odd number of reflections, and diffusion scattering. Many
subsequent algorithms combined polarimetric target decom-
position techniques and statistical distribution models, such
as the classic H/α-Wishart classifier [13], the H/α/A-Wishart
classifier [14], and the Freeman-Wishart classifier [4], which
have been applied to various remote sensing applications.

The second category of techniques for PolSAR image clas-
sification uses clustering analysis and image processing . Jäger
et al. [15] combined graph-cut optimization with expectation
maximization (EM) in their classification scheme. Erashin et
al. [16] introduced spectral graph partitioning into segmen-
tation and classification of PolSAR data. Wang et el. [17]
combined the tensor space cluster analysis and Markovian
framework in their segmentation algorithm. Compared to these
prior methods, the new method in this paper operates without
manually selecting the feature vectors from covariance ma-
trices, which provides robust classification performance for
various PolSAR images.

2) Sparse representation for PolSAR images: In the past
several decades, sparse representation theory has shown great
promise in the field of PolSAR image interpretation. Xu et
al. [18] achieved good performance in speckle reduction of
PolSAR image using sparsity. In [19] and [20], sparse com-
pression schemes are used to classify ships in high resolution
TerraSAR-X images. Zhang et al. [8] presented an approach for
supervised classification of PolSAR image using the sparsity
on polarimetric features. However, the sparse representation
methods [5] [8] need to extract several features manually,
which leads to the loss of information. In computer vision
domain, Harandi et al. [21] dealt with the problem of sparse
coding and dictionary learning on Riemannian manifolds by
embedding the manifolds into a reproducing kernel Hilbert
space (RKHS). By using the Stein kernel [22] for this embed-
ding, Yang et al. [7] first successfully applied a sparsity based
classifier to multi-frequency polarimetric SAR land-cover clas-
sification problem. To discover the structure of PolSAR data in
a high dimensional reproducing kernel Hilbert space, Song et
al. [23] further use sparse subspace clustering techniques and
present an effective approach for PolSAR image classification.
Different from these methods of using feature vectors or kernel
Hilbert spaces, we directly represent the covariance matrix as
sparse linear combinations of other covariance matrices and
adopt Riemannian sparse coding for classification of PolSAR
images [24].

3) Similarity measures for PolSAR data: Hermitian positive
definite covariance is one of the popular ways to represent
polarimetric information of multi-look processed PolSAR im-
ages. In order to classify the pixels in these images effective-
ly, several distance measures for comparing such covariance
matrices have been introduced. In the literature [25], a large
variety of distances have been discussed for various PolSAR
applications. In addition to the similarity based on pixels,
Deledalle et al. [26] used the patch similarity in the processing
the SAR images. Based on the logarithmic likelihood func-

tion of complex Wishart distribution model, Lee et al. [13]
introduced the Wishart distance and proposed a maximum
likelihood classifier. Furthermore, Frery et al. [27] discussed
the common form of four stochastic distances and derived their
analytic expressions between relaxed complex Wishart distri-
butions. Symmetric revised Wishart distance was proposed by
Anfinsen et al. [28] to measure the pairwise similarity between
different pixels for spectral clustering. By taking advantage of
statistical hypothesis test theory, Kersten et al. [29] proposed
Bartlett distance to measure the similarity of two covariance
matrices. In addition, Song et al. [30] applied the Bartlett
distance in unsupervised classification for large scale PolSAR
images. Song et al. [31] combined the Jensen-Bregman LogDet
Divergence (also called Stein divergence) [32] with k-means
for unsupervised classification.

C. Contributions of This Work
In this paper, a PolSAR image unsupervised classification

method based on Riemannian sparse coding is proposed.
For each superpixel generated by the over-segmentation of a
PolSAR image, we construct an associated HPD covariance
matrix. Such HPD matrices are represented as sparse linear
combination of matrices from other superpixels. Then, we
introduce a sparsity based similarity measure between different
superpixels and construct an affinity matrix. Finally, spectral
clustering is employed on this affinity matrix to obtain the
classification. The major contributions of our work can be
summarized along two different axes as follows:

- To decompose the covariance matrix, we introduce Rie-
mannian sparse coding using a dictionary, where each
atom of this dictionary is an HPD matrix. This differs
from the approach in [10] where they use a symmetric
positive definite matrix instead.

