
Programming by Demonstration: Removing Suboptimal Actions in a

Partially Known Con�guration Space

J. R. Chen A.Zelinsky

Department of Engineering, FEIT Department of Systems Engineering, RSISE

The Australian National University The Australian National University

Canberra, ACT, 0200, Australia Canberra, ACT, 0200, Australia

E-mail: chen@faceng.anu.edu.au E-mail: Alex.Zelinsky@anu.edu.au

Abstract

Programming by demonstration is a promising ap-

proach to automatic robot programming, however

methods are required to remove suboptimal actions that

can be demonstrated by end users. In this paper we use

the partial knowledge of Con�guration Space (C-space)

derived in previous work to remove suboptimal actions

from a demonstration. Our idea is to use demonstrat-

ed paths to predict what regions in C-space are obsta-

cle free. Suboptimal actions in a demonstration are

then avoided by planning alternative actions that pass

through the obstacle free regions. Experimental result-

s show the validity of the approach. A demonstrated

path containing signi�cant sub-optimality was convert-

ed by the approach into a short, eÆcient path suitable

for execution by the robot.

1 Introduction

Recently there has been growing interest in the �eld

of service robotics, where robots are utilized for tasks

in a domestic environment. A major question in ser-

vice robotics regards end user programming. A typical

householder will not know how to program a robot in

the usual way, ie. by writing computer code. A new

programming method is required that provides a more

natural programming interface for non-technical users.

A promising solution is Programming by Demonstra-

tion (PbD). Here, the end user demonstrates the task

to be programmed. A PbD interface then interprets

the demonstration and determines the control details

required by the robot to achieve the task.

A well known problem in PbD is that the demon-

stration can contain erroneous or suboptimal action-

s, ie. \noise" [2, 10, 4, 8]. For example, Delson and

West [2] identify that, in a pick and place task through

a �eld of obstacles, a human will naturally introduce

noise into the demonstration by using di�erent path-

s to traverse regions were the gap between obstacles

is large. De Schutter et al [8] found that a demon-

stration of a peg-in-hole task could contain actions by

the demonstrator that were suboptimal, erroneous, or

even unintended. Clearly, having the robot directly

copy the demonstration will not be optimal. The solu-

tion is to identify and remove any noise from demon-

strated paths before they are programmed into the

robot.

In this paper we present a new approach to remov-

ing noise from a demonstration. Our work here follows

on from previous work [3], where we derived the con�g-

uration space (C-space [5]) of a task from demonstra-

tion. Our idea then is for noise removal in two steps,

(i) generate C-space for the task from demonstration,

and (ii) use the C-space information to remove noise

from demonstrated paths. We focus in this paper on

presenting a solution for step (ii). Note that work in [3]

provides only a partial knowledge of C-space, ie. this

work only derived regions of C-space that were visited

in the demonstration. As such, well known path plan-

ning methods [5] cannot be applied to derive a noise

free path.

Previous approaches to noise removal in PbD in-

clude [2, 4, 8]. Kaiser and Dillmann, and De Schutter

et. al. [4, 8] present approaches that use thresholding,

smoothing, and loop removal techniques. For exam-

ple, Kaiser and Dillmann [4] propose two types of noise

removal for a peg-in-hole task. First, they remove in-

e�ective actions, ie. actions that changed the con�gu-

ration of the peg by less than a prede�ned threshold.

Second, they remove actions that were later corrected,

ie. those that were partly or fully negated at follow-

ing time steps. This is the process of removing loops

from the demonstrated path. Work in [4, 8] has been

successful in removing obvious
aws in the demonstra-

tion, however it is limited to deriving paths that con-

tain only demonstrated points. As such, less obvious

aws cannot be removed, eg. corrected actions that

do not form explicit loops in the path. Delson and

West [2] propose a di�erent approach. They address

the case where all demonstrated paths start and end

at the same point. They identify an obstacle-free en-

Administrator
Proceedings of the 2001 IEEE
International Conference on Robotics & Automation
Seoul, Korea ∙ May 21-26, 2001

Administrator
0-7803-6475-9/01/$10.00 © 2001 IEEE

Administrator

Administrator
4096

Figure 1: The spindle insertion task chosen for PbD

velope formed by the outer-most lying paths that were

demonstrated. A noise-free path is then constructed

to lie completely within the demonstration envelope.

