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Abstract—High level conceptual thought seems to be at the
basis of the impressive human cognitive ability. Classicaltop-
down (Logic based) and bottom-up (Connectionist) approaches
to the problem have had limited success to date. We identify a
small body of work that represents a different approach to AI.
We call this work the Bottom Up Symbolic (BUS) approach
and present a new BUS method to concept construction.
The main novelty of our work is that we apply statistical
methods in the concept construction process. Our findings
here suggest that such methods are necessary since a symbolic
description of the true agent-environment interaction dynamics
is often hidden among a background of non-representative
descriptions, especially if data from unconstrained real-world
experiments is considered. We consider such data (from a
mobile robot randomly roaming an office environment) and
show how our method can correctly grow a set of true concepts
from the data.

Keywords-cognitive architecture, concept formation, cate-
gory, entailment, symbol statistics, bottom up AI

I. I NTRODUCTION

The traditional approaches to AI are the top-down ap-
proach of Logic and Machine Learning, and the bottom up
approach of Connectionism (Neural Networks). A key aim
of both approaches is for agents with the ability to create
and manipulate a high-level symbolic representation of their
surrounding world. This mirrors the way that humans use
high-level concepts to act intelligently in their environment.

Concepts are abstractions of past experience that allow
the prediction of future outcomes. A concept like “tomato”
allows a human to predict outcomes (taste, texture, etc) of a
tomato not experienced before. A concept is (a) a collection
of instances, called a category, and (b) its entailment. The
instances within a category are all similar in some way,
like our sensory experience of different tomatoes or the
same tomato at different times in the above example. The
entailment part of a concept is the consequence of category
membership, and is what gives the concept its predictive
ability when new instances of the category are encountered.

The traditional top-down and bottom-up approaches have
had limited success to date. Indeed, it has even been con-
jectured that the top-down approach cannot form a solution
to AI because its symbols are not grounded in sensorimotor
experience [1]. In this paper, we identify a small body of
work which represents an alternative approach [2], [3], [4],
[5], [6]. We call it the Bottom-UpSymbolic(BUS) approach.
This is to distinguish it from the Bottom-UpNon-symbolic

approach of Connectionism, given the non-symbolic nature
of neurons. Essentially, the idea is to grow symbols that
represent high level concepts in a bottom up fashion from
an agent’s raw sensory and actuatory data, without the
restriction that the underlying substrate be Connectionist.

Of the BUS work, the 2 most similar to ours are [5],
[4]. Work in [5] use different terminology in that they form
“views” and “actions” as instances of similar sensorimotor
experience, however the approach was tested in simula-
tion only. Work in [4] constructs concepts as categories
and entailments for a real robot that was programmed to
precisely collide with a small set of distinct objects. The
data set in which they searched for concepts representing
these objects then contained only the concepts they were
looking for. A concept formation framework suitable for
a random roaming exploration of the environment (as we
present below) we believe, is a more realistic scenario for
BUS concept formation. Let us now expand on this point.

The categories of concepts should have a predictive infer-
ence on entailments. Finding concepts in sensorimotor data
therefore means finding determinism in the relation between
categories and entailments. Usually such determinism is hid-
den. The environment may be nondeterministic or dynamic
[7]. Even for simple deterministic and static environments,
the agent’s view of the environment may seem random
because it is inaccessible [7] (inaccessible means the agent’s
sensor set does not give it access to the complete state of the
environment). Although the agent-environment interaction
is deterministic, it then does not appear so to the agent.
Further, real sensors and actuators suffer from noise. These
issues mean our search for concepts for real-world agents
and environments is a search for determinism in a seemingly
random relation between the categories experienced by the
agent and their entailments. In this paper we propose a
framework for finding determinism in such a setting based
on a method called Symbol Statistics [8].