- To compare the pairwise similarity between two covari-
ance matrices, we propose a sparse induced similarity
measure.

The remainder of this paper is organized as follows. In
Section II, we start by reviewing the necessary background on
polarimetric SAR data and the similarity measures. In section
III, we describe the details of proposed method for unsuper-
vised classification. The experimental results and discussions
are provided in Section IV and we conclude in Section V.

II. PRELIMINARIES

A. Polarimetric SAR Data
For monostatic PolSAR measurements of a reciprocal medi-

um, the polarimetric information can be represented by a
complex vector

k =
[
Shh,

√
2Shv, Svv

]T
, (1)

where h and v denote the horizontal and vertical wave polar-
ization states, and T indicates vector transposition. In order to
reduce the speckle noise, PolSAR data are often multilook
processed. Each such data point can be represented by a
polarimetric covariance matrix:
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where ∗ denotes the complex conjugation, H denotes the
Hermitian transpose, and N is the number of looks.

The covariance matrix C can be modeled by a complex
Wishart distribution in homogeneous regions of the multi-
look PolSAR image [33]. Assume that Σ = E{kkH}, the
probability density function for C is

pC(C|n,Σ) =
nnp |C|n−p

Γd(n) |Σ|n
exp

{
−ntr

(
Σ−1C

)}
, (3)

Γp(n) = π
p(p−1)

2

p∏
i=1

Γ(n− i+ 1),

where tr(·) is the trace operator on a matrix, n is the number
of looks and Γ(·) is the gamma function. For the fully polari-
metric SAR data, the value of p is 3 with the consideration of
reciprocity.

B. Similarity Measure on PolSAR Data

As one of the widely used data forms, the multilook pro-
cessed polarimetric covariance matrices are Hermitian positive
definite matrices, which forms a Riemannian manifold instead
of a Euclidean space [10]. The similarity between two data
points embedded in the Riemannian manifold can be measured
by the geodesic distance.

For SPD matrices X and Y which are in the Riemannian
manifold, two well-known geodesic distances are: (i) the affine
invariant Riemannian metric (AIRM) [34], and (ii) the Log-
Euclidean Riemannian metric (LERM) [35]. The correspond-
ing defined functions of those two geodesic distances are
respectively:

dR(X,Y ) =
∥∥∥log(X−

1
2Y X−

1
2 )
∥∥∥
F
, (4)

dL(X,Y ) = ‖log(X)− log(Y )‖F . (5)

Both these distances induce a Riemannian geometry; the
former induces a curved geometry while the latter “flattens” the
manifold by mapping into the tangent space at identity (which
is Euclidean). LERM, however, is not affine invariant, but is
rotation and scale invariant separately. While, these distances
are defined for SPD matrices, their geometry naturally extends
to the HPD case [36].

To further reduce the computational load, the Bartlett dis-
tance has been proposed, which is a statistically motivated
similarity measure based on Bregman divergences [32]:

dB(X,Y ) = log

∣∣∣∣X + Y

2

∣∣∣∣− 1

2
log |XY | . (6)

Theoretically, it can be shown that AIRM and Bartlett
distances differ by a scaling factor [21]. Note that Bartlett
distance is also known as Jensen-Bregman Logdet Divergence
or Stein Divergence [22].

In the framework of spectral clustering, the commonly used
method to construct an affinity matrix is based on the Gaussian
kernel similarity (GKS). The GKS between two data samples
can be defined as

s (Xi,Xj) = exp

(
−d

2 (Xi,Xj)

δ2

)
, (7)

where the δ is the kernel width, and d(.) denotes a distance,
such as the Bartlett distance.

The main drawback of GKS method is that its performance
is sensitive to the value of δ which is difficult to determine. In
the literature, Zelnik et al. [37] proposed a way to calculate a
local scaling parameter δi for each sample matrixXi instead of
choosing a fixed scaling parameter δ for all data. The Gaussian
kernel similarity, considering the local scaling parameter, can
be rewritten as follows:

s (Xi,Xj) = exp

(
−d

2 (Xi,Xj)

δiδj

)
, (8)

where δi = d(Xi,XK), and XK is the K-th nearest neighbor
of matrix Xi.

