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Abstract

Removing suboptimal actions that can exist in a

demonstration is s key problem to be solved in Robot

Programming by Demonstration. In this paper we

present the �rst step of an approach for solving this

problem. We present how the Con�guration Space (C-

space) of a task can be derived from demonstration.

A demonstration traces out paths on a number of C-

surfaces in C-space. The idea is to use statistical re-

gression analysis on data from these paths to deter-

mine the unknown equation parameters of a C-surface.

Experimental results show the validity of the approach.

Accurate parameter estimates were obtained so long as

a suÆciently rich set of demonstrated paths existed on

the C-surface. The approach has the advantage that it

tends to provide accurate parameter estimates for C-

surfaces where they were most needed. That is, for C-

surfaces (i) critical to task completion, and (ii) whose

paths contained suboptimal actions.

1 Introduction

Recently there has been growing interest in the �eld

of service robotics, where robots are utilized for tasks

in a domestic environment. A major obstacle to be

overcome before robots can enter such environments

is of end user programming. A typical household-

er does not have the expertise to program a robot

in the usual way, ie. by writing computer code. A

new programming method is required that allows non-

technical users to program robots. A promising solu-

tion is Programming by Demonstration (PbD). Here,

the end user provides a demonstration of the task to

be programmed. A PbD interface then interprets the

demonstration and determines the low level control

details required by the robot to achieve the task. This

provides an easy and natural method for end users to

program a robot.

Programming by demonstration is an active re-

search area and many approaches have been present-

ed [1, 3, 5, 10, 11, 13, 16]. A key result in the area

is that it is generally suboptimal to have the robot

directly copy the demonstration [3, 10, 13, 17]. For

example, Delson and West [3] identify that, in a pick

and place task through a �eld of obstacles, a human

will naturally introduce noise into the demonstration

by using di�erent paths to traverse regions were the

gap between obstacles is large. De Schutter et al [13]

found that a demonstration of a peg-in-hole task could

contain actions by the demonstrator that were subop-

timal, erroneous, or even unintended. Similar �ndings

were made by Kaiser and Dillman in [10]. Clearly,

noise in the demonstration should be identi�ed and

removed by the PbD interface before demonstrated

paths are programmed into the robot.

In this paper we present the �rst step of a new ap-

proach to removing noise from a demonstration. We

show how a representation of Con�guration Space (C-

space [18]) can be constructed from the demonstration

using standard statistical regression techniques. Such

a �rst step is attractive since, once derived, C-space

information can be used as the basis for noise removal.

For example, we present in [9] a method for noise re-

moval that uses the C-space representation derived in

this paper.

Many approaches to constructing the C-space of a

task exist [2, 4, 14, 18, 19]. Most are presented as

a part of path planning approaches that use C-space

eg. [4, 14, 19]. However, all the work we have seen in

this area uses some sort of geometric description of the

task, eg. a CAD model. Our approach to construct-

ing C-space has the advantage over this work that a

geometric model of the task is not required. This is

important given our presentation is of PbD in a do-

mestic environment, where such a geometric model is

unlikely to be available. A limitation of our approach

compared to [2, 4, 14, 18, 19] is that it only constructs

regions of C-space that were visited in the demonstra-

tion. That is, it only provides a partial knowledge of

C-space.
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Figure 1: The spindle insertion task chosen for PbD
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Figure 2: States in the HDS are de�ned on the basis

of motion constraints on the spindle

2 Problem Formulation

Our aim is to present how C-space can be derived

for a typical household task. The task chosen is shown

in Figure 1. It is based on the domestic chore of chang-

ing rolls on a paper roll holder, and involves inserting

an axially compressible spindle between two support-

s. The task involves four degrees of freedom, three to

describe the position/orientation of the spindle body

relative to the supports (y,z, and �), and one to de-

scribe the compression of the spindle head relative to

the spindle body (Æ).

We model our task as a Hybrid Dynamic System

(HDS). The spindle insertion task is in essence an as-

sembly task, involving contact and constrained mo-

tion. Hybrid Dynamic Systems have been presented

as a good way to model assembly tasks [12]. In its

most general form, a HDS involves a continuous-time

system interacting with a discrete-event system [15].