II. F INDING CANDIDATE CONCEPTS

Our framework for growing concepts is envisaged for a
wide range of applications, from a simple valve controller,to
a complex humanoid robot. Such agents will have sensors,
which are read by the agent, and which reflect the state
of the environment. They will also have actuators, which
are written to by the agent, and which operate on the
environment. Assume that each sensor (actuator) returns
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Figure 1. The Candidate Concept construction process

(receives) a scalar value at each point in time1. The idea is
to deploy the agent in its environment with a basic (maybe
random) set of behaviors such that exploration results. The
agent will experience the consequences of particular sensory
inputs and actuatory outputs. We call these experiences
candidateconcepts. However, not all candidate concepts can
be taken as true concepts, as we shall see. Prior to selecting
true concepts in Section III, we detail (in this section) what
candidate concepts are and how they are formed.

A. Where to Search for Candidate Concepts

Let s = s1, . . . , si, . . . , sns denote the agent’s (scalar)
sensor set anda = a1, . . . , aj , . . . , ana the agent’s actuator
set. Let Si denote the set (range) of outputs forsi and
Aj the set (range) of inputs foraj . Call S Sensor Space,
S = S1 × . . . × Si × . . . × Sns and callA Actuator Space,
A = A1 × . . . × Aj × . . . × Ana. The spaceS × A then
represents the full possibility of an agents sensorimotor
experience. Our definition of the category part of a concept
as “instances of sensorimotor experience” means our search
for categories will be inS × A, or more generally, in
a subspace ofS × A. If ℘(s ∪ a) = (vp|p=1...2ns+na

−1)

denotes the power set ofs union a, then our search must
include one subspaceVp for each elementvp in the power
set, where, ifvp = (sa, sb, . . . , aα, aβ, . . .) then Vp =
Sa×Sb × . . .×Aα ×Aβ × . . .. For example, a mobile robot
with s = (C), (C for Compass) anda = (Lw, Rw) (Left
and Right wheels), concept categories can potentially livein
any of the subspacesV1 to V7 corresponding tov1 = (C),
v2 = (Lw), v3 = (Rw), v4 = (C, Lw), v5 = (C, Rw),
v6 = (Lw, Rw) and v7 = (C, Lw, Rw). Previous work
[4] form categories from sensory data only, rather than
sensorimotor data as we propose here.

1Apparatus that deal in vector quantities at each time step, like laser
range finders, can be viewed as sets of scalar returning apparatus

Our search for entailments differs to that for categories.
The entailment part of a concept must live only inS or
some subspace ofS. The entailment infers predictive ability
to the agent for some category of sensorimotor experience.
The agent is generally interested in predicting the category’s
effect on the state of the environment, and its view of the
state of the environment is encompassed by its sensory
regime alone. Let℘(s) = (wq|q=1...2ns

−1). Then we must
search for entailments in one subspaceWq for each element
wq of the power set.

The final step in this section is to bring together the cate-
gory and entailment searches just specified. We will identify
true concepts later as candidate concepts with a deterministic
connection between the category and entailment. For each
category spaceVp, a deterministic entailment is possible
in any of the entailment spacesWq. Then the search for
concepts means constructing candidate concepts across all
combinations ofVp → Wq. 2

B. Clustering

We have addressed the issue of where to search for
candidate concepts, but how should we construct them?
Specifically, how should we form categories inVp and
entailments inWq? Recall that categories are groupings
of sensorimotor experience that have similar characteristics.
For example, [9] identifies different instances of the category
“dog”, such as Collies, Chihuahuas, Spaniels, etc. Each
instance has similarities in their characteristics; they have
fur, they pant, have four legs, etc, although they are not
identical (their fur might be a different colour or length).
This suggests that points close inVp should form categories,
and points close inWq should form entailments. Such points
represent instances of sensorimotor experience with similar
characteristics, but which are not necessarily identical.

Clustering is a method used to identify groupings of
closely spaced points in a metric space. For our application
here, we could adopt the Euclidean metric in eachVp (Wq)
and then cluster to find categories (entailments). However we
propose an alternate approach of clustering first along the
lines of sensor and actuator type, and then forming clusters
in a higher dimensionalVp (Wq) by combining membership
labels. We now explain this process in detail (see Figure 1).

