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INTRODUCTION 

Clustering analysis is a tool used widely in the Data Mining community and beyond 

(Everitt et al. 2001). In essence, the method allows us to “summarise” the information in a large 

data set X by creating a very much smaller set C of representative points (called centroids) and a 

membership map relating each point in X to its representative in C. An obvious but special type 

of data set that one might want to cluster is a time series data set. Such data has a temporal 

ordering on its elements, in contrast to non-time series data sets. In this article we explore the 

area of time series clustering, focusing mainly on a surprising recent result showing that the 

traditional method for time series clustering is meaningless. We then survey the literature of 

recent papers and go on to argue how time series clustering can be made meaningful. 

 

BACKGROUND 

 

A time series is a set of data points which have temporal order. That is, 

 

},,1|{ ntxX t K==          (1) 

where t reflects the temporal order. Two types of clustering of time series has historically been 

undertaken: whole series clustering and subsequence clustering. In whole series clustering, one 

  



generally has a number of time series of equal length (say n) and one forms a vector space of 

dimension n so that each time series is represented by a single point in the space. Clustering then 

takes place in the usual way and groupings of similar time series are returned.  

Whole series clustering is useful in some circumstances, however, often one has a single 

long time series data set X and the aim is to find a summary set of features in that time series, e.g. 

in order to find repeating features or particular repeating sequences of features (e.g. see the rule 

finding method proposed in (Das et al.1998)). In this case, what was historically done was to 

create a set Z of subsequences by moving a sliding window over the data in X, i.e. 

 

pppwpwpwp xxxxxz ,,,,, 12)2()1()1( −−−−−−−− = K      

 (2) 

 

nwpZz p K=∈ , . Each subsequence  (also called more generally a regressor or delay vector; 

see below) essentially represents a feature in the time series. These features live in a w-

dimensional vector space, and clustering to produce a summarising set C of “centroid” features 

can proceed in the usual way. This technique has historically been called Subsequence Time 

Series (STS) Clustering, and quite a lot of work using the technique was published (see (Keogh 

et al. 2003) for a review of some of this literature). In this article we will focus on the area of 

subsequence time series clustering. For a review of whole time series clustering methods, see 

(Wang et al. 2004). 
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Given the widespread use of STS clustering, a surprising result in (Keogh et al. 2003) 

was that it is meaningless. Work in (Keogh et al. 2003) defined a technique as meaningless if the 

result it produced was essentially independent of the input. The conclusion that STS clustering 

was meaningless followed after it was shown that, if one conducted STS clustering on a range of 

even very distinct time series data sets, then the cluster centroids resulting from each could not 

be told apart. More specifically, the work clustered each time series multiple times and measured 

the average “distance” (see (Keogh et al. 2003) for details) between clustering outcomes from 

the same time series and between different time series. They found on average that the distance 

between clustering outcomes from the same and different time series were the same. Further, 

they discovered the strange phenomenon that the centroids produced by STS clustering are 

smoothed sine-type waves.  

 

After the appearance of this surprising result, there was great interest in finding the cause 

of the dilemma and a number of papers on the topic subsequently appeared. For example, Struzik 

(Struzik 2003) proposed that the “meaningless” outcome results only in pathological cases, i.e. 

when the time series structure is fractal, or when the redundancy of subsequence sampling causes 

trivial matches to hide the underlying rules in the series. They suggested autocorrelation 

operations to suppress the latter, however these suggestions were not confirmed with 

experiments.  

 

In contrast, Denton (Denton 2005) proposed density based clustering, as opposed to, for 

example, k-means or hierarchical clustering, as a solution. They proposed that time series can 

contain significant noise, and that density based clustering identifies and removes this noise by 

  



only considering clusters rising above a preset threshold in the density landscape. However, it is 

not clear whether noise (or only noise) in the time series is the cause of the troubling results in 

(Keogh et al. 2003). For example, if one takes the benchmark Cylinder-Bell-Funnel time series 

data set (see (Keogh et al. 2003)) without noise and applies STS clustering, the strange smoothed 

centroid results first identified there are still returned. 

 

Another interesting approach to explain the dilemma was proposed by Goldin et. al. 

