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ABSTRACT

Deep neural networks typically require large amounts of an-
notated data to be trained effectively. However, in several
scientific disciplines, including medical image analysis, gen-
erating such large annotated datasets requires specialized do-
main knowledge, and hence is usually very expensive. In
this work, we present a novel application of active learning to
data sample selection for training Convolutional Neural Net-
works (CNN) for Cancerous Tissue Recognition (CTR). Our
main idea is to steer annotation efforts towards selecting the
most informative samples for training the CNN. To quantify
informativeness, we explore three choices based on discrete
entropy, best-vs-second-best, and k-nearest neighbor agree-
ment. Our results on three different types of cancer datasets
consistently demonstrate that under limited annotated sam-
ples, our proposed training scheme converges faster than clas-
sical randomized stochastic gradient descent, while achieving

the same (or sometimes superior) classification accuracy.
Index Terms— active learning, cancer detection, uncer-

tainty sampling, deep learning
1. INTRODUCTION

Convolutional Neural Networks (CNN) have revolutionized
the domain of computer vision with performances of various
applications trending towards human accuracy. One of the
main factors that enabled this recent resurgence of CNNss is
the availability of large datasets. CNNs usually involve mil-
lions of parameters to learn complex real-world tasks, which
renders them prone to overfitting. One effective way to re-
duce overfitting is to increase data diversity, thus providing
large annotated datasets for training.

However, there are several applications in which collect-
ing such large amounts of annotated data is either challeng-
ing or very expensive. One such domain is medical image
analysis, especially Cancerous Tissue Recognition (CTR). In
this task, the tissue slides from suspected cancerous regions
are examined under a microscope and are classified as benign
or malignant — a task that not only requires the expertise of
an experienced pathologist, but also is very time consuming.
While CNNs may be able to improve the accuracy of diag-
nosis once they are trained adequately, the training process
itself is usually challenging due to the high expenditure of
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Fig. 1: Outline of the active training scheme. The annotation module A
corresponds to the interaction between the training scheme and a human an-
notator (e.g., surgical pathologist) during training stage <. The training mod-
ule T'; corresponds to the training process of the CNN in hand in the presence
of the annotation harvested during previous stages {1, 2, ..., 4}. The module
P; predicts the class labels of future samples in a new batch during stage ¢
based on parameter weights learned in the previous stages. The module Uj;
quantifies the uncertainty of the predictions.

collecting large datasets. To circumvent this issue, we resort
to active learning in this paper.

Active learning has been very successful in selecting
useful data samples in a variety of machine learning and
vision applications. Active strategies steer humans’ anno-
tation efforts towards data samples that have the highest
uncertainty for the classifier being trained. There have been
several such uncertainty sampling schemes proposed in the
literature geared towards classification (e.g., [1]]) and cluster-
ing (e.g., [2]) problems.

In this paper, we present a novel application of active
learning for the selection of data samples to train a CNN for
CTR. However, there are two important challenges to over-
come when applying active learning to CNNs, namely (i) to
allow learning without overfitting to the limited data given the
large number of CNN parameters, and (ii) to score the data
samples for selection based on their expected effectiveness in
improving the overall CNN training objective. We propose
a multi-stage training scheme to bypass these issues. Each
stage uses a small number of annotated data samples to train
the CNN until it starts overfitting to the validation data. The



CNN trained after every stage, is then used to predict the class
labels on unseen data samples (active pool); the predictions
are scored using an uncertainty measure. Figure|l|depicts an
outline of the proposed framework.

To validate the effectiveness of the proposed framework,
we apply the scheme for classifying cancerous tissues against
benign ones. We experiment with three different types of can-
cer image patches, namely (i) Breast cancer, (ii) Prostate can-
cer, and (iii) Myometrium tissue samples. These patches are
obtained by imaging Hematoxylin & Eosin (H&E)-stained
tissues under a microscope. Our experimental results demon-
strate that the proposed active learning setup can consistently
lead to better training of the CNN, allowing it to converge
much faster at a slightly higher accuracy than using the classi-
cal random sampling scheme in a batch-mode stochastic gra-
dient descent training setup.

2. BACKGROUND

Active selection methods were first introduced to the machine
learning community in the mid ‘80’s for the text classification
problem (e.g., [3]). At the core of active training schemes lies
the efficient quantification of prediction uncertainty, which
is a reflection of the confidence a model provides on the
task. Hanneke et al. [4] were among the first to theoreti-
cally demonstrate the positive effects of active learning in a
Probably Approximately Correct (PAC) framework.

