
Constructing Task-Level Assembly Strategies in Robot

Programming by Demonstration

Jason Chen
Department of Information Engineering,

Research School of Information Science and Engineering,
The Australian National University, Canberra, Australia

Ph: int + 61 6125 8687, Fax: int + 61 6125 8660
E-mail: Jason.Chen@anu.edu.au

Keywords

Programming by Demonstration, Teaching by Showing, Hybrid Dynamic Systems, Task
Level Planning

Abstract

Programming by Demonstration (PbD) is a technique for programming robots that holds
much promise in making robots more accessible to ordinary, non-technical users. However,
a well known difficulty with the method is that a human will often demonstrate the task to be
programmed inconsistently or even erroneously, leading to the inclusion of what is essentially
noise in the demonstration. A number of techniques exist in the literature for filtering out
this type of noise, however most focus on very low level control command details. In this
paper we propose a new, complimentary direction of research. We take a “task-level” view of
the demonstration, and note that noise can exist at this level also. We propose a framework,
based on a Hybrid Dynamic System modelling approach, to select the most optimal, task-level
execution strategies that were demonstrated. We apply our framework to a real household
task of inserting the compressible spindle of a paper towel holder into its supports. We
conduct experiments to show that significant improvements in robot performance of the task
can be achieved by a PbD regime that includes our method.

1 Introduction

One of the main impediments to an expanding role of robotics in society are the cur-

rent difficult and unnatural programming interfaces available. Writing computer code and

the use of teach pendants are currently the predominant methods for robot programming,

and both have obvious deficiencies; requiring specialist knowledge and being: unnatural to

1



use, time consuming and/or not very powerful. A novel approach to robot programming is

Programming by Demonstration (PbD), where the human programs the robot by demon-

strating how the task is done. A PbD interface interprets the human’s demonstration and

generates the control details required by the robot so it too can complete the task. Such

a programming interface is very natural for a human to use, it does not require specialist

knowledge, and can potentially program very complex tasks.

Programming by demonstration is an active research area, and many interesting results

have been obtained (see [10] or [9] for a literature review of the field). One of the key results

identified with the approach is that the demonstration can often contain sub-optimality. A

number of authors, including Dillman et. al. [18], Delson and West [19], Nechyba and Xu

[33] and De Schutter et. al. [22], cite sources of sub-optimality that can arise in the demon-

stration. For example, Dillman [18] recognised five sources of sub-optimality: where the

human demonstrates unnecessary, incorrect, or unmotivated actions, where there is choice

of scenario regarding when to apply an action, and where the actions are demonstrated

with the wrong intention (i.e. the user does not know enough about the task). Delson and

West [19] identified that, in a pick and place task through a field of obstacles, a human will

naturally introduce “wiggles” into the demonstrated paths used to traverse regions were

the gap between obstacles is large. Suboptimal actions of this type obscure the skillful set

of actions required to complete the task, and can be viewed as noise. Clearly, having the

robot directly copy the demonstration will not be optimal, and in many cases will not result

in the robot correctly achieving the task. The solution is to identify and remove noise from

the demonstration before any programming of the robot takes place.

A number of approaches have been proposed in the literature to solve this problem.

2



Although these approaches have met with some success, we note that they all focus on

identifying and removing noise from the control details that were demonstrated [27, 12, 22,

19, 10] (see [10] for a more in depth literature review of this work). In this paper we propose a

new, complimentary direction of research. We show that, while humans can demonstrate the

control details for a task inconsistently, they will also generally demonstrate a range of “task-

level” execution strategies that vary in their optimality. That is, the demonstration will

also contain noise at the task level, and an important part of PbD is to identify and remove

it. Noise removal at the task level, and at the control-detail level, are both complimentary

processes; in that they should both be conducted by a competent PbD system. However,

we note that the potential for improved robot performance by optimising at the task level

is great; finessing the control details of a poor task-level strategy will not lead to much

better task performance. Given the complimentary nature of these approaches, we have

formulated this paper as a companion paper to our previous work on optimising at the

control-detail level (reported in [10]), This is in the sense that we apply our approach here

to the same task and set of demonstrations as in that paper, so that the robot performance

presented here is the combined result of optimising at both the control-detail, and the task

levels.

The work we propose in this paper is limited in its applicability to assembly tasks, i.e.

tasks involving contact and constrained motion between a workpiece and environment. We

deal with finding optimal task level plans in a directed graph of contact formations between

task objects that were visited in the demonstration. In some ways then, the work in this

paper is also related to work by Xiao and Ji [32] and Lefebvre et. al. [30], where task level

planning using contact formations is also addressed. The difference between that work, and

3



(no contact)

( δ )

y

z

θ

axial compression only

START  POSITION

GOAL  POSITION

(a) (b)

Figure 1: The spindle-assembly task chosen for PbD

our work here, is that they generate plans autonomously using algorithms based on the

geometric properties of task objects. In this paper we generate plans based on the “hint”

provided by the demonstrator.

