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Abstract—High level conceptual thought seems to be at the approach of Connectionism, given the non-symbolic nature
basis of the impressive human cognitive ability. Classicaop-  of neurons. Essentially, the idea is to grow symbols that
down (Logic based) and bottom-up (Connectionist) approacds  enresent high level concepts in a bottom up fashion from

to the problem have had limited success to date. We identify a P d actuat dat ithout th
small body of work that represents a different approach to Al an agents raw sensory and actuatory data, withou €

We call this work the Bottom Up Symbolic (BUS) approach  restriction that the underlying substrate be Connectionis
and present a new BUS method to concept construction. Of the BUS work, the 2 most similar to ours are [5],

The main novelty of our work is that we apply statistical  [4]. Work in [5] use different terminology in that they form
methods in the concept construction process. Our findings wiews” and “actions” as instances of similar sensorimotor

here suggest that such methods are necessary since a symboli . h th h tested i imul
description of the true agent-environment interaction dyramics €xperience, however the approach was tested In simula-

is often hidden among a background of non-representative tion only. Work in [4] constructs concepts as categories
descriptions, especially if data from unconstrained realworld and entailments for a real robot that was programmed to

experiments is considered. We consider such data (from a precisely collide with a small set of distinct objects. The
mobile robot randomly roaming an office environment) and 4545 set in which they searched for concepts representing
show how our method can correctly grow a set of true concepts . -
from the data. thes_e objects then contained _only the concepts_ they were
looking for. A concept formation framework suitable for
a random roaming exploration of the environment (as we
present below) we believe, is a more realistic scenario for
BUS concept formation. Let us now expand on this point.
The categories of concepts should have a predictive infer-
The traditional approaches to Al are the top-down ap-ence on entailments. Finding concepts in sensorimotor data
proach of Logic and Machine Learning, and the bottom uptherefore means finding determinism in the relation between
approach of Connectionism (Neural Networks). A key aimcategories and entailments. Usually such determinisndis hi
of both approaches is for agents with the ability to createden. The environment may be nondeterministic or dynamic
and manipulate a high-level symbolic representation af the [7]. Even for simple deterministic and static environments
surrounding world. This mirrors the way that humans usethe agent’s view of the environment may seem random
high-level concepts to act intelligently in their enviroent.  because it is inaccessible [7] (inaccessible means the’agen
Concepts are abstractions of past experience that allogensor set does not give it access to the complete state of the
the prediction of future outcomes. A concept like “tomato” environment). Although the agent-environment interactio
allows a human to predict outcomes (taste, texture, etc) of & deterministic, it then does not appear so to the agent.
tomato not experienced before. A concept is (a) a collectiorrurther, real sensors and actuators suffer from noise.€Thes
of instances, called a category, and (b) its entailment. Théssues mean our search for concepts for real-world agents
instances within a category are all similar in some way,and environments is a search for determinism in a seemingly
like our sensory experience of different tomatoes or theandom relation between the categories experienced by the
same tomato at different times in the above example. Theagent and their entailments. In this paper we propose a
entailment part of a concept is the consequence of categofyamework for finding determinism in such a setting based
membership, and is what gives the concept its predictiven a method called Symbol Statistics [8].
ability when new instances of the category are encountered.
The traditional top-down and bottom-up approaches have
had limited success to date. Indeed, it has even been con-Our framework for growing concepts is envisaged for a
jectured that the top-down approach cannot form a solutionvide range of applications, from a simple valve controlier,
to Al because its symbols are not grounded in sensorimotaa complex humanoid robot. Such agents will have sensors,
experience [1]. In this paper, we identify a small body ofwhich are read by the agent, and which reflect the state
work which represents an alternative approach [2], [3], [4] of the environment. They will also have actuators, which
[5], [6]. We call it the Bottom-UiSymboliq BUS) approach. are written to by the agent, and which operate on the
This is to distinguish it from the Bottom-UNon-symbolic environment. Assume that each sensor (actuator) returns
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I. INTRODUCTION

II. FINDING CANDIDATE CONCEPTS
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Our search for entailments differs to that for categories.
The entailment part of a concept must live only $hor
some subspace ¢f. The entailment infers predictive ability
to the agent for some category of sensorimotor experience.