In a binary classification setup, Tong and Chang [5] de-
rived an active scheme for the recognition of humans in an
image, while, Tong and Koller [6] proposed a minimiza-
tion scheme over decision hyperplanes for active selection.
Kapoor et al. [7] derived an active sampling strategy based
on the output of a Gaussian process model in a multi-class
setup. Holub et al. [1]] proposed an entropy based active
selection strategy for object classification. Capitalizing on
the probabilistic output of Support Vector Machine models,
Joshi et al. [8] demonstrated a powerful measure for quanti-
fying the uncertainty via a best-vs-second-best strategy; their
scheme outperformed random selection and entropy based
active schemes. In addition, Joshi et al. [9] also presented
a scalable, cost-aware scheme for active selection. Jain and
Kapoor [10] devised a k-nearest neighbor method for active
selection in large multi-class problems involving target prob-
lems with a large number of classes. Vijayanarasimhan and
Grauman [[11] proposed a crowdsourcing based active scheme
to train object detectors.

In addition, active selection procedures have been com-
bined with multi-layer neural networks to enhance their per-
formance. The first documented attempt of enhancing the per-
formance of deep learning via active selection was presented
in the work by Zhou et al. [12] for sentiment classification.
An attempt to enhance Deep Belief Networks via active se-
lection was presented by Wang and Shang [13]] on a limited
set of experiments, while Stark et al. [[14]] presented an ac-
tive deep learning scheme for automated public Turing tests
using a single best-vs-second-best uncertainty quantification

scheme. Finally, Wang et al. [[15] provided comparisons on
two object recognition benchmarks, using uncertainty sam-
pling measures which capitalized solely on the probability
simplex produced by the softmax layer of the CNN. Although
there are similarities between the presented work and [[15]],
our works differs in that we consider additionally an uncer-
tainty sampling scheme that treats the CNN as a dimensional-
ity reduction scheme and computes the confidence of the clas-
sifier based on the clustering effect that the fully connected
layers of the CNN exhibit [16]. Furthermore, we provide a
thorough evaluation of this uncertainty sampling framework
on different types of cancer to conclude about the feasibility
and effectiveness of this approach in the CTR domain.

The coupling of active selection strategies and cancer
recognition has appeared in the work of Danziger et al. [[17]
which derived a Most-Informative-Positive selection scheme.
This was applied to discover mutations in a tumor suppressor
protein (p53), found in human cancers. Focusing on gene
expressions, in the cancer recognition setup, Liu et al. [[18]]
introduced active selection for the classification of colon
cancer, lung cancer, and prostate cancer samples.

3. LEARNING SETUP AND METHODOLOGY

We use a CNN as the classifier of choice in this paper due
to its impressive performance on a variety of related tasks
(e.g., [19] 20]]). We adopt a multi-stage training framework
for the CNN as depicted in Figure[T]involving multiple stages
of training and augmentation of the training set by adding
new annotated data; each newly added data sample is selected
based on informativeness criteria.

Formally, suppose we have access to a collection of data
samples D. Let f; : D — A, define a CNN trained at the i-
th stage that takes a data sample as input and produces a class
probability vector (in the simplex Ay) as output, where we as-
sume there are d different class labels. Let S; C D represent
a (small) initial set of annotated samples. Our scheme starts
by training the CNN using a training set 7" = S for the cross-
entropy loss. The training is continued until the model starts
overfitting to the training data (as measured using a separate
validation set). Once trained, we select a subsequent subset
Sit1 C D\ U;Zl S; from the training set and apply the cur-
rent CNN model f; to generate classifier probabilities for the
samples in S; 1. These classifier probabilities are evaluated
using an informativeness measure. Suppose A;11 C Siy1 is
a subset of this data batch that is deemed to be informative by
the measure, then we augment the training set 7' =T U A; 1
and use it to train the CNN to generate a better model f; ;.
This setup is repeated until the training error plateaus. Note
that if the cardinality of A; 1 is less than a threshold, we sam-
ple more data batches such that we have sufficient training
samples for the new training stage. The appropriate amount
of annotations for each stage is decided by the size of the
stochastic gradient descent training batches, while the num-
ber of stage-wise training iterations is guided by the descent
in the validation data loss. However, in the absence of large



amounts of initial annotated data that can ensure the proper
convergence of training, fine-tuning a pre-trained CNN model
could be used. In this case, we use a model that is trained on
a very large dataset for a task similar to the one in-hand (but
perhaps with a different goal) to initialize the filter weights;
the main assumption is that it is cheaper to obtain data anno-
tations for this surrogate task.