Of these measures, the affine invariant Riemannian metric
is the only intrinsic Riemannian metric that corresponds to a
geodesic distance on the manifold of HPD matrices. Thus, we
use this metric in this paper.

III. PROPOSED METHODOLOGY
In this section, we describe the details of our superpixel-

based unsupervised PolSAR image classification scheme. The
scheme contains four steps: (i) generating superpixels, (ii)
sparse coding of covariance matrix, (iii) computing a sparsity
induced similarity matrix, and (iv) spectral clustering. First, an
over-segmentation algorithm is implemented to generate image
superpixels. Then, each superpixel is represented as a sparse
linear combination of other superpixels by Riemannian sparse
coding. Next, the pairwise sparsity induced similarity matrix
for all superpixels is constructed based on the sparse coding
coefficients. Finally, spectral clustering is performed on the
similarity matrix to get the final unsupervised classification
result.

A. Superpixel Generation for PolSAR data
It is well-known [1] that region-based classification is a

promising scheme which considers the spatial relations be-
tween neighboring pixels to reduce speckle noise in a Pol-
SAR image. Centralization is a commonly used approach to
represent one local region. For example, we can use one
average covariance matrix Vi to represent the pixels in the
i-th superpixel.

In this paper, the simple linear iterative clustering (SLIC)
algorithm [38] is adopted. It is a simple, but efficient approach
to generate superpixels and offers flexibility with regard to
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compactness and the number of superpixels it generates [30].
Each pixel in the image is iteratively assigned to different
superpixels.

The introduction of superpixels to the proposed unsuper-
vised PolSAR image classification framework can not only re-
duce the number of HPD matrices involved in the computation,
but also implicitly integrate spatial information. Therefore, the
classification process becomes more effective and the results
are more interpretable.

B. Riemannian Sparse Coding for PolSAR data

Sparse coding for vector data has achieved great success
and has been applied in many computer vision applications.
The aim of sparse coding for vector-valued data is to find the
sparsest linear combination of basic elements from an over-
complete dictionary comprised of vector data. Inspired by the
work of Cherian & Sra [10] for the Riemannian sparse coding
of SPD matrices, we extend this setup to HPD-valued matrices
for analyzing PolSAR data [24].

Similar to the aim of sparse coding for vector-valued data,
the main goal of Riemannian sparse coding for HPD-valued
data is to express the given HPD matrix as sparse linear
combination of basic elements from a dictionary, where each
element itself is an HPD matrix.

Assume that we have a dictionary B comprised of HPD
matrices {B1,B2, . . . ,BN} as atoms and an input HPD
matrix X which needs to be sparse coded. The goal of Rie-
mannian sparse coding for matrix X is to seek a nonnegative
sparse vector α = [α1, α2, . . . , αN ]

T , which makes the linear
combination

∑
iαiBi as close to X (in Riemannian geodesic

distance) as possible. The above sparse coding problem can be
written as follows:

min
α�0

φ(α) :=
1

2
d2

(
N∑
i=1

αiBi,X

)
+ P(α), (9)

where P(α) is the penalty term.
It has been proved in [36] that φ(α) := d2 (

∑
iαiBi,X)

is a convex function on the set:

A := {α|
N∑
i=1

αiBi �X, and αi ≥ 0}, (10)

Using the `1 norm as the sparsity penalty, we can rewrite
the problem (9) as the following minimization function via
replacing the distance by the affine invariant Riemannian
metric:

min
α�0

φ(α) :=
1

2

∥∥∥∥∥log(

N∑
i=1

αiX
− 1

2BiX
− 1

2 )

∥∥∥∥∥
2

F

+ β ‖α‖1 ,

(11)
where β > 0 is a regularization parameter. The above min-
imization problem (11) with the constraint condition in (10)
is nothing but a regularized nonnegative convex optimization
problem which can be solved by the spectral projected gradient
(SPG) [10].

C. Sparse Induced Similarity for PolSAR Data
The sparsity induced similarity (SIS) measure for vector-

valued data was first proposed and applied in the label prop-
agation application by Cheng et al. [11]. Here we extend this
measure to HPD matrix using the sparse coefficients generated
by the Riemannian sparse coding algorithm.