The agent is generally interested in predicting the catégor
\W%’i@?s effect on the state of the environment, and its view of the

state of the environment is encompassed by its sensory
Mpq HMrTaq regime alone. Lep(s) = (wy|g=1..27*~1). Then we must
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The final step in this section is to bring together the cate-
membarship srrays gory and entailment searches just specified. We will idgntif
true concepts later as candidate concepts with a detetiminis
ME] ! connection between the category and entailment. For each
Pa Mpq X category spacé/,, a deterministic entailment is possible
I TEMPORAL ! . -
OFFSET ' in any of the entailment spacé¥,. Then the search for

Temporally abstracted Candidate concepts concepts means constructing candidate concepts across all

membership arrays Py . .
forve T wa combinations ofV}, — W,. 2
Figure 1. The Candidate Concept construction process

(receives) a scalar value at each point in tin@he ideais B Clustering
to deploy the agent in its environment with a basic (maybe We have addressed the issue of where to search for
random) set of behaviors such that exploration results. Theandidate concepts, but how should we construct them?
agent will experience the consequences of particular sgnsoSpecifically, how should we form categories I}, and
inputs and actuatory outputs. We call these experiencesntailments inV,? Recall that categories are groupings
candidateconcepts. However, not all candidate concepts camf sensorimotor experience that have similar characiesist
be taken as true concepts, as we shall see. Prior to selectifi@r example, [9] identifies different instances of the catgg
true concepts in Section Ill, we detail (in this section) wha “dog”, such as Collies, Chihuahuas, Spaniels, etc. Each
candidate concepts are and how they are formed. instance has similarities in their characteristics; theyeh
fur, they pant, have four legs, etc, although they are not
identical (their fur might be a different colour or length).
Let s = s1,...,5i,...,5ns denote the agent's (scalar) This suggests that points closelip should form categories,
sensor set and = ay, ..., a;, ..., ana the agent's actuator and points close ifi, should form entailments. Such points
set. LetS; denote the set (range) of outputs fey and  represent instances of sensorimotor experience with @imil
A; the set (range) of inputs far;. Call S Sensor Space, characteristics, but which are not necessarily identical.
S§=081x...x 8 x...x S and callA Actuator Space,  Clustering is a method used to identify groupings of
A=A; x ... xAj x...x Ay, The spaceS x A then  closely spaced points in a metric space. For our application
represents the full possibility of an agents sensorimotohere, we could adopt the Euclidean metric in e&gh(,)
experience. Our definition of the category part of a concephnd then cluster to find categories (entailments). Howeeer w
as “instances of sensorimotor experience” means our seargjopose an alternate approach of clustering first along the
for categories will be inS x A, or more generally, in |ines of sensor and actuator type, and then forming clusters
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A. Where to Search for Candidate Concepts

a subspace of x A. If p(s Ua) = (vplp=1..2"*""*~1) in a higher dimensiona¥, (1¥,) by combining membership
denotes the power set afunion a, then our search must |apels. We now explain this process in detail (see Figure 1).
include one subspace, for each element, in the power Let D, be our data set array. =) of the agent’s sensor
set, where, ifv, = (sq,8p,...,0q,a3,...) then 'V, = readings, wheren is the number of data points recorded,