This approach can derive paths that contain points

that were not demonstrated. As such, it is capable

of removing sub-optimalities from the demonstrated

path that [4, 8] cannot. However, the approach is re-

stricted to �nding paths that lie within the envelope.

This can be a limitation, for example, where only one

demonstration is provided. In addition, it has been p-

resented for C-space of dimension 2 or 3. The method

is not easily extendable to higher dimensions.

Our approach to noise removal compares well to

previous approaches. The approach can derive paths

that contain undemonstrated points. As such, it can

remove a greater range of sub-optimalities than [4, 8].

Compared to [2] our approach has the advantages that

(a) it does not assume that all demonstrations pass be-

tween the same start and end points, (b) it can derive

paths that lie outside the demonstration envelope, and

(c) it can be applied to �nd paths in C-space of any

dimension. A limitation of our approach compared to

[2] is that caution needs to be applied when tuning the

parameters of the method, otherwise it may produce

a non-obstacle free path.

2 Problem Formulation

Our aim is to present noise removal for a demon-

stration of a typical household task. The task chosen

is shown in Figure 1. It is based on the domestic chore

of changing rolls on a paper roll holder, and involves

inserting an axially compressible spindle between two

supports. The task involves four degrees of freedom,

three to describe the position/orientation of the spin-

dle body relative to the supports(y,z,�), and one to

describe the compression of the spindle head relative

to the spindle body (Æ).

We model our task as a Hybrid Dynamic System

(HDS). The spindle insertion task is in essence an as-

sembly task, involving contact and constrained mo-

tion between task objects. Hybrid Dynamic Systems

have been presented as a good way to model assembly

tasks [7]. In its most general form, a HDS involves

a continuous-time system interacting with a discrete-

event system [9]. For assembly, the continuous-time

system represents the continuous-time dynamics of the

spindle. That is, as (i) a di�erential equation describ-

ing the free-space motion of the spindle relative to

the supports, and (ii) a set of constraint equation-

s describing the constraint on spindle motion when

the spindle is in contact with the supports. In con-

trast, the discrete-event system captures the discrete

nature of the assembly dynamics. It describes the as-

sembly as a sequence of asynchronous discrete events

occurring through time. A discrete event is de�ned

to occur when the set of constraints on the spindle

motion changes. Each distinct constraint set possible

in the task is de�ned as a discrete state. Generally a

discrete state will correspond to a unique contact for-

mation between the spindle and supports. We show

in Figure 2, six sequences of discrete states that were

demonstrated for the task. The �gure shows how an

assembly sequence is nicely described as a sequence of

discrete states in the HDS. To make referencing easier,

we give each state a state number, eg. state 2 is the

start state, state 1 is the goal state, etc. Note that the

six paths shown in Figure 2 form the demonstration

set we used to derive C-space in [3].

The overall problem to be solved involves noise re-

moval from a complete demonstrated path. Then HDS

modeling simpli�es the problem to be solved. Rather

than be concerned with noise removal over the entire

path, we can address the problem separately in each

state. To formulate this problem exactly, we must

�rst understand something of the topology of C-space
1, and its relationship with our de�nition of a state

in the HDS. C-space consists of an obstacle free re-

gion (Cfree), an obstacle de�ning region, and a re-

gion de�ning the boundary between the two (Ccontact).

Then the no-contact state in the HDS (state 2) cor-

responds to Cfree. That is, any spindle con�guration

in state 2 will correspond to a point in Cfree. All

other states in the HDS involve contact between the

spindle and supports, and so together correspond to

Ccontact. Individually, they each de�ne a C-surface, a

patch of curved surface that de�nes part of Ccontact.