Let Ds be our data set array (n×ns) of the agent’s sensor
readings, wheren is the number of data points recorded,
andns the number of sensors. Similarly, letDa (n×na) be
our actuator data set. Columns inDs represent the values
returned by individual sensors, but there can be a number
of columns inDs that represent sensors of the same type,
e.g. multiple bump sensors on a mobile robot. For each
sensor type, cluster points in the relevant columns ofDs

together. Repeat over all sensor types to returnMs (n×ns),

2This search is exponential inns and na. We formulate it in this way
for now, however we will need to limit it, eg. by pruning unpromising
sensor/actuator combinations, in future work



a membership matrix that holds the cluster membership label
for each data point inDs. Similarly, produceMa from Da

on the actuator side. Clustering individual sensor (actuator)
types together (rather than individual sensors (actuators)
together) is appropriate since differences in the “spectra” of
their data are due to the dynamics in the agent/environment
interaction rather than physical differences in the hardware.
We use fuzzy C-means clustering to produceMs and Ma,
and will explain why below. Once we haveMs and Ma,
we form the membership matrix relevant toVp. Call this
matrix MC

p , where theC superscript denotes a membership
array for the category part of our candidate concepts. If
Vp = Sa × Sb × . . . × Aα × Aβ × . . ., then form MC

p

as the horizontal concatenation of columnsa, b, . . . in Ms

andα, β, . . . in Ma. Similarly, form ME
q from columns of

Ms for entailments. Rows inMC
p (ME

q ) then have strings
designating membership of data points inVp (Wq).

While our approach to clustering requires a symbol string
(rather than just a symbol) to represent each category
(entailment) inVp (Wq), it has the following advantages.
It requires one up-front clustering computation (i.e. prior to
the search specified in Section II-A) rather than a separate
clustering computation for eachVp (Wq), and so is compu-
tationally attractive. It provides an intuitive labellingof what
a category/entailment represents, e.g. wheel rotation data
clustered into 3 clusters representing back, stop and forward
rotation. The approach negates the need for a unit normali-
sation scheme across different dimensions ofVp (Wq) when
furnishing the clustering space with the Euclidean metric.
Finally, it is much easier to choose the number-of-clusters
value forn separate single dimensional clusterings than for
one clustering in ann-dimensional space.

Fuzzy C-means results in a degree of membership to
a cluster for a data point, rather than the binary “is a
member” or “is not a member” of hard clustering methods
like K-means. Our use of fuzzy clustering has a pragmatic
purpose, but has foundations in psychological models of
human concept formation. The pragmatic purpose is to
add hysteresis to category membership at boundaries of
categories, since oscillation between categories can occur
simply due to measurement noise in the data. For example,
wheel velocity data of a mobile robot clustered into 3
clusters, 1 (fwd), 2 (no rotation) and 3 (back) may lead to a
1 to 2 transition of. . . , 1, 1, 2, 1, 2, 1, 2, 2 . . .. We use fuzzy
clusters to identify the transition cleanly.Boundary points
are identified by fuzzy C-means as those with a membership
degree to both the pre- and post-boundary categories above
a threshold. The choice of membership is then made by
setting it equal to that of the preceding point in the trajectory.
Work by Rosch [9] showed that, for humans, experiences
can belong to multiple categories; essentially lying on a
category boundary. For example, humans can categorise a
tomato as a vegetable or a fruit. Their choice depends on
the context; in the same way that a particular wheel velocity

might be categorised as forward rotation or little/no rotation,
depending on the context of the recent past.