Sa x Spx...xAax Agx.... For example, a mobile robot andns the number of sensors. Similarly, 18, (nxna) be

with s = (C), (C for Compass) and = (Lw, Rw) (Left  our actuator data set. Columns ID, represent the values
and Right wheels), concept categories can potentiallyifive returned by individual sensors, but there can be a number
any of the subspaces, to V7 corresponding tan = (C),  of columns inD, that represent sensors of the same type,
vy = (Lw), vz = (Rw), v4 = (C,Lw), v5s = (C,Rw), e.g. multiple bump sensors on a mobile robot. For each
v = (Lw,Rw) andv; = (C,Lw, Rw). Previous work  sensor type, cluster points in the relevant columnsDgf

[4] form categories from sensory data only, rather thanggether. Repeat over all sensor types to retuf (nxns),
sensorimotor data as we propose here.
2This search is exponential ins and na. We formulate it in this way
lApparatus that deal in vector quantities at each time sikp, laser for now, however we will need to limit it, eg. by pruning unpmising
range finders, can be viewed as sets of scalar returning a&ppar sensor/actuator combinations, in future work



a membership matrix that holds the cluster membership labehight be categorised as forward rotation or little/no riotat
for each data point irD,. Similarly, produceM, from D, depending on the context of the recent past.
on the actuator side. Clustering individual sensor (act)at .
types together (rather than individual sensors (actugtor<C: Témporal Abstraction and Offset
together) is appropriate since differences in the “spédfa Clustering as just described is an abstraction step that
their data are due to the dynamics in the agent/environmeittansforms the specifics of a data point intotype of
interaction rather than physical differences in the haréwa sensorimotor experience. A complementary abstractiqn ste
We use fuzzy C-means clustering to produde and M,, to this is temporal abstraction. That is, in addition to tyeet
and will explain why below. Once we havkl, and M,, of sensorimotor experience, the dataset contains inféomat
we form the membership matrix relevant ¥. Call this  regarding the duration of experience. Duration informatio
matrix M, where theC' superscript denotes a membershipin the dataset manifests itself as repeat rowddfy & MF
array for the category part of our candidate concepts. I{® here represents horizontal concatenation of arrays - see
Vp = Su X Sp x ... x Ay x Ag x ..., then form MpC Figure 1). Hence, our temporal abstraction step considted o
as the horizontal concatenation of column$, ... in M, parsingMpC & MqE for repeat rows to creatMqu @ szz'
anda, 3, ... in M,. Similarly, form MF from columns of For each set of repeat rows NS @ MF, we added a
M, for entailments. Rows in/¢ (MEq) then have strings row to Mpc; S Mﬁz as the membership label string of this
designating membership of data pointslip (V). set. In addition we recorded the number of repeat rows in
While our approach to clustering requires a symbol stringhe set to create a count vector whose length was equal
(rather than just a symbol) to represent each categorto the number of rows in’\/[pcq @ szz' We then clustered
(entailment) inV,, (W,), it has the following advantages. the values in the count vector using K-means into (for this
It requires one up-front clustering computation (i.e. ptm  paper) 2 clusters: short and long duration, to produce a
the search specified in Section II-A) rather than a separatdéemporal” memberships vect(Mqu. The vectong; was
clustering computation for eadt, (W,), and so is compu- then appended as the final columnl\tffq (i.e. MﬁI@Mg; ,
tationally attractive. It provides an intuitive labellimgwhat  to produce a set of membership labels for the data in
a category/entailment represents, e.g. wheel rotatioa dafl}, which reflected the temporal duration of the original
clustered into 3 clusters representing back, stop and forwa strings inMpC. Temporal abstraction is also possible on the
rotation. The approach negates the need for a unit normalentailment side, and would capture the entailment duration
sation scheme across different dimension¥p{i¥,) when  aspect of the agent-environment interaction dynamics. To
furnishing the clustering space with the Euclidean metrickeep histograms in Section IV to a reasonable size, we
Finally, it is much easier to choose the number-of-clusterslid not implement it here (i.e. dashed arrow in Figure 1).
value forn separate single dimensional clusterings than forTemporal abstraction in [4] consists of recording datareyri
one clustering in am-dimensional space. the agent’s exploration phase for only 5 seconds around dis-
Fuzzy C-means results in a degree of membership tdinctive sensor value changes (eg. bump sensor going from
a cluster for a data point, rather than the binary “is a0 to 1). While this reduces the amount of data to process,
member” or “is not a member” of hard clustering methodswe question whether it really is temporal abstraction. We
like K-means. Our use of fuzzy clustering has a pragmatiavould prefer to retain this term for temporally abstracted
purpose, but has foundations in psychological models otategories/entailments formed on the basis of their teaipor
human concept formation. The pragmatic purpose is tgroperties (like duration here) in the data.
add hysteresis to category membership at boundaries of The predictive aspect of a concept’s category on its
categories, since oscillation between categories canroccentailment implies daemporal offsebetween categories and
simply due to measurement noise in the data. For examplentailments, i.e. categories experienced at one time ghoul
wheel velocity data of a mobile robot clustered into 3 be matched up with the entailment that follows. Hence, we
clusters, 1 (fwd), 2 (no rotation) and 3 (back) may lead to aorm M,, as the horizontal concatenation of the first:
1 to 2 transition of...,1,1,2,1,2,1,2,2.... We use fuzzy rows of MZS;; and lastn—1 rows of M;f; (see Figure 1).
clusters to identify the transition cleanlgoundary points Mfl then holds the candidate concepts for te— W,
are identified by fuzzy C-means as those with a membershipategory/entailment combination in our search.
degree to both the pre- and post-boundary categories above
a threshold. The choice of membership is then made by
setting it equal to that of the preceding point in the trajegt The candidate concepts obtained in the previous section
Work by Rosch [9] showed that, for humans, experiencesvill not all be true concepts. First (Problem 1), the sen-
can belong to multiple categories; essentially lying on asor/actuator combinations fdf, may not be coupled through
category boundary. For example, humans can categorisethe environment with the sensor combination 6%, eg.
tomato as a vegetable or a fruit. Their choice depends ohw — Temp: mobile robot left wheel actuator has no
the context; in the same way that a particular wheel velocityeffect on room temperature. In essence, our “view” of the