Each demonstration in Figure 2 de�nes a path through

C-space. Clearly the path will visit the C-surface of

each state in the demonstration. Let
i be the i
th

distinct state in the demonstration, and let ci be its

C-surface. Then we know that some segment of the

path will exist on ci. Call this segment �. Then, the

1see [5] for a detailed presentation of the topology of C-space

Administrator
4097

49

1

47

43

77

38

76

33

8

27

8

7

6

1

47

54

55

2

21

29

28

9

65

60

1

47

54

55

2

21

29

28

9

65

60

9

65

38

8

1

60

54

47

55

PATH 6

2

20

24

21

22

2 2

7

75

5

6

8

4

74

5

75

2

21

24

21

11

30

38

8

47

54

21

27

8

66

61

56

78

79

48

47

1

1

PATH 5PATH 1 PATH 2 PATH 3 PATH 4

Figure 2: The demonstration set used to construct

C-space

�rst requirement of our noise removal method is that

it derive a noise-free path between the start and end

points of �.

We note that C-surfaces can be of di�erent dimen-

sion. Let C-space have dimension n. Then states

where the spindle loses one dof because of contact with

the supports will have C-surfaces of dimension n�1. S-

tates involving a single spindle dof will have C-surfaces

of dimension one. We want our noise removal method

to work for any state in the task. That is, our second

requirement on the method is that it cope with deriv-

ing paths on C-surfaces ranging in dimension from 1

to n�1. In addition, it must be able to determine a

noise free path in Cfree (which is of dimension n).

Recall that Ccontact is de�ned by a set of intersect-

ing C-surfaces. The extent of a C-surface ci in Ccontact

is de�ned by where it intersects with its neighboring

C-surfaces. Neighboring C-surfaces to ci belong to s-

tates that were demonstrated immediately before or

after
i. Neighboring C-surfaces can only have di-

mensions one greater or one less than ci. This is be-

cause states demonstrated immediately before or after

i correspond to the gain or loss of a single spindle d-

of compared to
i. Let ci have dimension k. Then

neighboring C-surfaces to ci can be divided into those

Q1

Q3
Q2

A

B

C

D

B1 B2
B3

C1

C2

C3

OBSTACLE
NON

FREE

2

4

3

1

5

path
demonstration FREE

OBSTACLE

Figure 3: Demonstration segments identify regions on

a C-surface that are likely to be obstacle free

of dimension k+1, and those of dimension k�1. Neigh-

boring C-surfaces in general de�ne obstacles on ci that

we wish to avoid. If we generate a path lying exact-

ly on ci, then we are guaranteed to avoid neighboring

C-surfaces of dimension k+1. That is, the third re-

quirement for our noise removal method is that it gen-

erate paths exactly on the C-surface ci. We denote as

a boundary on ci, each neighboring C-surface to ci of

dimension k�1. Then the fourth and �nal requirement

on our noise removal method is that it generate paths

that lie within all boundaries on ci. We now present

a method that for�lls our four requirements.

3 Removing Noise from Demonstrated

Segment �

Since we do not have full knowledge of C-space, not

all boundaries on ci are guaranteed to be known. We

show in Figure 3 a 2-D C-surface where boundaries

A,B and C were visited in the demonstration and are

known, while D is unknown. The �gure shows that

some portion of a known boundary may exist behind

an unknown boundary, eg. C3 and B3, and hence does

not really divide an obstacle free region from an ob-

stacle de�ning region. We note that a boundary is

guaranteed to divide obstacle-de�ning and obstacle-

free regions along a segment traversed in the demon-

stration, eg. segments 1, 3, 5. We call such segments,

boundary segments. We observe that if the C-surface

is of �nite size (as is usually the case), then a point

immediately in front of the boundary segment will be

obstacle free, eg. points Q1, Q2, and Q3. We use

this observation as the basis for growing obstacle free

regions on the C-surface. We grow a free region in

front of each boundary segment of the C-surface. If

Administrator
4098

the region is grown very small, then we are guaranteed

that it will be obstacle free. However a small region is

of limited use for path planning purposes. Hence we

grow a region of useful size and accept that the region

will only likely be obstacle free. We call such a region a

likely free region. Once a likely free region is identi�ed,

we use a road-map type approach to path planning,

similar to those presented in [6]. We randomly gen-

erate points within the region, and use a simple path

planner to create a connectivity graph L that records

which points have an obstacle free path between them.