(Goldin et al. 2006). They confirmed that the ways (multiple approaches were tried) in which 

distance between clustering outcomes were measured in (Keogh et al. 2003) did lead to the 

conclusion that STS-clustering was meaningless. However, they proposed an alternative distance 

measure which captured the “shape” formed by the centroids in the clustering outcome. They 

showed that if one calculates the average shape of a cluster outcome over multiple clustering 

runs on a time series, then the shape obtained can be quite specific to that time series. Indeed if 

one records all the individual shapes from these runs (rather than recording the average), then in 

an experiment on a set of ten time series they conducted, one is able to match a new clustering of 

a time series back to one of the recorded clustering outcomes from the same time series. While 

these results suggest meaningfulness is possible in STS-clustering, it seems strange that such 

lengths are required to distinguish between clustering outcomes of what can be very distinct time 

series. Indeed we will see later that an alternative approach, motivated from the Dynamical 

Systems literature, allows one to easily distinguish between the clustering outcomes of different 

time series using the simple distance measure adopted in (Keogh et al. 2003). 

 

  



Another approach proposed by Chen (Chen 2005, 2007a) to solve the dilemma forms the 

basis of work which we later argue provides its solution. They proposed that the metrics adopted 

in (Keogh et al. 2003) in the clustering phase of STS clustering were not appropriate and 

proposed an alternative clustering metric based on temporal and formal distances (see (Chen 

2007a) for details). They found that meaningful time series clustering could be achieved using 

this metric, however the work was limited in the type of time series to which it could be applied. 

This work can be viewed as restricting the clustering process to the subset of the clustering space 

that was visited by the time series; a key tenet of later work that we argue below forms a solution 

to the STS-clustering dilemma. 

 

Peker (Peker 2005) also conducted experiments in STS-clustering of time series. They 

identified that clustering with a very large number of clusters leads to cluster centroids that are 

more representative of the signal in the original time series. They proposed the idea of taking 

cluster cores (a small number of points in the cluster closest to the centroid) as the final clusters 

from STS clustering. The findings in this work concur with work in (Chen 2007a) and the work 

we explore below, since they are compatible with the idea of restricting clustering to the subset 

of the clustering space visited by the time series. 

 

While each of the works just reviewed show interesting results which shed light on the 

problems involved with STS-clustering, none provides a clear demonstration for general time 

series of how to overcome them. 

 

MAIN FOCUS 

  



 

 

We now propose our perspective on what the problem with STS clustering is, and on a 

solution to this problem; based on a number of recent papers in the literature. Let us revisit the 

problems found in (Keogh et al. 2003) with the STS clustering method. This work proposed that 

STS-clustering was meaningless because, 

 

(A) one could not distinguish between the clustering outcomes of distinct time series, even when 

the time series themselves were very different, and 

 

(B) cluster representatives were smoothed and generally did not look at all like any part of the 

original time series 

 

They proposed that these two problems were one and the same, i.e. that one could not distinguish 

between cluster centres of different time series because they were all smoothed, and hence alike. 

This presumption turns out to be false, i.e. really these are two separate problems which need to 

be addressed and solved separately. For example, (Chen 2007b) showed how a time series 

clustering technique could produced distinguishable cluster centres (i.e. overcome (A)) but still 

produce centres that were smoothed (i.e. not overcome (B)). Hence, (Chen 2007b) proposed a 

new set of terminologies to reflect this fact. They proposed that a time series clustering method 

which overcomes problem (A) should be called meaningful, and one that overcomes problem (A) 

and (B) should be called useful. We will expand later on the motivation behind why these terms 

were adopted in each case.  