IIl. SELECTING TRUE CONCEPTS
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back, fwd (shorty— bump
stop, back (short}> noBump
stop, stop (shorty» bump
stop, fwd (shorty}— bump
fwd, stop (shorty— bump
fwd, fwd (shorty— bump
fwd, fwd (long)— bump
back, back (shorty» noBump
back, stop (shorty» noBump
back, fwd (short}» noBump
stop, back (short}> noBump
stop, stop (short}» noBump
stop, fwd (short}— noBump
fwd, back (shorty}~ noBump
fwd, stop (shorty}» noBump

far, back, stop (shorty» noBump
far, back, fwd (short}— noBump
far, stop, back (short}—» noBump
far, stop, stop (shorty»> noBump

Table |

TRUE CONCEPTS IDENTIFIED BY OUR FRAMEWORK
agent/environment interaction needs to be correctly forme step in Figure 1). The symbol statistics of this shuffled data
Second (Problem 2), noise and real world effects in theobtained by performing the temporal offset step (from Sec-
data mean the agent can experience candidate concepts tioh 11-C) and the histogram construction step just dethile
reflecting the true agent-environment interaction dynamic The idea behind the shuffled surrogate analysis is thateif th
even for the right “view” of the interaction.

We will focus in this paper on Problem 2. Our solution sequence patterns (i.e. concepts), then the shuffling gsoce
is based on a method called Symbol Statistics from thewill destroy these patterns and the symbol statistics of the
Dynamical Systems literature [8]. The idea is to partitionshuffled data will differ to that of the original data. Any
a dynamical system’s state space into a set of labelled (witdeterminism in the original data will then be highlighted.