Apart from points in likely free regions, we also know

that points in demonstrated paths interior to known

boundaries are obstacle free, eg. points in segments 2

and 4. We call such segments interior segments. We

use the same simple path planner to create a graph D

that records the connectivity between points in di�er-

ent interior segments. Finally we combine graphs L

and D into a graph K that represents the connectivity

of all obstacle free points on the C-surface. We iden-

tify the nodes in K that represent the start and end

points of �. We search for the minimum cost path

between these nodes to give the �nal noise-free path.

The process can be divided into four distinct steps.

They are:

� Creating boundary segments

� Growing likely free regions

� Creating interior segments

� Creating a connectivity graph K, and searching

K for our �nal noise-free path

We present the details of each step in the following

four sub-sections.

3.1 Creating Boundary Segments

Three steps are required to create boundary seg-

ments for
i, (i) �nding boundary states to
i, (ii)

identifying raw boundary segments for the boundary

states found in (i), and (iii) projecting points in raw

boundary segments to give a set of clean boundary

segments. To achieve (i), recall that a state
i is de-

�ned in our HDS by a set of constraints on spindle

motion. Let
i be the set of constraints that de�ne

i. Then we choose a boundary state of
i as any other

demonstrated state that is de�ned by the set of con-

straints
bnd, where
bnd �
i. That is, constraints

present in
i will also be present in its boundary s-

tates. Step (ii) is then straightforward. We select as a

raw boundary segment, any path demonstrated in the

boundary states of
i. Step (iii) is required because

points in raw boundary segments will not generally lie

exactly on the C-surface of the boundary state. That

is, the regression analysis of [3] derived C-surface e-

quations for each state that best-�t the raw demon-

stration data. We create clean boundary segments by

orthogonally projecting [1] all points in a raw bound-

ary segment onto the C-surface of the boundary state.

From now on, we refer to clean boundary segments

simply as boundary segments.

3.2 Growing Likely Free Regions

We grow a likely free region by generating a region

of points on our C-surface ci immediately in front of

a boundary segment. Each point in the region is de-

termined as follows. First, a point P in the boundary

segment is randomly selected. Next, a distance value

dst2 is randomly chosen using the uniform probability

distribution over the interval (0;md]. Parameter md

denotes a maximum distance value, and determines

how big the likely region is grown. A point in the like-

ly free region is then determined by generating a point

Q that (a) lies a distance dst from P, and (b) lies on

our C-surface ci. In addition to (a) and (b), point Q

must also satisfy the condition (c) that it lie within

known C-surface boundaries. We refer to the region

on ci lying within known boundaries as the bound-

ed region for ci. For example, we present in Figure

4 a 2-D C-surface with six boundaries c1 to c6, each

described by equations �1 = 0 to �6 = 0 respective-

ly. Here, the bounded region consists of the union of

regions labelled 1, 2, and 3. The remainder of this

section presents the details of how we ensure that Q

lies inside the bounded region of a C-surface ci.

Let �bnd = 0 be the equation of the C-surface for

bnd, a boundary state to
i. That is, equation �bnd =

0 de�nes a known boundary on our C-surface ci. Then

we identify that any Q we generate will satisfy one of

the following conditions:

�eps < �bnd jQ< eps (1)

�bnd jQ� �eps (2)

�bnd jQ� eps (3)

where jQ denotes the equation evaluated at point Q,

and eps is a parameter of small value. If (1) is satis�ed,

then Q lies on, or very close to the boundary, while

if (2) or (3) are satis�ed, Q lies to one side of the

boundary. We are never interested in Q's that satisfy

2throughout this paper, symbols in plain upright text denote

parameters of our path derivation method

Administrator
4099

< 0 > 0 > 0< 0 > 0< 0

> 0

< 0

< 0

> 0

< 0

> 0

φ = 05

φ = 06

φ = 04
1 2

34

2
demonstrated

path

point set 1

point set

3
set

point

γ

γ

γ

γ

γ

γ
5

2

6

3

4

1

φ = 0 φ = 0 φ = 01 2 3

Figure 4: Example of how demonstrated points deter-

mine a set of valid bounded sub-regions

(1). A Q lying exactly on the boundary is not obstacle

free, and a Q lying very close to the boundary may not

be obstacle free (recall that the equations we derived

for C-surfaces in [3] are best-estimates that contain

some error). Rather, we are interested in generating

Q that satisfy either (2) or (3). Note that the choice

of whether we want Q to satisfy (2) or (3) will depend

on which side of the boundary is obstacle free.