C. Temporal Abstraction and Offset

Clustering as just described is an abstraction step that
transforms the specifics of a data point into atype of
sensorimotor experience. A complementary abstraction step
to this is temporal abstraction. That is, in addition to the type
of sensorimotor experience, the dataset contains information
regarding the duration of experience. Duration information
in the dataset manifests itself as repeat rows inMC

p ⊕ ME
q

(⊕ here represents horizontal concatenation of arrays - see
Figure 1). Hence, our temporal abstraction step consisted of
parsingMC

p ⊕ ME
q for repeat rows to createMC

pq ⊕ ME
pq.

For each set of repeat rows inMC
p ⊕ ME

q , we added a
row to MC

pq ⊕ ME
pq as the membership label string of this

set. In addition we recorded the number of repeat rows in
the set to create a count vector whose length was equal
to the number of rows inMC

pq ⊕ ME
pq. We then clustered

the values in the count vector using K-means into (for this
paper) 2 clusters: short and long duration, to produce a
“temporal” memberships vectorMT

pq. The vectorMT
pq was

then appended as the final column toMC
pq (i.e. MC

pq⊕MT
pq),

to produce a set of membership labels for the data in
Vp which reflected the temporal duration of the original
strings inMC

p . Temporal abstraction is also possible on the
entailment side, and would capture the entailment duration
aspect of the agent-environment interaction dynamics. To
keep histograms in Section IV to a reasonable size, we
did not implement it here (i.e. dashed arrow in Figure 1).
Temporal abstraction in [4] consists of recording data during
the agent’s exploration phase for only 5 seconds around dis-
tinctive sensor value changes (eg. bump sensor going from
0 to 1). While this reduces the amount of data to process,
we question whether it really is temporal abstraction. We
would prefer to retain this term for temporally abstracted
categories/entailments formed on the basis of their temporal
properties (like duration here) in the data.

The predictive aspect of a concept’s category on its
entailment implies atemporal offsetbetween categories and
entailments, i.e. categories experienced at one time should
be matched up with the entailment that follows. Hence, we
form Mpq as the horizontal concatenation of the firstn−1

rows of MC
pq and lastn−1 rows of ME

pq (see Figure 1).
ME

pq then holds the candidate concepts for theVp → Wq

category/entailment combination in our search.

III. SELECTING TRUE CONCEPTS

The candidate concepts obtained in the previous section
will not all be true concepts. First (Problem 1), the sen-
sor/actuator combinations forVp may not be coupled through
the environment with the sensor combination forWq, eg.
Lw → Temp: mobile robot left wheel actuator has no
effect on room temperature. In essence, our “view” of the



Figure 2. Experimental Setup: Pioneer DX3 Robot roaming in a
partitioned-off area of our lab

LwxRw→G CxG→C LaserxLwxRw→Bump
back, back (short)→ noRot north, aClock (short)→ north close, back, fwd (short)→ bump
back, back (long)→ noRot north, aClock (short)→ west close, stop, back (short)→ noBump
back, stop (short)→ aClock north, noRot (short)→ north close, stop, stop (short)→ bump
back, stop (long)→ aClock north, noRot (long)→ north close, stop, fwd (short)→ bump
back, fwd (short)→ aClock north, clock (short)→ north close, fwd, stop (short)→ bump
back, fwd (long)→ aClock north, clock (short)→ east close, fwd, fwd (short)→ bump
stop, back (short)→ clock east, aClock (short)→ north close, fwd, fwd (long)→ bump
stop, stop (short)→ noRot east, aClock (short)→ east med, back, back (short)→ noBump
stop, stop (long)→ noRot east, noRot (short)→ east med, back, stop (short)→ noBump
stop, fwd (short)→ aClock east, noRot (long)→ east med, back, fwd (short)→ noBump
fwd, back (short)→ clock east, clock (short)→ east med, stop, back (short)→ noBump
fwd, back (long)→ clock east, clock (short)→ south med, stop, stop (short)→ noBump
fwd, stop (short)→ clock east, clock (long)→ south med, stop, fwd (short)→ noBump
fwd, stop (long)→ clock south, aClock (short)→ east med, fwd, back (short)→ noBump
fwd, fwd (short)→ noRot south, aClock (short)→ south med, fwd, stop (short)→ noBump
fwd, fwd (long)→ aClock south, aClock (long)→ east far, back, stop (short)→ noBump
fwd, fwd (long)→ clock south, noRot (short)→ south far, back, fwd (short)→ noBump