We took the same 4 basic steps as in [10] to construct
the symbol statistics of our experimental data : partitigni
labelling, histogram construction, and shuffled surrogate
calculation. The first 2 steps of the process (partitioning
and labelling) were documented in Sections 1I-B and II-C,
however we note some differences in our implementation
of these steps compared to theirs. First, they construct a
binary partition of their scalar data simply by identifyitige
median data value, whereas we used clustering as a practical
method for generating a greater number of partitions. Sec-
ond, while each of their partitions is labelled with a single
symbol, ours have labels that are symbol strings (given our

Experimental Setup: Pioneer DX3 Robot roaming in agpproach of pre-clustering sensors/actuators of the sgmee t

together and then forming partitions as strings of single-
symbol membership designations). Third, their focus on
dynamical systems means that they search for determinism
in a map between domain and range spaces that are the same.
Given our search here is for determinism between categories
and entailments, the domaiV,{) and range ¥’,) spaces
were generally different. Fourth, a practical consequeice
this last point is their interest in a range of levels in the
symbol tree, whereas our interest here is only with level 2
(i.e. words of length 2). The end result from our partitignin
and labelling steps is a sequence of 2 “letter” words (i.e.
where the “letters” are symbol strings) as the rowslip,.

The histogram construction step is straight forward. Sim-
ply find the set of unique rows in/,, and count the number
of repeat occurrences for each row. The shuffled surrogate
step follows. A shuffled surrogate data set is constructed by
randomly shuffling the rows i/, & M & M (i.e. the
membership array obtained just prior to the Temporal Offset

agent's experience in the environment contains significant

a symbol) partitions, thus enabling the system’s evolution A concrete measure of the amount of determinism present
be described as a symbol sequence. A symbol tree contaican be obtained by calculating confidence limits on the
ing the probability of experiencing different length syrhbo symbol statistics of the shuffled surrogates. If the shuffled
strings (words) is then constructed, where the descendingurrogate process is repeated many (eg. here 1000) times
levels in the tree correspond to words of length 2, 3, 4, etcthe limits within which 95 percent of the statistics lie can
Work in [8] dealt with finding good models of dynamical be marked off. We select true concepts as candidate concepts
systems by trying to match the symbol statistics of the exwhose frequency lies outside this 95 percent confidence
perimental data with that of a model. A practical applicatio band. True concepts whose frequency lie above the band
of the approach on a real experimental system (an internakpresentpositive true concepts in that their entailments
combustion engine) is presented in [10]. This work used alescribe whatwill occur given the category. Conversely,
hypothesis testing technique called Shuffled Surrogates tnegativetrue concepts are those with a frequency lying
provide confidence limits on the symbol statistics analysisbelow the 95 percent confidence band, and have entailments
and we adopt this technique here to identify true conceptthat describe whawill not occur given the category. In what
from our set of candidate concepts. follows, we consider only positive true concepts.
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Figure 3. Word frequency histogram férw x Rw — G

IV. RESULTYEXPERIMENTS An important outcome is that our method avoided candi-

Experiments consisted of a Pioneer DX3 mobile robotdate concepts in the histogram that are “unrepresentative”
allowed to roam randomly around a partitioned-off aregOf the agent-environment interaction dynamics (17 true-con
of our lab (see Figure 2). The experiment lasted 3 hoursSepts were selected from 46 candidate concepts). For exam-
leading to 46077 points of recorded data for each roboPle, candidate concepts likeack-stop-(short)~ Clockwise
sensor (compas<C], gyro G), laser (), bump @)) and or forward-stop-(short)— Aclockwise were experienced by
actuator (wheels: leftfw), right(Rw)). the agent but do not correspond to an accurate symbolic