Assume that F = {F1,F2, . . . ,FN} denotes all HPD
matrices in an image and Fk ∈ F denotes the given matrix
that needs to be sparse coded. We first code the HPD matrix
Fk by a dictionary whose elements are the rest of the HPD
matrices in F , that is, our dictionary is composed of the set
Fk = F\Fk = {F1,F2, . . . ,Fk−1,Fk+1, . . . ,FN}. Then, the
matrix Fk can be decomposed as a sparse linear combina-
tion of Fk . Finally, the non-negative coefficient vector of
dictionary elements αk = [α1, α2, . . . , αk−1, αk+1, . . . , αN ]

T

is obtained by Riemannian sparse coding.
Once the coefficient vector αk is obtained, the sparsity-

induced similarity of HPD matrix Fk with respect to Fi is
defined as

ski =
αi∑N

j=1,j 6=k αj

. (12)

Being different with the equation (7) of literature [11], our
sparse coefficient is non-negative. Therefore, it is unnecessary
to use the max function in our method. After repeating this
step for every HPD matrix Fk ∈ F , k = 1, . . . , N , the
coefficient matrix Sij(1 ≤ i, j ≤ N) is obtained. Considering
the symmetry, the final similarity matrix W is defined as

Wij =


Sij + Sji

2
(i 6= j)

1 (i = j)
. (13)

If the dictionary size is too large, the computational cost
will become very expensive to solve the Riemannian sparse
coding problem in (11) for every HPD matrix. Thus, we adopt
a heuristic method which chooses the first N HPD matrices
(instead of all the remaining HPD matrices) that are closest to
the given matrix Fk in terms of the Bartlett distance to form
the Riemannian sparse coding dictionary in our experiments.

D. Spectral Clustering for PolSAR Data
Spectral clustering algorithm is a well-known clustering

method based on graph theory, which has also been widely
used in unsupervised classification problems on PolSAR im-
ages. Because of its ability to cluster arbitrarily shaped data
distributions, this approach can handle sample data which has
relatively complex structures and unknown distribution shapes.
It does not depend on estimating explicit models of cluster
distributions and sample features, rather a spectral analysis of
the point-to-point affinity matrix is used. The basic idea of
spectral clustering algorithm is to cluster the eigenvectors of
the graph Laplacian computed over the data similarity matrix.
For a detailed review of this algorithm, see [39] [40].

Given a dataset F = {F1,F2, . . . ,FN} and an similarity
matrix W∈RN×N without negative elements, each entry Wij

defines the similarity between the samples Fi and Fj . Then,
a diagonal matrix termed degree matrix D can be defined,



IEEE TRANS. GEOSCIENCE AND REMOTE SENSING, VOL. ?, NO. ?, ? 20?? 5

whose entries Dii =
∑N

j=1Wij . The graph Laplacian can be
written as L = D −W . Spectral clustering then seeks out
the k eigenvectors which correspond to the graph Laplacian’s
k smallest eigenvalues for representing the original data. With
those eigenvectors obtained, the classical k-means is performed
to get the final clusters. There are many popular methods to
solve the spectral clustering problem, such as the well-known
normalized-cut algorithm [41].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
superpixel-based unsupervised classification scheme using d-
ifferent PolSAR datasets. The first dataset is an EMISAR L-
band fully PolSAR image, which is acquired in Foulum area,
Denmark. The second one is acquired by L-band AIRSAR
sensor in Flevoland area, Netherland. The third one is also
AIRSAR L-band PolSAR image acquired over from Flevoland
area, Netherland.

The dataset of EMISAR is used to give a simple qualitative
comparison among four approaches, i.e., the classic iterated
Wishart classifier [42], the spectral clustering method based on
the local scaling Gaussian kernel similarity [37] and the sparse
induced similarity [11] with Hoekman feature vector [43], and
the proposed method. The other two AIRSAR datasets are used
to provide detailed quantitative analysis of the performances.