For assembly, the continuous-time system represents

the continuous-time dynamics of the spindle. That is,

as (i) a di�erential equation describing the free-space

motion of the spindle relative to the supports, and

(ii) a set of constraint equations describing the con-

straint on spindle motion when the spindle is in con-

tact with the supports. In contrast, the discrete-event

system captures the discrete nature of the assembly

dynamics. It describes the assembly as a sequence of

asynchronous discrete events occurring through time.

A discrete event is de�ned to occur when the set of

constraints on the spindle motion changes. Each dis-

tinct constraint set possible in the task is de�ned as

a discrete state. Generally a discrete state will cor-

respond to a unique contact formation between the

spindle and supports. For example, we show in Fig-

ure 2 a spindle-support contact formation that de�nes

one of the states in our task. The constraints existing

in this state are caused by contacts h-3 and b-8 (note

how a single point contact is coded as a letter-number

pair the �gure). In general, each single point contact

de�nes one constraint in the state. As such, we ref-

erence a constraint by using the same letter-number

pair of the contact that causes it, eg. h-3 and b-8 are

the constraints that de�ne the state in Figure 2. To

make state referencing easier we give each state in the

HDS a number. The state shown in Figure 2 has been

labeled as state number 27 in the task. We show in

Figure 3 six assembly sequences that were demonstrat-

ed for the task. Notice then how HDS modeling allows

an assembly sequence to be nicely described as a se-

quence of discrete states. The state sequences start

in the no-contact state (state 2), pass though a set of

intermediate states, and end in the �nal fully assem-

bled state (state 1). The six paths shown in the �gure

form the demonstration set we use to derive C-space

in this paper. Note that the spindle position, orienta-

tion, and compression (ie, y,z,�,Æ) were recorded for

these paths in the demonstration using two Polhemus

sensors [7], one attached to the spindle head, and the

other attached to the spindle body.

The use of HDS modeling is advantageous given

our desire to construct C-space, because it provides a

rigorous and well structured description of the topol-

ogy of C-space. C-space consists of an obstacle free

region (Cfree), an obstacle de�ning region, and a re-

gion de�ning the boundary between the two (Ccontact).

Then the no-contact state in the HDS (state 2) corre-

sponds to Cfree. That is, any spindle con�guration in

state 2 will correspond to a point in Cfree. All other

states in the HDS involve contact between the spindle

and supports, and so together correspond to Ccontact.

Individually, they each de�ne a C-surface, a patch of

curved surface (or hyper-surface) that de�nes part of

Ccontact. Our interest here is in deriving a represen-

tation of C-space. Let i be an arbitrary state in the

HDS that (a) de�nes contact between the spindle and

supports (ie. we exclude state 2), and (b) was visited

in the demonstration. Let ci be the C-surface of i.

Then our aim is to derive a representation of C-space

by determining an equation for each ci in C-space.

Let C-space have dimension n. Then the problem

of deriving an equation for ci is a complex one, because

ci can be a surface ranging in dimension from zero to

n�1. However, the problem is simpli�ed if we note

that any ci can be speci�ed as the intersection of C-
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Figure 3: The set of demonstrations use to construct

C-space

surfaces of dimension n�1. We denote such C-surfaces

as n-1 dimensional C-surfaces. Recall that a state

in the HDS is de�ned by a unique set of constraints,

eg. the constraint set (b-8,h-3) de�ned state 27 in

Figure 2. Let 
i be the constraint set de�ning i.

That is, 
i = (�i1; : : : ; �ij ; : : : ; �nj ), where �ij is the

j
th constraint in state i, and nj is the number of

constraints in i. Each constraint �ij results in the

loss of one spindle dof, and hence determines an n�1

dimensional C-surface in C-space. Let cij be the n�1

dimensional C-surface determined by �ij . Then ci can

be speci�ed as:

ci =

nj\

j=1

cij

That is, to determine ci we need only know (a) the

�ij that exist in 
i, and (b) the equation of each cij .