To test our method (given our focus on Problem 2) werepresentation of the underlying dynamics of the system.
manually chose thre&, — W, combinations where true Rather, this type of candidate concept occurs due to the
concepts should be found. The first was) x Rw — G,  hoise and imperfections that exist in any real world data,
ie. could sensible concepts relating wheel commands angomething corroborated by the fact that they were only ever
robot rotation be formed? Figure 3 shows a histogram ofXperienced rarely and over short duration.
all candidate concepts found. Upper and lower line plots The secondV, — W, combination we tested was
mark the 5 to 95 percent confidence intervals from shuffled” x G — C, ie. current heading and rotation should predict
surrogate analysis. Table | explicitly lists those ideatfas future heading. Table | shows 28 true concepts selected
true concepts. Temporal abstraction here led to a reduce@it of 46 candidate concepts. The temporal abstraction step
data set of 5622 points, and a “short” label with duration ofhere led to 3327 data points and a short duration label
up to about 3.5 seconds. corresponding to less than about 6 seconds.

Broadly one can see that the true concepts selected The true concepts selected in this case also make sense.
make sense. For example, where left wheel rotation id-or any heading, no gyro rotation (long or short) led to the
more positive than right, a clockwise rotation results. Thesame heading. When clockwise rotations occur, they either
converse situation leads to an anticlockwise rotation. #Vhe lead to the appropriate adjacent heading (8/g— F,F —
both wheels have the same commanded velocity, a noS, etc.) or they lead to the same heading if the rotation
rotation entailment generally results. Curious are theg.on is of a short duration (the latter makes sense since a short
Lw and Rw forward rotations, where either clockwise or duration rotation may not move the heading outside its 90
anticlockwise rotation is predicted. This makes sensergivedegree range). The observations similarly make sense for
the robot’s roaming behaviour consisted of independentlyanticlockwise rotations. It is again important to note that
adding/subtracting a small random amount to each wheel vehis set of sensible true concepts was selected from a much
locity at periodic time steps. Significant velocity diffateal  larger set of sometimes inappropriate candidate concepts.
was then possible, especially over long durations. It was afor example, candidate concepts such fésClockwise-
first puzzling why this did not also occur for long backward (short) — W, or S-Clockwise-(short}— E, occur due to
Lw and Rw rotations. The answer was because the roamingoise in the data and were rejected by our method (noise
behaviour limited the maximum backward wheel velocity toin compass data can be caused by stray magnetic fields, eg.
something much less than the maximum forward velocityfrom the robot's own motors).
so the differential velocity possible was then much smaller Collision is a key aspect of a roaming robot’s experience,
Hence, the method does seem to be capturing the truso we used our method to look for concepts relating to
dynamics of the agent-environment interaction. collision. The robot has a laser range finder to measure



range to obstacles, and bump sensors located around it$ interaction dynamics for a number of different sensor-
perimeter. To simplify the analysis we considered onlyactuator combinations. A key finding was the importance
frontal collision experiences, id. x Lw x Rw — B (soL is  of the statistical foundation of our approach, since the tru
the forward direction laser reading aiitithe front bump). symbolic description of agent-world interaction dynanigs
Table | lists 19 true concepts identified from 68 candidateoften hidden for real world data. Other novelties compared
concepts. Temporal abstraction here lead to 5164 points arid previous work were: a temporal abstraction process that
a “short’label corresponding to less than 3 seconds. led to temporal properties of the data being incorporated
The true concepts in Table | have extracted one importaninto concept categories and entailments, the use of fuzzy
aspect of the collision dynamics; the laser must be retgrninclustering in category and entailment formation to recegni
a reading of “close” before a bump will occur. Of the true that context seems to affect how humans classify their
concepts with close as the initial laser reading, the keyexperience of the world, and concept category formation out
finding by the framework is that when both wheels areof sensorimotor (rather than just sensory) experience.
travelling forwards, a bump will occur. When the wheel Further work, in the shorter term, includes finding a
rotations are mixed, but result in forward motion, then asolution to Problem 1. In the longer term, concepts produced
bump is also correctly predicted. Only when the motionby the work here could be described as quite low level,
is backwards (e.gclose-stop-back-(shortjoes a no bump in that they capture interaction dynamics integrally redat
outcome get predicted. These outcomes make complete sensorimotor apparatus. We would view them as similar
sense and very well capture the dynamics present in the sy human concepts such as bitter (taste), smoky (smell),
tem. Obvious exclusions here arse-back-back-(long or or crackle, e.g. from a fire (hearing). Human cognition
short) — nobump These candidate concepts were very closéncludes higher level concepts, eg. “difficult”, “trustvioy”
to lying outside the 95 percent confidence band, howeveor “love”. In the longer term, our aim is to augment the
they occurred much less than tlodose-stop-back-(short) framework presented here to construct more abstract, highe
category. This meant that the shuffled surrogate analysis wdevel concepts that are further from the agent’s sensodmot
not quite able to determine if their occurrence was due tapparatus, i.e. possibly by combining the low level corgept
random chance or true determinism. Also requiring expladiscovered here.
nation is the inclusion otlose-stop-stop-(short}> bump REFERENCES
Recall thatstop will represent a range of motion including [1] S.Harnad, “The symbol grounding problenhysica Q) pp.
very slow wheel rotation. Since the robot could often be 335-346, 1990.
very close to an obstacle, even slow wheel rotation will 42] P.\ogt, “Bootstrapping grounded symbols by minimal au-
then cause a bump to occur. Finally, the method proposes  tonomous robots,Evolution of Communicatignvol. 4, pp.
as deterministic a set of no-bump outcomes for initial laser ~ 89-118, 2000.
readings of “far” and “medium”, and this is also consistent