  



 

Recall how it was shown in (Keogh et al. 2003) that STS-clustering is meaningless; the 

work clustered each time series multiple times and then measured the distance between 

clustering outcomes from the same time series and between different time series. Work in both 

(Chen 2007b) and (Simon et al. 2006) proposed that what was required to make the STS-

clustering method meaningful was to introduce a lag q into the window forming process. That is, 

form subsequences as, 

 

pqpqpqwpqwpqwp xxxxxz ,,,,, 2)2()1()1( −−−−−−−− = K      (3) 

 

nqwpZz p K1)1(, +−=∈  (i.e. so that now adjacent points in the subsequence are separated by 

q data points in the time series) where we call a regressor or delay vector. The inspiration of 

both works was from the field of Dynamical Systems (Sauer et al. 1991, Ott et al. 1994) where it 

is well known that introducing a lag is required for the embedding of any real world (i.e. noisy 

and represented with limited precision) time series in a vector space using a sliding windows 

type process. Geometrically, not using a lag means subsequence vectors will be clumped along 

the diagonal of the space, and hence, even with a small amount of noise present in the time 

series, and reasonable precision, the “information” in the embedding that distinguishes one time 

series from another is lost. Work in (Simon et al. 2006) went on to conduct the same experiment 

as in (Keogh et al. 2003) (albeit with different time series), but using a lag, and found that cluster 

centres produced from distinct time series were then indeed distinguishable. Work in (Chen 

2007b) confirmed the result in (Simon et al. 2006) using basically the same time series as used in 

(Keogh et al. 2003). For clarity, and to distinguish between what follows, we follow the 

pz

  



terminology adopted in (Chen 2007b) and denote the STS-clustering technique where a lag is 

introduced into the sliding windows process as Unfolded Time Series (UTS) clustering.  

 

According to the “meaningful” and “useful” terminology introduced above, the UTS 

clustering method produces meaningful clustering outcomes. That is, if we cluster two distinct 

time series using the method, then UTS clustering produces centroid sets in each case which are 

distinct from one another. In essence, the “information” existing in the original time series which 

made them distinct has been retained in the clustering outcome, and so the clustering outcome 

really can be described as meaningful. Hence, the problem of achieving meaningful time series 

clustering would seem solved, i.e. one must introduce a lag into the subsequence vector 

construction process. 

 

This could mark the end of the dilemma. However, recall the second problem ((B) above) 

observed by Keogh with STS clustering; that centroids are smoothed and do not look like, or 

retain the properties of, the original time series. Work in (Chen 2007b) noted that the UTS-

clustering method, although meaningful, was still prone to this second problem, i.e. according to 

our adopted terminology it is not a useful time series clustering method. The term “useful” was 

adopted in (Chen 2007b) based on the observation that one clusters a time series to produce a 

summary set of features in the time series. If these features do not look like any part of the time 

series, then the outcome, although meaningful, is not useful. Why should UTS clustering be 

meaningful, but not produce centroids representative of the time series? 

 

  



To answer this question, (Chen 2007b) proposed that we need to look more 

fundamentally at what we are asking when we UTS (or STS) cluster a time series. If we UTS 

cluster with a sliding window length of d, then we form a d dimensional clustering space . In 

its entirety,  represents the full range of possible subsequence (i.e. feature) shapes and 

magnitudes that can exist. However, (Chen 2007b) noted that the underlying system producing 

the time series almost certainly will not live on all of , or indeed even on a convex subset of 

 (something assumed by typical clustering algorithms like k-means and Expectation 

Maximization used in STS clustering to date).   What sense does it make to include in the 

clustering process parts of  that cannot be realised in the underlying system? Work proposing 

methods for clustering on subspaces (Haralick & Harpaz 2005), and manifolds (Breitenbach & 

Grundic 2005) exists and is motivated by exactly this line of thinking. Some simple experiments 

were conducted in (Chen 2007b) to show that this unrestricted approach to clustering in UTS 

(STS) clustering is the root cause of the smoothed centroid problem. 

dℜ

dℜ

dℜ

dℜ

dℜ

 

So we should cluster only in the subset of  where valid outcomes from the underlying 

system exist. Unfortunately, given only a finite time series produced by the system, one cannot 

know the extent of this subset. However, this need not matter if the aim of clustering a time 

series is to (a) summarise the time series that was seen, rather than (b) to summarise the possible 

time series outcomes of an underlying system. (Chen 2007b) proposed that (a) is generally what 

we want to do when clustering a time series, and corresponds to asking the question: given the 

features observed in a time series, which k (for k clusters) of these features best “summarises” 

the time series. Given this observation, (Chen 2007b) went on to propose a method that restricts 

the clustering process to the region in  visited by the time series. They proposed that this 

dℜ

dℜ

  



approach corresponds to the correct way to apply the clustering technique if indeed we want to 

ask the question corresponding to (a). They called the approach the Temporal-Formal (TF) 

clustering algorithm.  