The quality of the data samples selected in each stage
for training the CNN decides the effectiveness of the result-
ing model. To this end, we use the probability vector pro-
duced by the model f; trained at the i-th stage and applied
on the batch S;; for the next stage. We deploy two uncer-
tainty measures defined on the probability simplex, namely
(i) discrete entropy [1]] and (ii) the best-vs-second-best [8§]]
measures. Further, it is well-known that the outputs gener-
ated by the fully-connected layers of the CNN can be looked
upon as embedding the original high-dimensional data into a
low-dimensional feature space [16]] — this embedding is often
found to have a clustering effect on the data samples. With
this intuition, we propose to use an additional uncertainty
measure that captures the disagreement between k-NNs for
every sample in the active pool.

First we consider the the discrete entropy [1] computed
on the output class probability vector — each entry of which
captures the probability of a data sample to take the associated
class label. For a data sample x € S;; from the active pool
for stage ¢ + 1, let p(x) = f;(x) (p(x) € A,) define the
probabilistic output of the CNN classifier trained in stage-i.
Then, we define the discrete entropy of the data sample x as:

Zp )log(p

where p’ represents the ]-th dimension of the probability vec-
tor. We use the output of the softmax output from the last
layer of the CNN to compute p(x).

As is clear, the discrete entropy measures the overall ran-
domness of a data sample. We could explicitly use the confu-
sions in the classifier by quantifying the separability between
the data classes as decided by the learned class-decision
boundaries. One such heuristic is to use the difference be-
tween the best and the second-best output class probabilities
as suggested in [8]] — a smaller difference suggesting a higher
confusion between the respective classes. Reusing the no-
tations from above, let by = argmax;cqy ... 4 p’(x) and
by = argmax;c(q .. g\, P’(X) be the indices of the best
and the second-best classifier probabilities, then the Best-vs-
Second-Best uncertainty measure is defined as:

B(p(x)) = p" (x) — p" (x). )

Lastly, motivated by similar prior methods such as [[10],
we define the probability of a sample in the active pool to be-
long to a class as the annotation disagreement among its NNs;
these NNs are computed in the embedded lower-dimensional
space generated by the fully connected layers of the CNN. To
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Fig. 2: H&E-stained samples for three types of tissue; Breast (1% and 2"
row), Prostate (3" and 4™ row) and Myometrium (5™ and 6™ row).

be precise, suppose X = fz(x) denotes the output of a given
layer of the CNN in stage-: for an input x € S; ;. Further, let
y € {1,2,---,d} be the class-label associated with the point
X. Suppose, there are n, points in 7' (which is the training
set with annotated samples) with class label c. Then, the NN
agreement for class-c is defined as:

Z{xJET | yj=c} DISt( ])
Zc 1 ng Z{XJET | yj=c} DISt(i )

where Dist(-, -) is some suitable similarity measure between
the embedded data points X and its neighbors x;. In this
paper, we use the class label agreement itself as the Dist(-, -),
however, we use the Euclidean distance of the embedded
points for computing the nearest neighbors. Specifically,
for every unlabelled sample, we use the ground-truth labels
for its k-NNs in 7. Following that, we construct a normal-
ized histogram on the label occurrences which serves as an
approximation of the class membership probability vector.
Finally, we compute the discrete entropy of the approximated
probability vector as described in (T)) towards quantifying the
uncertainty associated with every prediction.

4. EXPERIMENTS

Due to the lack of widely accepted CTR benchmarks, we
present experiments on three private CTR datasets to evaluate
our proposed active learning framework for training CNNs.
We consider the problem of CTR based on H&E stained tissue
samples. Hematoxylin stains the nuclei in blue or dark purple
color, while Eosin imparts a pink or lighter purple color to the
cytoplasm, as depicted in Figure[2]

4.1. Datasets

First, for the case of carcinomas of the breast, 21 annotated
images of carcinomas and 19 images of benign tissue, taken
from 21 patients, are combined towards deriving a 17,497
sample dataset. 3,913 samples depicted benign tissue, while
13,584 patches corresponded to cancerous tissue. Second,
39 myometrial leiomyomas were combined with 41 images
of leiomyosarcomas to construct our second dataset for the
myometrium from 39 patients. We randomly selected 1539
cancerous image patches and combined them with 1782 be-
nign patches to derive a dataset of 3321 samples. Finally, for
prostate cancer, 31 images of carcinomas and 8 images from