A. Design of Experiments
The classical Wishart classifier based on the K-means clus-

tering algorithm (denoted by “Wishart-K”) is used as the
baseline for comparison. The spectral clustering method based
on the Gaussian kernel similarity with automatic local scale
is employed for comparison. To construct the Gaussian kernel
similarity, we use the Bartlett diatance [29] to measure the
similarity between superpixels (denoted by “Bartlett-SC”). We
also implement the spectral clustering algorithm with sparsity-
induced similarity based on Hoekman feature (denoted by
“Hoekman-SIS”) to compare with our similarity measure based
on Riemannian sparse coding (denoted by “RSC-SIS”). The
steps below outline our scheme.

First, we use the simple linear iterative clustering (SLIC)
algorithm [30] [38] to generate superpixels. SLIC is an easy
and efficient over-segmentation technique, which generates
robust superpixels. In all our experiments, the SLIC algorith-
m is applied on the composite RGB image in Pauli basis
(|Shh − Svv| for red, |Shv| for green and |Shh + Svv| for
blue). To preserve the image boundary well and obtain good
segmentation performance, we set the strength of the spatial
regularization Nm as 0.1 in the stage for generating superpix-
els.

Second, the affinity matrix is constructed based on the
similarity between different superpixels. In Riemannian sparse
coding, the number of dictionary elements Nd is set em-
pirically. We find that very small values will degrade the
performance, since the PolSAR data could not be decomposed
by the dictionary well with a small Nd value. For very
large values, the computational complexity is high. In our
experiments, we used a dictionary of fixed size, which is 10

times the HPD matrix dimensionality. Thus, the value of Nd

is set as 30 considering a tradeoff between complexity and
accuracy. We also select the regularization parameter as 0.1 so
that the coding coefficients generated are approximately 10%
sparse. The value of connectivity neighborhood parameter in
“Bartlett-SC” approach is set to R = 7. For “Hoekman-SIS”
method, the number of closest neighboring vectors is chosen as
14 as suggested in [11]. In the final stage of spectral clustering,
the value of the number of clusters G needs to be specified
manually.

Among existing standard distances for evaluating the clus-
tering performance, we calculate the overall accuracy (OA),
pair-counting F1-measure [44], purity, and entropy [45] to
verify the performance of the proposed approach. As pointed
out in [44] [45], the higher values of OA, F1, Purity and
the lower value of Entropy indicate a better performance of
unsupervised classification solution.

B. Experimental Results of EMISAR Data
Our first dataset is an EMISAR L-band fully PolSAR

image, which is acquired from an agricultural area in Foulum,
Denmark in 1998. Its number of looks is 16. The land cover
types of this area include agricultural fields, forest, and several
buildings. The image size is 300×150 pixels. Its composite
RGB image in Pauli basis (|Shh−Svv| for red, |Shv| for green
and |Shh + Svv| for blue) is shown in Fig. 1(a).

(a) (b) (c)

(d) (e)

Fig. 1. EMISAR PolSAR image and clustering results. (a) RGB image in
Pauli basis. (b) result of Wishart-K. (c) result of Bartlett-SC. (d) result of
Hoekman-SIS. (e) result of RSC-SIS.
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In the superpixels generating stage, we set the normal size
of the regions Ns as 10. The results of different methods are
shown in Fig. 1(b)∼(e), in which the image is clustered into 8
classes. Comparing the visualized results in the Fig. 1(b)∼(e),
we can find that the “RSC-SIS” method achieves the best
classification result. We marked four different regions in the
composite RGB image for better comparison. In the first
“Wishart-K” approach, we can observe that the classification
performance is poor in heterogeneous areas, such as region 1
and region 3, from the visualized classification result shown
in Fig. 1(b). Especially in region 3 the classification result is
very noisy, even though the result at the top of the image is
more satisfactory. In the latter “Bartlett-SC” and “Hoekman-
SIS” approaches, the classification performance is lower than
that of the “Wishart-K” method in the region 2 and region
4, yet we can also find that the region 3 is well separated
in Fig. 1(c)∼(d). From the visualized classification results of
“RSC-SIS” method shown in Fig. 1(e), it can be observed that
most land cover types are well distinguished. Moreover, the
“RSC-SIS” results are smoother than other three approaches,
demonstrating the robustness to noise of the proposed method.
In general, the visualized experimental results show the effec-
tiveness of proposed method.