south, noRot (long)→ south far, stop, back (short)→ noBump
south, clock (short)→ south far, stop, stop (short)→ noBump
south, clock (short)→ west
south, clock (long)→ west
west, aClock (short)→ south
west, aClock (short)→ west
west, noRot (short)→ west
west, noRot (long)→ west
west, clock (short)→ north
west, clock (short)→ west
west, clock (long)→ north

Table I
TRUE CONCEPTS IDENTIFIED BY OUR FRAMEWORK

agent/environment interaction needs to be correctly formed.
Second (Problem 2), noise and real world effects in the
data mean the agent can experience candidate concepts not
reflecting the true agent-environment interaction dynamics,
even for the right “view” of the interaction.

We will focus in this paper on Problem 2. Our solution
is based on a method called Symbol Statistics from the
Dynamical Systems literature [8]. The idea is to partition
a dynamical system’s state space into a set of labelled (with
a symbol) partitions, thus enabling the system’s evolutionto
be described as a symbol sequence. A symbol tree contain-
ing the probability of experiencing different length symbol
strings (words) is then constructed, where the descending
levels in the tree correspond to words of length 2, 3, 4, etc.
Work in [8] dealt with finding good models of dynamical
systems by trying to match the symbol statistics of the ex-
perimental data with that of a model. A practical application
of the approach on a real experimental system (an internal
combustion engine) is presented in [10]. This work used a
hypothesis testing technique called Shuffled Surrogates to
provide confidence limits on the symbol statistics analysis,
and we adopt this technique here to identify true concepts
from our set of candidate concepts.

We took the same 4 basic steps as in [10] to construct
the symbol statistics of our experimental data : partitioning,
labelling, histogram construction, and shuffled surrogate
calculation. The first 2 steps of the process (partitioning
and labelling) were documented in Sections II-B and II-C,
however we note some differences in our implementation
of these steps compared to theirs. First, they construct a
binary partition of their scalar data simply by identifyingthe
median data value, whereas we used clustering as a practical
method for generating a greater number of partitions. Sec-
ond, while each of their partitions is labelled with a single
symbol, ours have labels that are symbol strings (given our
approach of pre-clustering sensors/actuators of the same type
together and then forming partitions as strings of single-
symbol membership designations). Third, their focus on
dynamical systems means that they search for determinism
in a map between domain and range spaces that are the same.
Given our search here is for determinism between categories
and entailments, the domain (Vp) and range (Wq) spaces
were generally different. Fourth, a practical consequenceof
this last point is their interest in a range of levels in the
symbol tree, whereas our interest here is only with level 2
(i.e. words of length 2). The end result from our partitioning
and labelling steps is a sequence of 2 “letter” words (i.e.
where the “letters” are symbol strings) as the rows inMpq.

The histogram construction step is straight forward. Sim-
ply find the set of unique rows inMpq and count the number
of repeat occurrences for each row. The shuffled surrogate
step follows. A shuffled surrogate data set is constructed by
randomly shuffling the rows inMC