 

Details of the results of applying the technique can be found in (Chen 2007b), however in 

summary, the technique was applied on key time series data sets adopted from (Keogh et al. 

2003) and (Simon et al. 2006). The results for all time series in the data set were,  

(i) centroids were produced which remained in among data points in the cluster they 

represented, i.e. centroids looked like features from the original time series  

(ii)  clustering outcomes were meaningful (as per the definition of meaningful above) in 

all cases. 

The conclusion was therefore made that the TF clustering algorithm was a useful time series 

clustering method. Further, analysis of the clustering outcomes for a number of time series was 

conducted in (Chen 2007b), including the benchmark Cylinder-Bell-Funnel time series. In each 

case the TF-clustering algorithm lead to the intuitively correct or (in the case of the benchmark 

time series) required outcome. 

 

 

FUTURE TRENDS 

Subsequence clustering of time series has been the focus of much work in the literature, 

and often as a subroutine to higher level motivations such as rule discovery, anomaly detection, 

prediction, classification and indexing (see (Keogh et al. 2003) for details). With the discovery 

that STS-clustering is meaningless, much future work will involve revisiting and reviewing the 

  



results and conclusions made by this work. Of great importance then is the discovery of a 

meaningful subsequence time series clustering method. We have argued here that a means for the 

solution of the problem exists, and while the arguments made in this work seem both clear and 

cogent, this work is quite recent. The dust still has not settled in the time series clustering area of 

data mining research. 

 

CONCLUSION 

We have reviewed the area of time series clustering, focusing on recent developments in 

subsequence time series (STS) clustering. Prior to 2003, STS clustering was a widely accepted 

technique in data mining. With the discovery in (Keogh et al. 2003) that STS-clustering is 

meaningless, a number of articles were published to explain the dilemma. While interesting 

results were presented in all these papers, we argued that two papers provide a solution to the 

dilemma ((Simon et al. 2006) and (Chen 2007b)). Specifically, work in (Keogh et al. 2003) 

identified two problems with STS clustering: (A) and (B) as described above. Together the 

papers show that these problems can be solved (respectively) by (a) introducing a lag into the 

sliding windows part of the STS-clustering process, and (b) restricting the clustering process to 

only that part of the clustering space pertinent to the time series at hand. Hence, we propose that 

this work forms a solution to the STS-clustering dilemma first identified in (Keogh et al. 2003).  
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KEY TERMS AND THEIR DEFINITIONS 

Time Series:  a data set containing elements which have a temporal ordering 

Whole Time Series Clustering:  the process of applying standard clustering techniques to a 

dataset whose elements are distinct time series of equal length. 

 Subsequence Time Series (STS) Clustering:  the process of applying standard clustering 

techniques to a dataset whose elements are constructed by passing a sliding window over 

(usually) a single (long) time series. 

 Subsequence Vector: elements of the data set obtained in STS clustering, i.e. by using Equation 

2 above. 

  



Unfolded Time Series (UTS) Clustering:  UTS clustering is STS clustering where a lag greater 

than unity has been introduced into the sliding windows process.  

Regressor: elements of the data set obtained in UTS clustering, i.e. by using Equation 3 above. 

Delay Vector: elements of the data set obtained in UTS clustering, i.e. by using Equation 3 

above. 

Lag: the sliding window used in UTS clustering need not capture, as a delay vector, a sequence 

of adjacent points in the time series. The lag is the value q = p+1 where p is the number of data 

points in the time series lying between adjacent points in the delay vector. So, for example, a lag 

q = 3 means the first delay vector will be  K,,, 741 xxx

Temporal-Formal (TF) Clustering: UTS clustering where the clustering process is restricted to 

the region in the clustering space that was visited by the time series.  

Meaningless: in general, an algorithm is said to be meaningless if its output is independent of its 

input. In the context of time series clustering, a time series clustering algorithm is said to be  

meaningless if one cannot distinguish between the clustering outcomes of distinct time series. 

  