C. Experimental Results of AIRSAR Data
Our first AIRSAR data used in quantitative analysis is an L-

band fully PolSAR image, which was acquired over Flevoland,
Netherlands in 1989. It is a four look Stokes matrix data. This
test area is located in a typical agricultural area including
a variety of crops. The image size is 400×400 pixels. Its
composite RGB image in Pauli basis (|Shh−Svv| for red, |Shv|
for green and |Shh +Svv| for blue) is shown in Fig. 2(a). The
ground truth map of tested areas is visualized in Fig. 2(b).
Fig. 2(c) shows the types of crops and the corresponding
colors in the ground-truth, which defines nine classes, i.e.,
beet, alfalfa, grass, bare land, wheat, rapeseed, potato, pea,
and barley.

(a) (b) (c)

Fig. 2. AIRSAR, L-band, PolSAR image in Flevoland, Netherlands in 1989.
(a) RGB image in Pauli basis. (b) the ground truth map. (c) the types of crops
and the corresponding colors.

We set the superpixels size Ns as 10 by experience. The
whole image is classificated into 9 classes and the classification
results of different methods are shown in Fig. 3(a)∼(h).

From the visualized classification results shown in
Fig. 3(e)∼(h), we can observe that the classification perfor-
mance of the proposed method is better than other competitors.
As can be seen in Fig. 3(e)∼(g), the classification results
of the three former approaches are noisy in many areas,

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. Clustering results of the AIRSAR data of Fig. 2. (a) result of Wishart-
K. (b) result of Bartlett-SC. (c) result of Hoekman-SIS. (d) result of RSC-SIS.
(e)∼(h) are the results without void mask of (a)∼(d).

and neighbouring superpixels in the same classes are clas-
sified into different groups. Since neighbouring information
of superpixels are integrated via Riemannian sparse coding
similarity, the classification labels of “RSC-SIS” method in
Fig. 3(h) are more consistent. It also can be observed that the
result of “RSC-SIS” is much smoother and more accurate than
“Hoekman-SIS”, demonstrating the effectiveness of directly
sparse coding for PolSAR covariance matrices.

By comparing the classification results with void mask in
Fig. 3(a)∼(d), it can be seen that the main agricultural land
types is well classified by “RSC-SIS” method. For all four
unsupervised classification methods, some potato areas are
wrongly classified as grass and all grass areas are wrongly
classified as other crop species. The proposed method correctly
separates the areas of wheat and rapeseed, while other three
methods fail. Referring to the ground truth map, the classifi-
cation performance of the proposed method is improved for
most crops. In particular, the classification accuracies in some
areas are improved, such as wheat and rapeseed. There are
fewer noisy points for the “RSC-SIS” approach in homogenous
areas, than for the other three competiors. Consequently, we
have demonstrated the superior robustness of our method to
noise.

Table I shows the confusion matrix of the proposed method
on the 1989 AIRSAR data. Table II lists the quantitative
comparisons of the four unsupervised classification results,
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TABLE I. CONFUSION MATRIX OF THE PROPOSED METHOD ON THE 1989 AIRSAR DATA.

grass potato wheat bare land rapeseed barley beet pea alfalfa
grass 0 0 132 0 14 511 0 0 3807
potato 4105 4292 0 0 0 0 5 0 0
wheat 0 0 18992 0 467 0 25 37 51

bare land 0 0 1 4046 2 63 0 0 0
rapeseed 0 0 238 0 7831 0 0 0 0

barley 0 0 474 0 278 7759 36 0 0
beet 1 480 0 0 6 0 4289 0 0
pea 105 0 0 0 84 0 115 6768 0

alfalfa 0 1 13 0 15 3 0 0 8205

including the classification accuracy of land cover types, OA,
F1, Purity, and Entropy. From Table II, it can be observed
that the OA, F1, and Purity values of “RSC-SIS” are 0.8485,
0.8633 and 0.9047, respectively. They are higher than those
of other methods. At the same time, the Entropy value of
“RSC-SIS” is 0.1344, which is the lowest among all four
classification methods. That is to say, the proposed method
achieves satisfactory classification results. As described, our
proposed approach obtains the best classification performance,
which is not only indicated by the visual interpretation, but also
can be observed by quantitative evaluation indicators.

TABLE II. PERFORMANCE EVALUATION OF THE CLASSIFICATION
RESULTS OF THE 1989 AIRSAR DATA.