pq ⊕ MT
pq ⊕ ME

pq (i.e. the
membership array obtained just prior to the Temporal Offset
step in Figure 1). The symbol statistics of this shuffled datais
obtained by performing the temporal offset step (from Sec-
tion II-C) and the histogram construction step just detailed.
The idea behind the shuffled surrogate analysis is that, if the
agent’s experience in the environment contains significant
sequence patterns (i.e. concepts), then the shuffling process
will destroy these patterns and the symbol statistics of the
shuffled data will differ to that of the original data. Any
determinism in the original data will then be highlighted.
A concrete measure of the amount of determinism present
can be obtained by calculating confidence limits on the
symbol statistics of the shuffled surrogates. If the shuffled
surrogate process is repeated many (eg. here 1000) times
the limits within which 95 percent of the statistics lie can
be marked off. We select true concepts as candidate concepts
whose frequency lies outside this 95 percent confidence
band. True concepts whose frequency lie above the band
representpositive true concepts in that their entailments
describe whatwill occur given the category. Conversely,
negative true concepts are those with a frequency lying
below the 95 percent confidence band, and have entailments
that describe whatwill not occur given the category. In what
follows, we consider only positive true concepts.
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Figure 3. Word frequency histogram forLw × Rw → G

IV. RESULTS/EXPERIMENTS

Experiments consisted of a Pioneer DX3 mobile robot
allowed to roam randomly around a partitioned-off area
of our lab (see Figure 2). The experiment lasted 3 hours,
leading to 46077 points of recorded data for each robot
sensor (compass (C), gyro (G), laser (L), bump (B)) and
actuator (wheels: left(Lw), right(Rw)).

To test our method (given our focus on Problem 2) we
manually chose threeVp → Wq combinations where true
concepts should be found. The first wasLw × Rw → G,
ie. could sensible concepts relating wheel commands and
robot rotation be formed? Figure 3 shows a histogram of
all candidate concepts found. Upper and lower line plots
mark the 5 to 95 percent confidence intervals from shuffled
surrogate analysis. Table I explicitly lists those identified as
true concepts. Temporal abstraction here led to a reduced
data set of 5622 points, and a “short” label with duration of
up to about 3.5 seconds.

Broadly one can see that the true concepts selected
make sense. For example, where left wheel rotation is
more positive than right, a clockwise rotation results. The
converse situation leads to an anticlockwise rotation. When
both wheels have the same commanded velocity, a no-
rotation entailment generally results. Curious are the Long
Lw and Rw forward rotations, where either clockwise or
anticlockwise rotation is predicted. This makes sense given
the robot’s roaming behaviour consisted of independently
adding/subtracting a small random amount to each wheel ve-
locity at periodic time steps. Significant velocity differential
was then possible, especially over long durations. It was at
first puzzling why this did not also occur for long backward
Lw andRw rotations. The answer was because the roaming
behaviour limited the maximum backward wheel velocity to
something much less than the maximum forward velocity,
so the differential velocity possible was then much smaller.
Hence, the method does seem to be capturing the true
dynamics of the agent-environment interaction.

An important outcome is that our method avoided candi-
date concepts in the histogram that are “unrepresentative”
of the agent-environment interaction dynamics (17 true con-
cepts were selected from 46 candidate concepts). For exam-
ple, candidate concepts likeback-stop-(short)→ Clockwise,
or forward-stop-(short)→ Aclockwise, were experienced by
the agent but do not correspond to an accurate symbolic
representation of the underlying dynamics of the system.
Rather, this type of candidate concept occurs due to the
noise and imperfections that exist in any real world data,
something corroborated by the fact that they were only ever
experienced rarely and over short duration.

The secondVp → Wq combination we tested was
C ×G → C, ie. current heading and rotation should predict
future heading. Table I shows 28 true concepts selected
out of 46 candidate concepts. The temporal abstraction step
here led to 3327 data points and a short duration label
corresponding to less than about 6 seconds.

The true concepts selected in this case also make sense.
For any heading, no gyro rotation (long or short) led to the
same heading. When clockwise rotations occur, they either
lead to the appropriate adjacent heading (e.g.N → E,E →
S, etc.) or they lead to the same heading if the rotation
is of a short duration (the latter makes sense since a short
duration rotation may not move the heading outside its 90
degree range). The observations similarly make sense for
anticlockwise rotations. It is again important to note that
this set of sensible true concepts was selected from a much
larger set of sometimes inappropriate candidate concepts.
For example, candidate concepts such asN -Clockwise-
(short) → W , or S-Clockwise-(short)→ E, occur due to
noise in the data and were rejected by our method (noise
in compass data can be caused by stray magnetic fields, eg.
from the robot’s own motors).