In general, there will be nb known boundaries to

our C-surface ci. Denote the equations of boundaries

1 to nb respectively as:

�bnd 1 = 0; �bnd 2 = 0; : : : ; �bnd nb
= 0 (4)

We note that a Q which satis�es one or more equations

in (4) will lie on a boundary of the bounded region.

We saw that we are not interested in such Q. Rather,

we want Q that lie on the obstacle free side of all

boundaries by at least a distance eps. That is, we must

form a set of inequalities by casting each equation in

(4) to be an inequality of the form (2) or (3). Call

such a set of inequalities a boundary inequality set.

Then we note that a boundary inequality set de�nes a

region on our C-surface ci. For example, one boundary

inequality set for the boundary equations �1 = 0 to

�6 = 0 of our example in Figure 4 would be:

�1 � eps; �2 � �eps; �3 � �eps;

�4 � eps; �5 � �eps; �6 � �eps (5)

Then the region on the 2-D C-surface in Figure 4 that

is de�ned by the boundary inequality set (5) is region

1. That is, a point Q is guaranteed to lie in region 1 if

it satis�es all inequalities in (5). We note that in gen-

eral the bounded region on ci cannot be speci�ed by

a single boundary inequality set. Denote as a bound-

ed sub-region the region de�ned by a single boundary

inequality set, ie. region 1 in Figure 4 is a bounded

sub-region. Then, we identify that the bounded region

of a C-surface can be speci�ed as a union of bound-

ed sub-regions. For example, the bounded region in

Figure 4 is given by the union of bounded sub-regions

1, 2, and 3. A point Q can then be tested to see if it

lies within the bounded region by testing to see if it

lies within any of its component bounded sub-regions.

The question is then one of how to select the set of

bounded sub-regions that make up our bounded re-

gion. Note that not all bounded sub-regions that can

be generated for a certain set of boundary equations

will be obstacle free. For example, region 4 in Fig-

ure 4 is a valid bounded sub-region, however region 4

de�nes an obstacle.

Our solution is to use the set of demonstration

points on the C-surface to determine what bounded

sub-regions are valid. Let � be a possible bounded

sub-region for ci, and � be the boundary inequality set

that de�nes �. Then we say that � is a valid bounded

sub-region if there exists a point in the demonstra-

tion set on ci which satis�es all inequalities in �. For

example, in Figure 4 the demonstrated points in point-

set 1 show region 1 to be a valid bounded sub-region

because they satisfy all inequalities in (5). Similarly,

demonstration point sets 2 and 3 show regions 2 and

3 as valid bounded sub-regions. Region 4 is not in-

cluded as a valid bounded sub-region because it does

not contain any demonstrated points. This approach

is a conservative solution because we may miss some

valid bounded sub-regions in which no demonstrated

points exist. However, we take this approach because

it guarantees that we do not accept Q lying in bound-

ed sub-regions that de�ne obstacles.

3.3 Creating Interior Segments

We denote as a raw interior segment a path demon-

strated in state
i. We use the term interior because

we know that such segments lie within known bound-

aries of ci. Note that � is one of the raw interior

segments on ci. Our aim here is to derive clean inte-

rior segments. There are two requirements on clean

interior segments to which raw interior segments do

not comply. These are (i) points in raw interior seg-

ments do not lie exactly on ci (ie. work in [3] derived

equations that best �t data points), and (ii) the s-

tart and end points in raw interior segments do not

Administrator
4100

lie exactly on the boundaries of ci. We achieve (i) by

orthogonally projecting all points in the raw interior

segment onto ci. For (ii), let � be an arbitrary interior

segment on ci. Denote as
ent and
ex the previous

and following states to
i when � was demonstrated.

Then we note that the start and end points of � will

lie close to the C-surfaces of
ent and
ex respectively.