with the dynamics in the agent-environment interaction. [3] R.Sun and T.Peterson, "Some experiments with a_hybrid

model for learning sequential decision makinfmformation

V. CONCLUSION Sciencevol. 111, pp. 83-107, 1998.

High level conceptual thought is at the basis of impres- [4] M.Roi(_elnsteig t%”?' Fl;—’.R.Codhen, “Cfotr;‘tinusc_)uts c?rt\eg’;\lortiqs flo
sive human qognitive abilities. _Howe\(er, neither top down ?:onr:%rleicreo o(r)1 ’Arltri]ficirglcfr?telllri]g:ngaggeg, p;)p().egg4—6 43'0“8‘
approaches like those based in Logic, nor the bottom up
approach of Connectionism, have been successful to datel5] D.Pierce and B.J.Kuipers, “Map learning with uninteed
A small body of work exists that we have called the “Bot- ;ggsirgsg‘;”d effectorsittificial Intelligence vol. 92, pp. 169~
tom Up Symbolic”(BUS) approach, and this work seems ’ '
attractive given it potentially circumvents the problemigw  [6] A.Billiard and K.Dautenhahn, “Experiments in learnity
the 2 existing approaches: it can lead to grounded symbols imitation - grounding and use of communication in robotic
that mean something to the agent, and the concept (symbol) ~adents,"Adaptive Behavioyrvol. 7, pp. 411-434, 1999.
formation process is not constrained to have neural neswvork [7] s.Russell and P.NorvigArtificial Intelligence: A Modern
as a substrate. In this paper we proposed a new BUS method Approach Prentice Hall, 1995.
for growing concepts from data.

_W_e divided the problem to _be _solved m_to Problem _1 8] féigﬁgg'slzdignrggy'sgtlijs't?c?so?r?r’nﬁig; %La;g;'cagéséiwgcon-
(finding sensor/actuator combinations leading to concise  struction,” Physical Review Fvol. 51, pp. 3871-3889, 1995.
descriptions of the determinism in the data) and Problem
2 (given a sensor/actuator combination, finding concepts
that reflect the true dynamics in the agent-environmenfi0] C.E.A.Finney, J.B.Green, and C.S.Daw, “Symbolic time
interaction). We focussed here on Problem 2, and demon-  series analysis of engine combustion measureme®&E
strated that the method can result in accurate descriptions Paper No. 9806241998.

] G.L.Murphy, The Big Book of Concepts MIT Press, 2002.