Collision is a key aspect of a roaming robot’s experience,
so we used our method to look for concepts relating to
collision. The robot has a laser range finder to measure



range to obstacles, and bump sensors located around its
perimeter. To simplify the analysis we considered only
frontal collision experiences, ie.L×Lw×Rw → B (soL is
the forward direction laser reading andB the front bump).
Table I lists 19 true concepts identified from 68 candidate
concepts. Temporal abstraction here lead to 5164 points and
a “short”label corresponding to less than 3 seconds.

The true concepts in Table I have extracted one important
aspect of the collision dynamics; the laser must be returning
a reading of “close” before a bump will occur. Of the true
concepts with close as the initial laser reading, the key
finding by the framework is that when both wheels are
travelling forwards, a bump will occur. When the wheel
rotations are mixed, but result in forward motion, then a
bump is also correctly predicted. Only when the motion
is backwards (e.g.close-stop-back-(short)does a no bump
outcome get predicted. These outcomes make complete
sense and very well capture the dynamics present in the sys-
tem. Obvious exclusions here areclose-back-back-(long or
short)→ nobump. These candidate concepts were very close
to lying outside the 95 percent confidence band, however
they occurred much less than theclose-stop-back-(short)
category. This meant that the shuffled surrogate analysis was
not quite able to determine if their occurrence was due to
random chance or true determinism. Also requiring expla-
nation is the inclusion ofclose-stop-stop-(short)→ bump.
Recall thatstop will represent a range of motion including
very slow wheel rotation. Since the robot could often be
very close to an obstacle, even slow wheel rotation will
then cause a bump to occur. Finally, the method proposes
as deterministic a set of no-bump outcomes for initial laser
readings of “far” and “medium”, and this is also consistent
with the dynamics in the agent-environment interaction.

V. CONCLUSION

High level conceptual thought is at the basis of impres-
sive human cognitive abilities. However, neither top down
approaches like those based in Logic, nor the bottom up
approach of Connectionism, have been successful to date.
A small body of work exists that we have called the “Bot-
tom Up Symbolic”(BUS) approach, and this work seems
attractive given it potentially circumvents the problems with
the 2 existing approaches: it can lead to grounded symbols
that mean something to the agent, and the concept (symbol)
formation process is not constrained to have neural networks
as a substrate. In this paper we proposed a new BUS method
for growing concepts from data.

We divided the problem to be solved into Problem 1
(finding sensor/actuator combinations leading to concise
descriptions of the determinism in the data) and Problem
2 (given a sensor/actuator combination, finding concepts
that reflect the true dynamics in the agent-environment
interaction). We focussed here on Problem 2, and demon-
strated that the method can result in accurate descriptions

of interaction dynamics for a number of different sensor-
actuator combinations. A key finding was the importance
of the statistical foundation of our approach, since the true
symbolic description of agent-world interaction dynamicsis
often hidden for real world data. Other novelties compared
to previous work were: a temporal abstraction process that
led to temporal properties of the data being incorporated
into concept categories and entailments, the use of fuzzy
clustering in category and entailment formation to recognise
that context seems to affect how humans classify their
experience of the world, and concept category formation out
of sensorimotor (rather than just sensory) experience.

Further work, in the shorter term, includes finding a
solution to Problem 1. In the longer term, concepts produced
by the work here could be described as quite low level,
in that they capture interaction dynamics integrally related
to sensorimotor apparatus. We would view them as similar
to human concepts such as bitter (taste), smoky (smell),
or crackle, e.g. from a fire (hearing). Human cognition
includes higher level concepts, eg. “difficult”, “trustworthy”
or “love”. In the longer term, our aim is to augment the
framework presented here to construct more abstract, higher-
level concepts that are further from the agent’s sensorimotor
apparatus, i.e. possibly by combining the low level concepts
discovered here.
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