However, we note that many constraints are common

to a number of states in the HDS. We denote as 
� the

unique set of constraints existing in the demonstration

set. 
� is calculated as:


� =

nk[

i=1


i = (��
1
; : : : ; �

�

m; : : : ; �
�

nm
)

where nk is the number of distinct states that were

demonstrated, ��m is the mth distinct constraint in the

demonstration set, and nm is the number of distinct

constraints that exist in the demonstration set. De-

note as c�m the n-1 dimensional C-surface correspond-

ing to �
�

m. Then our problem of deriving an equation

for any ci can be recast as two sub-problems:

(a) determine the constraint set 
i that de�nes i.

(b) determine the equation of every c
�

m.

We have a solution to both problems (a) and (b).

However due to limited space we concentrate in this

paper on presenting the solution for problem (b). We

stated in the introduction that our method for con-

structing C-space does not require a geometric descrip-

tion of the task. One may think that determining the

constraints existing in a state (ie. problem (a)) would

require such a model. We note that our solution for

(a) is based on work in [16], where a system is trained

by demonstration to recognize the contact formation

made between task objects. We use the contact for-

mation information determined by this work to de-

cide what constraints are present in a state, without

the need for a geometric model of the task. For the

remainder of this paper, we assume problem (a) has

been solved. That is, we take it that all constraints

�ij that exist in a state i are known.

3 Deriving the equation of a c
�

m

We base our approach for deriving the equation

of each c
�

m on statistical regression analysis. Each

demonstration in Figure 3 traced out a path though

C-space. Some segment of one or more of those paths

will exist on c
�

m. Our idea is to use regression analy-

sis on the data from these segments to determine an

equation describing c�m. For example, we show in Fig-

ure 4 a simple 3-D C-space de�ned by axes x, y, and

z. Three simple, planar c�m are shown (labelled c
�

1
, c�

2
,

and c
�

3
). The �gure shows how a demonstration traces

out paths on a number of c�
1
, c�

2
, and c

�

3
. We have

labelled the demonstrated segments existing on c
�

1
, c�

2
,

and c
�

3
as 1, 2, and 3 respectively. Then our idea is to

use data points in segment 1 to determine the equa-

tion of c�
1
, data points in segment 2 to determine the

equation of c�
2
, etc. Two things are required for each

c
�

m before the regression analysis can take place. They

are:

� A regression model. The regression model is a

generic equation for c�m. By generic we mean the

form of the equation is known, but that its pa-

rameters are not.
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Figure 4: Simple example of how we use demonstrated

paths to derive the equation of a c
�

m

� A data set. That is, the set of points record-

ed from the demonstration where the human was

traversing on c
�

m.

3.1 The Regression Model and Data Set

Determining the data set for c�m is straightforward.

It is formed by data recorded from any state in the

demonstration where constraint ��m was present. De-

termining a regression model for c�m is more complex.

We now present the details of how a regression model

for c�m is determined.

For a planar assembly task involving two polyhedral

objects, two possible constraint types ��m can exist in


� [18]. If one object represents a workpiece (eg. spin-

dle body) and the other the environment (supports),

then the �rst constraint type is caused by a vertex of

the manipulated workpiece in contact with an edge of

the environment. We show in Figure 5(a) how the c�m
of this type of ��m is given by the vector equation:

(aA+ bC� aB) � an = 0 (1)

The second constraint type is formed by an edge of the

workpiece in contact with a vertex of the environment.

We show in Figure 5(b) how the c�m of this type of ��m
is given by the vector equation:

(aA+ bB� aC) � bn = 0 (2)

Equations (1) and (2) form the set of possible regres-

sion models for the c�m that exist in a planar task with

a single manipulated object. They can both be ex-

panded to give scalar equations of the form:

�1(y; z; �; b; c; d; e; f) = 0 (3)

where y,z, and � are the position and orientation of

the manipulated body, and b,c,d,e and f are the re-

gression model's unknown parameters. Note that the

parameters have physical meaning. For example, pair

(c; d) gives the position of the vertex in the contact,

relative to frame Fb in (1), and relative to frame Fa

(2). This fact allows us to obtain the actual value of

aB

na

Cb
Aa

Fa y

z
Fb z

y

(a)

Ca

nb

Bb
aA

z

y

z

y

Fa

Fb

(b)

Figure 5: Two of four possible constraint types for the

spindle insertion task

parameters by measurement, something we use later

to verify the accuracy of parameter values obtained

from the regression analysis.