Pe(x) = N E))



benign regions are annotated, taken from 10 patients. A 3500
image patches dataset was created with 1750 patches depict-
ing cancerous regions, with the other 1750 corresponding to
benign regions. A more detailed description on the utilized
datasets, as well as alternative feature representations, can be
found in [21]]. We present our experimental validation based
on patches of size 150 x 150 pixels, while the test set of each
dataset remained fixed throughout all training stages and con-
sisted of 20% of the original datasets.

4.2. CNN Training

For our experiments, the BVLC Caffe [16]] framework was
utilized on a machine with a single graphics card (NVIDIA
TITAN X), a quad-core Intel 47 processor and 32Gb of mem-
ory. For this section, we assume some basic familiarity of the
reader with the core CNN terminology. LeCunn et al. pro-
vides an introduction to the different CNN layer types in [22]
which the reader can also refer to. The Caffenet topology, dis-
tributed with the Caffe framework, was used for fine-tuning
on the collected datasets, while weight initializations were
taken from training the network on the 1M image database of
the ILSVRC challenge. Furthermore, we reduced the weights
of all intermediate layers of the network to 15% of the orig-
inal values and trained for a binary classification objective.
We set the base learning rate to 0.0001, while we selected a
step strategy that decreases the rate every 2.5K iterations, and
we also set the weight decay to 0.005. Ten thousand itera-
tions were performed for the first training stage, and 5K iter-
ations were performed for all subsequent stages. Finally, for
the uncertainty measure based on NN-agreement, we found
that working with 41-NNs is the most effective.

4.3. Results

Figure [3] presents the results obtained on the breast cancer
dataset for 16 training stages. All three active schemes were
found to be consistently more accurate when compared to the
random selection scheme. For the first training stage, 3.5K
annotated samples were selected and remained the same for
all the sampling strategies. For all subsequent training stages,
500 additional annotations were provided. Active schemes
reached a 2.2% increase in performance on the test when
compared to random selection after the 6! training stage.
Furthermore, active schemes, for the case that 5.5K annotated
samples were provided, achieved a performance as high as
random selection when 11K samples were provided for train-
ing; this is 50% decrease in the number of queries, which
strongly supports the merits of the proposed framework for
CTR.
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Fig. 3: Results on the Breast Cancer dataset.
For the myometrial leiomyomas dataset, Figure ] presents

the results for 12 training stages. For the first training stage,

540 annotated samples were provided, while the training set
was augmented by 150 samples for the subsequent training
stages. The largest performance gains for active schemes
was achieved for the case that 1140 annotated samples were
provided and reached 2.1%. Furthermore, interestingly, we
found that similarly to the case of breast cancer, we achieved
higher performance (94%) with 50% of the annotated sam-
ples that the random selection required to reach an equivalent
performance (93.2%).
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Fig. 4: Results on the Myometrial Leiomyomas dataset.

Finally, for the prostate cancer dataset, Figure [3] illus-
trates the extracted performance curves for 14 training stages.
For the first training stage, 560 annotated samples were used,
while 150 annotations were provided for every subsequent
training stage. For the case that 1.01K annotations were pro-
vided, random selection performed significantly less than ac-
tive schemes (entropy) with a 2.9% difference in the obtained
performance. An instance that highlights the annotation gains
of the proposed framework is illustrated by the fact that ran-
dom selection requires 40% more annotated samples to reach
accuracy of 89.3% when compared to the entropy based ac-
tive selection scheme. The best accuracy is attained by the
BVSSB scheme for the case that 2.21K samples were pro-
vided for training, reaching 89.6%.

Active Training Scheme on Prostate Cancer
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Fig. 5: Results on the Prostate Cancer dataset.

4.4. Discussion

Our results clearly show that active learning is beneficial and
leads to faster training of the CNN, while achieving simi-
lar (or sometimes slightly superior) accuracy than random-
ized sampling schemes. For all three uncertainty sampling
schemes the achieved performance was comparable. Finally,
the observed query reductions reached 50%, while the abso-
lute performance on the CTR datasets reached 93.4%, 94.1%
and 89.6% for breast cancer, myometrial leiomyomas and
prostate cancer respectively.
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