Method Wishart-K Bartlett-SC Hoekman-SIS RSC-SIS
grass 0 0 0 0
potato 0.3694 0.4793 0.6045 0.5108
wheat 0.6626 0.3446 0.3030 0.9704

bare land 0 0.9786 0.0005 0.9839
rapeseed 0.5162 0.7865 0.4739 0.9705

barley 0.8504 0.8982 0.8796 0.9056
beet 0.7883 0.8943 0.9056 0.8980
pea 0.9136 0.9540 0.8913 0.9570

alfalfa 0.9965 0.9843 0.9822 0.9961
OA 0.6265 0.6538 0.5598 0.8485
F1 0.6084 0.6376 0.5479 0.8633

Purity 0.7324 0.8015 0.7388 0.9047
Entropy 0.2909 0.2353 0.2930 0.1344

To further verify the effectiveness of proposed method, we
carry out quantitative analysis for another PolSAR dataset.
The second AIRSAR data is an L-band fully PolSAR image
obtained from the Flevoland, Netherlands in 1991. It is a four
look Stokes matrix data. This scene covers an agricultural land;
the size of the image is 430×280 pixels. A composite RGB
image in the Pauli basis (|Shh − Svv| for red, |Shv| for green
and |Shh + Svv| for blue) is shown in Fig. 4(a). The ground
truth map of tested areas is visualized in Fig. 4(b). Fig. 4(c)
shows the types of crops and the corresponding colors in the
ground truth, in which seven classes, i.e., wheat, beet, potato,
grass, rapeseed, flax, and barley are defined.

Similar to the experimental steps mentioned above, we set
the parameter of superpixel size in the methods as Ns = 5.
Fig. 5(a)∼(h) show the classification results of different meth-
ods, the whole image is classified into 7 groups. By comparing
the results in Fig. 5(e)∼(h), it can be concluded that the

(a) (b) (c)

Fig. 4. AIRSAR, L-band, PolSAR image in Flevoland, Netherlands in 1991.
(a) RGB image in Pauli basis. (b) the ground truth map. (c) the types of crops
and the corresponding colors.

classification performance of the proposed method is the best
on this dataset. Particularly, the classification labels of “RSC-
SIS” in Fig. 5(h) are more consistent and the edges of different
crops preserve well compared with that in Fig. 5(e)∼(g).

According to the ground truth map in Fig. 4(b), we can find
that the classification accuracy of the proposed method is the
highest among the results with void mask in Fig. 5(a)∼(d).
This owes to the ability of the proposed approach to provide
better similarity measures among the decomposed superpixels
and their neighbors.

The confusion matrix of the proposed method on the 1989
AIRSAR data is shown in Table III. Table IV shows the
quantitative comparisons of classification results, the OA, F1,
Purity, and Entropy values of “RSC-SIS”, which are 0.9319,
0.9260, 0.9319 and 0.0979, respectively. As in the previous
case, we found that the proposed approach not only achieves
the highest values of OA, F1 and Purity, but also has
the lowest value of Entropy. As expected, the visualized
classification results and the quantitative evaluation indicators
verify the superior performance of the proposed method.

D. Discussion
There are several technicalities in our scheme that affect

the performance of unsupervised classification results. In this
section, we give a brief discussion about these technicalities.
One such problem is setting the parameters of the SLIC
algorithm for generating superpixels. The size of segments and
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TABLE III. CONFUSION MATRIX OF THE PROPOSED METHOD ON THE 1991 AIRSAR DATA.

beet grass potato falx barley rapeseed wheat
beet 10198 322 4 0 0 486 0
grass 28 2049 0 0 0 108 0
potato 0 11 15871 0 0 516 0

flax 3 146 1 5155 64 18 0
barley 0 39 6 0 5805 47 0

rapeseed 0 0 0 0 0 2835 0
wheat 2 1439 0 0 0 142 4359

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Clustering results for the AIRSAR data of Fig. 4. (a) result of Wishart-
K. (b) result of Bartlett-SC. (c) result of Hoekman-SIS. (d) result of RSC-SIS.
(e)∼(h) are the results without void mask of (a)∼(d).

the strength of relationships between a pixel and its neigh-
borhood should be carefully taken into account for obtaining
more robust regions in the stage of generating superpixels.
Here we show two results of superpixel segmentation on the

TABLE IV. PERFORMANCE EVALUATION OF THE CLASSIFICATION
RESULTS OF THE 1991 AIRSAR DATA.