Our spindle insertion task is a planar task consist-

ing of two manipulated objects (the spindle head and

spindle body) with a single degree of freedom between

them. Then a set of four regression models exists for

the spindle insertion task. The �rst two correspond

to edge-vertex and vertex-edge contacts between the

spindle body and supports, and are given by equation

(3). That is, we use equation (3) as the regression

model for the c�m of ��m caused by spindle body edge-

vertex and vertex-edge contacts with the supports.

The second two regression models for the spindle in-

sertion task correspond to edge-vertex and vertex-edge

contacts between the spindle head and supports. They

can be derived in a similar way to (3), however we do

not present the details due to limited space. We only

note that these models can be written as scalar equa-

tions of the form:

�2(y; z; �; Æ; b; c; d; e; f) = 0 (4)

where the additional variable Æ in (4) compared to

(3) describes the position of the spindle head relative

to the spindle body. We use equation (4) as the re-

gression model for the c
�

m of ��m caused by spindle

head edge-vertex and vertex-edge contacts with the

supports.

Administrator
1533



We note that our regression models (3) and (4)

are non-linear in parameters b; c; d; e; f . However each

model can be made linear in the set of transformed

parameters B2 : : : Bn by appropriate rearrangement of

variables y,z,�, and Æ into a set of transformed vari-

ables X1 : : : Xn [8] (recall that n is the dimension of

C-space). That is, each regression model can be writ-

ten as a linear model of general form:

[1; B2; : : : ; Bn][X1; : : : ; Xn]
T = 0 (5)

We linearize each model in this way to simplify the

regression problem to be solved in the next section.

3.2 Regression Analysis

With the model and data set determined for a c
�

m,

the regression analysis can proceed. We �rst form a

system of linear equations out of the model and data

set, of the form:

X[1; B2; : : : ; Bn]
T = 0 (6)

where X is the data set, whose ith row we denote axss

X1i
; : : : ; Xni . Values in the data set X will contain

some level of error since they are determined from the

measured values y,z,�, and Æ returned by the Polhe-

mus sensor 1. The idea in regression is to form a sys-

tem of equations (6) that is over-constrained. The

over-constraint is then used to minimize the e�ec-

t of error in the data set X by �nding parameters

B2; : : : ; Bn that see the model best �t the points in

the data set. There are a number of ways that best

�t can be de�ned . We choose the total least squares

�tting method [6] (also known as linear orthogonal re-

gression). Here the best �t is de�ned to occur when

the Sum Square Error (SSE) is minimized, where SSE

is given by:

SSE =

qX

i=1

(Xi1 +B2Xi2 + : : :+BnXin)
2

(1 +B
2

2
+ : : :+B2

n)
(7)

where q is the number of rows in the data set. Geo-

metrically the approach can be interpreted as �tting

to the data set, a hyper-plane which minimizes the

sum of the squared Euclidean distances between each

point in the data set and the hyper-plane. To solve

equation (7) for the unknown parameters B2 to Bn,

we use the method based on Singular Value Decom-

position outlined in [6]. We have chosen to use the

total least squares �tting approach because it is the

most suitable method for our situation for the follow-

ing reasons. First, all variables X1 : : : Xn in the model

1
measurement made by any sensor will contain some level

of error. For example, measurements made by the Polhemus

sensor are transmitted as an electromagnetic signal, and so can

have errors introduced by metallic objects or stray magnetic

�elds existing in the vicinity of the sensor

contain error. This is in contrast to the more wide-

ly adopted �tting approach of ordinary least squares

where only one variable in the model is assumed to

contain error. Second, it is reasonable to assume that

the error in each variable is independent of the error

in other variables. Third, it is reasonable to assume

that the error in all variables are normally distributed

with zero mean and equal variance.