We ensure that they lie exactly on these C-surfaces

by orthogonally projecting the start point in � onto

the C-surface of
ent, and its end point onto
ent. A

set of clean interior segments is achieved by repeating

steps (i) and (ii) for all raw interior segments on ci.

Denote the clean interior segment corresponding to �

as ��. From now on, we refer to clean interior segments

simply as interior segments.

3.4 Creating a Connectivity Graph

The previous two sections have been devoted to

generating points on our C-surface ci. Two types of

points were generated, points in likely free regions, and

points in interior segments. We show in Figure 5 a

possible outcome of the point generation process for a

simple 2-D planar ci. It shows three likely free regions

(labelled A, B, and C) generated in the bounded re-

gion on ci. In addition it shows two interior segments

(labelled �1 and �2) that were also generated. Our

aim in this section is to create a graph K that repre-

sents the connectivity between all generated points on

ci. Such a graph should have a node to represent each

generated point. It should have arcs existing between

nodes whose points are connected by an obstacle free

path. In addition, we assign to each arc in the graph a

value equal to the cost of traversing the obstacle free

path it represents. We construct this graph K in three

steps, (i) create a graph L representing the connectiv-

ity between points in likely free regions, (ii) create a

graph D representing the connectivity between points

in interior segments, and (iii) combine graphs L and

D into K.

Creating L: We �rst create a point set consisting

of all points in all likely free regions on ci. Then a n-

ode in L is created for each point in the point set. To

construct arcs in L we must determine two things for

each pair of points in the point set, (a) if the points

are connected, and (b) the cost of traversing between

connected points. We say that two points Q
1
and Q

2

in the point set are connected if two conditions are

satis�ed. First, that the straight line path between

Q
1
and Q

2
is obstacle free, ie. that every point on

the straight line lies within the bounded region of the

C-surface. For example, points Q1 and Q2 in Figure 5

P1

η1

P2
Q

D η2

2

3

4

C

1

A 1

Q2
B

Figure 5: Example of points generated by our method

for a simple, planar ci

have a straight line path between them that lies fully

inside the bounded region on ci. Second, that the Eu-

clidean distance between Q
1
and Q

2
does not exceed

a maximum connected distance parameter mcd l. We

apply the second condition for the following reasons.

First, recall that our point set consists of points from

distinct likely free regions. We do not want to connect

points in likely free regions that lie far apart ,eg. be-

tween points in likely free regions A and C in Figure

5. That way we are less likely to connect points on

ci between which an unknown boundary exists. Sec-

ond, intermediate points on the straight line between

Q
1
and Q

2
will not in general lie exactly on the C-

surface due to its curvature. However, if Q
1
and Q

2

do not lie too far apart, then intermediate points will

lie close enough to the C-surface for the purpose of

checking whether they are obstacle free. Third, ap-

plying such a condition is advantageous from a com-

putational point of view. The number of points to be

tested for connection increases rapidly as the allowed

distance between the points increases. In addition,

note that testing for connectivity only between points

lying a distance less than mcd l apart does not detrac-

t from the end performance of our method. That is,

points lying far apart that really should be connected,

(eg. those existing in the same, or overlapping, likely

free regions), will be connected eÆciently at the �nal

path planning stage. In general they will be connect-

ed by a compound path passing through a sequence of

intermediate points, each separated by a distance of

less then mcd l.

Our second requirement for creating the arcs in L

was (b) to determine their cost. We denote as $1 and

$2 the nodes in D that represent points Q
1
and Q

2
,

and as # the arc in D that connects $1 and $2. Then

we calculate the cost of # as the Euclidean distance

between Q
1
and Q

2
. Euclidean distance is the ap-

propriate measure of cost here, since we desire that a

Administrator
4101

minimum cost path in the �nal connectivity graph K

represents the shortest distance path on our C-surface.

Creating D: We create D in two steps, (a) create a

distinct connectivity graph for each interior segment

on ci (eg. distinct connectivity graphs for �1 and �2 in

Figure 5), and (b) combine graphs constructed in (a)

into D. Step (a) is straight-forward because the con-

nectivity of points in any interior segment is known,

ie. apart from the start and end points, each point is

connected to two other points, a previous point, and

a following point. We create a graph for each interior

segment with nodes and arcs that re
ect this connec-

tivity. We assign as costs to the arcs in the graph

the Euclidean distance between each of the sequential

point pairs.