Method Wishart-K Bartlett-SC Hoekman-SIS RSC-SIS
beet 0.8098 0.9110 0.8083 0.9262
grass 0.9217 0.9437 0.6920 0.9378
potato 0.9671 0.9646 0.8047 0.9679

flax 0.9339 0.9504 0.9516 0.9569
barley 0.9869 0.9719 0.9847 0.9844

rapeseed 0.9619 0.9982 0.9877 1
wheat 0 0.6994 0.8480 0.7336

OA 0.8129 0.9213 0.8535 0.9319
F1 0.8471 0.9143 0.7941 0.9260

Purity 0.8148 0.9213 0.8613 0.9319
Entropy 0.1922 0.1098 0.1668 0.0979

(a) (b)

Fig. 6. The example results of superpixel segmentation on the 1989 AIRSAR
data. (a) Ns = 10, Nm = 0.1. (b) Ns = 10, Nm = 0.9.

1989 AIRSAR data with different value of Nm. From the
visual segmentation results in Fig. 6, we can see the SLIC
algorithm can provide a relatively precise estimation of each
segmentation.

Another technicality is how to adaptively determine the
optimal number of neighboring superpixels to form the sparse
coding dictionary; the value of which is set empirically in
current method. We used a dictionary of fixed size, which
is 10 times the HPD matrix dimensionality. Table V shows
the computational time of Riemannian sparse coding averaged
over 100 trials for different number of atoms in coding dic-
tionary. Our implementations are in MATLAB and the timing
computations used a single core Intel 3.4GHz CPU.

The computational time corresponding to each step averaged
over 10 trials for three experimental images is listed in
the Table VI: (i) the first step of generating superpixels by
the SLIC algorithm, (ii) the second step of computing the
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TABLE V. THE COMPUTATIONAL TIME OF RIEMANNIAN SPARSE
CODING.

atoms 20 30 50 100 200
Time (seconds) 0.0280 0.0345 0.0462 0.0722 0.1235

Riemannian sparse induced similarity (SIS) matrix, and (iii)
the final step of spectral clustering (SC).

TABLE VI. THE COMPUTATIONAL TIME OF THREE EXPERIMENTAL
IMAGES.

Time (seconds) SLIC SIS SC
The EMISAR data 0.3036 14.8815 0.5425

The 1989 AIRSAR data 1.6158 57.5373 3.8964
The 1991 AIRSAR data 1.8998 177.1355 82.3204

Moreover, how to automatically determine appropriate num-
ber of clusters is still an open challenging problem. For exam-
ple, the joint optimization of clustering and model selection
based on Boolean matrix factorization could be considered
to find the optimal number of clusters. Fig. 7 shows our
preliminary results on the EMISAR data using our Riemannian
sparsity-induced similarity with two different methods for
automatically determining the optimal number of clusters:
(i)self-turning spectral clustering (STSC) [37], (ii)simultaneous
clustering and model selection (SCMS) [46].

(a) (b) (c) (d)

Fig. 7. Automatically determine the number of clusters on the EMISAR
data. (a) RGB image in Pauli basis. (b) result of STSC. (c) result of SCMS.
(d) color code.

V. CONCLUSION
In this paper, we have proposed an unsupervised PolSAR

image classification method based on the Riemannian sparse
coding algortihm and sparsity-induced similarity measure on
the sparse coefficients. By introducing superpixels in the
classification framework, the information of neighborhood
pixels are implicitly intergrated. Thus, the classification pro-
cess becomes more effective. The Riemannian sparse coding
algorithm decomposes the HPD covariance matrices from a
superpixel into a non-negative sparse linear combination of
basic elements from a dictionary; this dictionary is formed
by such matrices from other superpixels. The sparsity-induced
similarity is employed to measure the difference between
such encoded superpixels and construct the affinity matrix,
which can be used in a graph-based clustering stage. The

experimental results on different PolSAR images show that
using our scheme is efficient and leads to superior performance
against other competing methods.
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