4 Results

Table 1 presents the results of our C-space con-

struction method for the selected set of c�m shown in

column 1. Columns 2 and 3 of the table show the con-

tact formation and constraint corresponding to each

c
�

m in column 1. Columns 3 to 7 show two rows of pa-

rameter values for each c
�

m, an upper row showing the

parameter estimates obtained by our method, and a

lower row showing a set of parameter values obtained

by measurement (ie. the true parameter values). Fi-

nally, column 8 lists the states that contributed to the

data set of each c
�

m.

On the whole, parameter estimates determined by

our method were accurate. In some cases the estimates

were excellent, eg. c�
3
, c�

1
while in others they were less

accurate, eg. c
�

12
, c�

13
, c�

9
. Two requirements for ac-

curate parameter estimates were identi�ed. First, a

suÆcient amount of data, ie. that the system of equa-

tions formed by the data set in the regression analysis

was suÆciently over-constrained. The position sensor

was capable of data output at a rate of 120 Hz, so

suÆcient data was generally available for all c�m. The

second requirement for accurate parameter estimation

was a good range of data. ie. that the demonstrator

traced out paths over a wide range on the C-surface.

This was the reason for less accurate estimates in our

case. For c
�

m with a number of paths over distinct

areas of the C-surface, eg. c
�

3
, c�

1
, the parameter es-

timates were excellent. However, for cases where the

range of data was more limited, eg. c
�

12
, c�

13
, c�

9
less

accurate parameter estimates were obtained.

There were two reasons why a limited range of path-

s were traced out on a c
�

m in the demonstration. The

�rst was because the c�m was only briey visited. For

example, constraint j-3 was made in passing and ex-

isted only in two states in Demonstrated Path no.5.

This resulted in less accurate estimates for c�
9
. What

is required in these cases is a larger demonstration set

so that more paths on distinct parts of the C-surface

become available. The second reason for limited path

range on a c
�

m was because the geometry of the task

limited the range of motion that could be demonstrat-

ed, ie. that the c
�

m only exists over a small region
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c
�

m

Contact

Formation
�
�

m

b̂ ĉ d̂ ê f̂

b c d e f
States in Data Set

c
�

1 h-3
0.008 0.524 0.227 0.019 -0.998

0.011 0.525 0.223 0 1

(D1) 22,21,24,21,27 (D2) 27 (D3) 21,29,28

(D4) 27 (D5) 21,24,21,30 (D6) 21,29,28

c
�

9 j-3
-0.023 0.523 0.310 0.730 0.634

0.011 0.570 0.223 0 1
(D5) 66,61

c
�

4
d-13

0.466 0.086 0.016 -0.972 0.234

0.525 0.086 0.011 -1 0
(D1) 20,22

c
�

11 d-16
0.183 0.096 0.002 0.033 0.999

0.213 0.086 0.011 0 1

(D1) 54,47,1 (D2) 55,54,47,1 (D3) 55,54,47,1

(D4) 47,1 (D5) 79,48,47,1 (D6) 55,54,47,1

c
�

12 c-15
0.581 0.078 -0.004 0.996 0.088

0.540 0.086 0.011 1 0

(D1) 47,1 (D2) 47,1 (D3) 47,1 (D4) 77,43,47,1

(D5) 49,78,79,48,47,1 (D6) 47,1

c
�

6 d-14
0.191 0.118 0.043 0.001 0.996

0.223 0.086 0.011 0 1
(D4) 33,76

c
�

13 b-8
0.470 -0.097 0.157 0.157 -0.988

0.373 0 -0.011 0 -1
(D1) 24 (D5) 24

c
�

3 b-10
0.377 0.005 -0.012 0.009 -0.997

0.383 0 -0.011 0 -1

(D1) 27,8,38,8,54,47,1 (D3/D6) 28,9,65,

60,55,54,47,1 (D2) 7,8,27,8,38,8,9,65,

60,55,54,47,1 (D4) 7,8,27,8,33,76,38,77,43,47,1

c
�

8 e-1
0.024 0.512 0.353 -0.999 -0.105

0 0.525 0.373 -1 0
(D4) 4,74

Table 1: Regression analysis results for selected c
�

m

of C-space. For example, many paths contained con-

straint c-15, so one would expect precise parameter

estimates for c�
12
. However for c-15, motion is natu-

rally constrained by the geometry of the task, ie. the

spindle cannot move very far from a vertical orienta-

tion. Although parameter estimates in these cases are

not overly accurate, they still do in fact provide an

accurate description of the c�m over the limited range

of motion allowed by the task. The process of noise

removal means deriving noise-free paths that lie on

c
�

m [9]. Then parameter estimates that describe c
�

m

well over the limited range allowed by the task will be

useful for the noise removal process. That is, our de-

rived path will move onto a new C-surface (ie. we will

move into a new state) before reaching regions on c
�

m

described badly by the parameter estimates. Many

of the c
�

m with less accurate parameter estimates in

Table 1 do so for this reason, eg. c�
9
, c�

11
, c�

12
.

We have seen that in many cases the approach re-

sults in accurate parameter estimates. Where limited

demonstration data is available, estimates are less ac-

curate. A feature of the approach is that it has the

natural tendency to generate accurate estimates for

c
�

m where noise removal is most in need. We most de-

sire noise removal for c�m in two categories. First, c�m
of constraints pivotal to completing the task. In our

spindle insertion task, b-10 is a constraint of this type.

It occurs at some point in every demonstration, and is

critical for the completion of the task. For such con-

straints we desire accurate c�m estimates so that paths

derived for the robot from these estimates exactly re-

ect the topology of C-space. The derived paths must

be of high quality because they will be used often and

are critical to the completion of the task. Our ap-

proach tends to provide accurate parameter estimates

for the c
�

m of pivotal constraints because such con-

straints are generally demonstrated often, leading to

a large data set with good range. Besides b-10, con-

straints h-3, c-15, and d-16 are also pivotal constraints

in the task.

The second category of c�m where we desire noise

removal are those on which particularly noisy paths

were demonstrated. Our approach will tend to pro-

duce accurate parameter estimates for these c
�

m be-

cause the noisy paths will by de�nition visit diverse

parts of the C-surface. For example, we highlight the

parameter estimates obtained for c�
8
shown in Table 1.

These estimates are quite accurate given that only one
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path from the demonstration was available for the re-

gression analysis. The reason was because a relatively

noisy path was demonstrated. The human produced

a path that saw the spindle orientation move from be-

tween 6.5 and 39 degrees to the vertical, and 0 mm

to 11.2 millimeters of spindle compression. In com-

parison we see the parameter estimates for c�
4
are less

accurate. Although roughly the same amount of data

was available in this case, the motion demonstrated

was relatively noise free with the spindle moving in

close to a direct line through state 20 to state 22.

5 Conclusion

We have presented an approach for constructing

the C-space for a task from demonstration. It was

presented as an alternative to well known method-

s for constructing C-space that require a geometric

model of the task. Our motivation here was to de-

rive C-space for the purpose of noise removal in PbD,

however the approach is general and could be used

in other applications where a geometric task model is

not available. Experiments showed the validity of the

approach. They showed that the approach could de-

rive a representation of C-space in regions that were

visited in the demonstration. The representation was

generally accurate, although it could be less accurate

in regions that were visited only briey in the demon-

stration. Experiments also showed the suitability of

the method for the purposes of noise removal in PbD.

The method tended to provide an accurate description

of C-space in those regions where noise removal was

most required. That is, for regions (i) that must be

visited to complete the task, and (ii) that contained

noisy demonstrated paths. On these basis, we found

the approach to be a valid way to produce a a C-space

representation for a task. In particular, it was found

to be particularly suitable for deriving C-space for the

purpose of noise removal in the context of PbD.
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