In step (b) we must combine the graphs created in

step (a) into a single graph D. The process of combin-

ing these graphs means deciding if and where interior

segments on ci intersect, That is, we should create a

connecting arc between two graphs D1 and D2 derived

in step (a) when the interior segments �1 and �2 rep-

resented by these graphs are found to intersect, eg. at

point D in Figure 5. We say that �1 and �2 intersect at

points P1 (in �1) and P2 (in �2), when the Euclidean

distance between P1 and P2 is less than a parameter

mcd d. If this is the case, an arc is connected between

the node in D1 that represents P1 and the node in D2

that represents P2. Then D is created by repeating

this process for every possible P1 and P2 in our set of

interior segments on ci.

Creating and Searching K: We create K by com-

bining graphs L and D. The idea is to connect points

in interior segments with those in likely free region-

s where an interior segment passes through a likely

free region (eg. along segments labelled 1,2,3 and 4 in

Figure 5). We create a K that represents such con-

nectivity as follows. For each point P in each interior

segment �, �nd a point Q in any likely free region

that lies within a distance mcd l away. If such Q's

exist, then for each Q found, create an arc between

the node that represents point P in D, and the node

that represents point Q in L. Set the cost of the arc

to the Euclidean distance between the points P and

Q. Once K is determined, we can achieve a noise free

path between the start and end points of our cleaned

demonstrated segment ��. It is achieved by searching

in K for the minimum cost path between the nodes

that represent the start and end points of ��.

We have introduced a number of parameters for our

method, eg. md, eps, mcd l, etc. A key issue in ensur-

(a) (b) (c) (d)

Figure 6: (a) original demonstrated path containing

noise, (b) the noise-free path derived by our method,

(c) the shortest length path, and (d) a path that passes

too close to obstacles

ing good performance from our method is of setting

these parameters to appropriate values. This is espe-

cially true for parameter md. Recall that the value of

md determines how big a likely free region is grown.

A balance must be struck in setting md between the

bene�t of large likely free regions for path generation

purposes, and the risk of generating points that lie

on the non-obstacle-free side of unknown boundaries.

At this stage in the research we are still investigating

methods for automatically setting parameters to ap-

propriate values. For the results presented in the next

section, the values of parameters were set manually.

4 Results

We show in Figure 6(a) a path used by the demon-

strator to traverse state 8 between states 7 and 38.

We show this path in task-space rather than C-space

due to the diÆculties involved with presenting a 3-D

hyper-surface graphically (the C-surface correspond-

ing to state 8 is a 3-D hyper-surface). Each spindle

con�guration in Figure 6(a) corresponds to a point

in the path on the C-surface. Notice then how this

demonstrated path contains signi�cant noise. The

demonstrator has used an overly long path to traverse

between the two states. The path resulted because

the demonstrator became confused about the position

of the spindle relative to the supports. His initial aim

was to pass into state 65 (see Figure 2). However on

not �nding this state, his reaction was to retract the

spindle back towards himself, resulting in state 38.

We applied our noise removal method to this path.

The resulting noise-free path is shown in Figure 6(b).

There are three main things to note about the noise-

free path. First, it is signi�cantly shorter than the

demonstrated path. It passes eÆciently between the

Administrator
4102

start point in state 7 and end point in state 38. Sec-

ond, it avoids obstacles, ie. it avoids unwanted con-

tacts between the spindle and supports that would see

the process accidently move into states neighboring s-

tate 8 that are not state 38, eg. state 27, 9, or 33,

etc. (see Figure 2). For example, we show in Fig-

ure 6(c) the path resulting if the method had simply

selected the shortest path (ie. straight line path in

C-space) between the start point in state 7 and the

end point in state 38. This path does not avoid obsta-

cles, and would have resulted in the assembly process

accidently moving into state 27. Paths that avoid ob-

stacles are selected by the method because we ensured

that points in both likely free regions and interior seg-

ments were generated within the bounded region on

the C-surface. That is, the path in Figure 6(c) was

not selected because it contains points lying outside

the bounded region of the C-surface of state 8. The

third thing to note about our noise-free path in Figure

6(b) is that it maintains a safe distance from obstacles.

For example, a path has not been derived where the

the bottom of the spindle \scrapes" along the top of

the lower support (shown in Figure 6(d)), even though

this path has a shorter length in C-space than the one

derived. This is a result of ensuring that points in

likely free regions lie a minimum distance of eps away

from boundaries.

The performance of our approach for noise removal

compares well with previous approaches. We have de-

rived a noise free path that contained undemonstrated

points. As such it was able to remove an action that

was later negated, even though an explicit loop was

not formed in the path. In addition, we have pre-

sented experiments where the demonstrated paths in

a state did not all pass between the same start and

end points. That is, our method produced a noise free

path without the existence of an explicit demonstra-

tion envelope to de�ne an obstacle free region. The

path was derived on a C-surface of dimension three,

however clearly it can applied to �nding a path on

C-surfaces of dimension greater than three.

5 Conclusion

Facilitation of end user programming is one of the

main obstacles for success in service robotics. Pro-

gramming by Demonstration provides a promising so-

lution, however methods are required to cope with

noisy and suboptimal actions that are demonstrated

by end users. We proposed that such actions can be

avoided by (i) deriving a C-space representation of the

task from demonstration, then (ii) using C-space in-

formation to remove noise from demonstrated paths.

In this paper we concentrated on solving problem (ii).

We used HDS modeling to convert the noise removal

problem for the complete demonstrated path into a

noise removal problem on the C-surface of each state in

the path. Our approach identi�ed two types of obsta-

cle free points on the C-surface. First, points that were

visited in the demonstration. Second, points in likely

free regions. We represented the connectivity of these

points using a connectivity graph. A noise-free path

between any two points on the C-surface could then

be obtained by searching for the minimum cost path

in the connectivity graph. We successfully applied the

approach on a demonstrated path that contained sig-

ni�cant noise. We showed that our method could re-

move the suboptimal parts of the demonstrated path

to form an eÆcient, noise-free path to be passed onto

the robot for execution.

References

[1] D.C.Lay. Linear Algebra and its Applications. Addison

Wesley, 1994.

[2] Nathan Delson and Harry West. Robot programming by

human demonstration: Adaptation and inconsistency in

constrained motion. In Proceedings of the 1996 IEEE In-

ternational Conference on Robotics and Automation, 1996.

[3] J.R.Chen and B.J.McCarragher. Con�guration space gen-

eration for assembly tasks from demonstration. In Proceed-

ings of Mechatronics and Vision in Practice, September

2000.

[4] M. Kaiser and R. Dillman. Building elementary skills

from human demonstration. In Proceedings of the 1996

IEEE International Conference on Robotics and Automa-

tion, pages 2700{2705, April 1996.

[5] Jean-Claude Latombe. Robot Motion Planning. Kluwer

Academic Publishers, 1991.

[6] J.Latombe L.E.Kavraki, P.Svestka and M.H.Overmars.

Probabilistic roadmaps for path planning in high-

dimensional con�guration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566{580, August 1996.

[7] Brenan J. McCarragher and Haruhiko Asada. The discrete

event modelling and trajectory planning of robotic assem-

bly tasks. Journal of Dynamic Systems, Measurements

and Control, 117(3):394{400, October 1995.

[8] Wim Witvrouw Qi Wang, Joris De Schutter and Sean

Graves. Derivation of compliant motion programs based on

human demonstration. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, pages

2616{2621, April 1996.

[9] R.W.Brockett. Hybrid models for motion control systems.

In H.L.Trentelman and J.C.Willems, editors, Essays on

Control: Perspectives in the Theory and Its Applications,

chapter 2, pages 29{5. Birkhauser, Boston, MA, 1993.

[10] Marjorie Skubic and Richard A. Volt. Learning force

based assembly skills from human demonstration for ex-

ecution in unstructured enviroments. In Proceedings of the

IEEE International Conference on Robotics and Automa-

tion, pages 1281{1288, May 1998.

Administrator
4103

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