This paper is set-out as follows. In Section 2 we formulate more precisely the problem

to be solved. We show how a task-level execution strategy can be described as a sequence

of discrete events in a Hybrid Dynamic System skill model. This description leads us to

formulate our problem in this paper as finding a desired event path that results in optimal

robot performance of the task. In Section 3 our solution to this problem is presented.

Robot performance is broken down into four distinct areas, with the desired event path

selected as the path predicted to result in the best robot performance of the task in the four

performance areas on average. Section 4 presents the results of the experimental testing of

our method on an actual set of demonstrations of a real assembly task. Finally, we state

our conclusions for the work in Section 5.

4



2 Problem Formulation

We have introduced the idea of a task-level strategy, and how different task-level strategies

can be used to complete a task. To specify more concretely what we mean in this regard,

we now introduce the task to be used for experiments in this paper, and a set of six

demonstrations of this task provided by a human in a PbD environment. Figure 1(a) shows

the task we use for experiments; the Spindle Assembly Task. It involves inserting an axially

compressible spindle between two fixed supports. Figure 1(b) shows the start and goal

spindle configurations of the task. The start position sees the spindle removed from the

supports so that no contact exists. The goal position sees the spindle lying between the

front edges of the rebate in each support, ie. as shown in Figure 1(b). Note two things

about the task. First, it is essentially a planar task, and we consider only demonstrated

motions in the horizontal plane (i.e. the spindle has 4 degrees of motion freedom, each

specified by one of x, y, θ and δ). Second, at least partial compression of the spindle must

occur before its insertion between the supports can take place. This has the important

consequence that completion of the task must follow a sequence of spindle head insertion

into the left support, followed by compression, and then by spindle body insertion into the

right support.

Six demonstrations of the task were provided by the human, and are shown in Figure 2.

We denote the demonstrations shown in the figure as D1 to D6 respectively. Note how we

can present these demonstrations as sequences of distinct contact configurations between

the spindle and supports. Each contact configuration can be thought of as a distinct state

in the task. We have assigned each state a unique identifier, eg. state “1” for the goal

configuration in the task, and state “2” for the starting configuration, etc. We will provide

5



1

47

43

77

38

76

33

8

27

8

7

6

1

47

54

55

2

21

29

28

9

65

60

1

47

54

55

2

21

29

28

9

65

60

9

65

38

8

1

60

54

47

55

49

2

21

24

21

11

30

66

61

56

78

79

48

47

1

2

20

24

21

22

2 2

7

75

5

6

8

4

74

5

75

38

8

47

54

21

27

8

1

D6D1 D2 D3 D4 D5

Figure 2: The set of state sequences demonstrated by the human in the spindle-assembly
task

6



a more formal basis for this form of representation later in this section, however, we first

continue with the important issue of presenting how a human can demonstrate a number

of different task-level strategies in robot PbD.

The demonstration set D1 to D6 contains a number of different task-level strategies. We

note that two main phases of the spindle-assembly task exist, (i) spindle head insertion

into the left support, and (ii) spindle body insertion into the right support. We group

the strategies used by the demonstrator in each of these phases into categories in Table 1.

The demonstrator has used three main strategies to insert the spindle head into the left

support. First he has taken the “direct-head” approach, where the spindle head is moved

directly towards the rebate in the left support, ie. the state sequence 5-75-6-7 more-or-less

allows the spindle to move in a “straight line” between the spindle’s start configuration and

its inserted configuration in state 8. Second, he has demonstrated a “guided” approach.

Here the contact in state 21 is used as a guide to achieve spindle head insertion, i.e. the

demonstrator slides the spindle edge along the bottom left corner of the right support until

spindle-head insertion is achieved. Third, a “delayed” approach was demonstrated. Here,

contact between the spindle head and left support was maintained in state 11 while the

spindle body was inserted into the rebate of the right support. That is, the final insertion

of the spindle head into the rebate of the left support was delayed until the spindle body

was fully inserted into the right support.

Table 1 also shows the strategies used by the demonstrator to insert the spindle body

into the right support. Note that at this stage in the task the spindle head is in contact with

the left support, however the demonstrator needs to bring the spindle body into contact

with the right support. Table 1 classifies, into three main types, the strategies used by the

7



2

7

75

5

6

8

"DIRECT-HEAD"

2

21

29

28

9

"GUIDED"

49

48

61

56

78

79

11

66

"DELAYED"

9

65

60

54

55

8

"PUSH-FORWARD"

38

76

33

77

43

47

"CREEP-OVER"

54

47

1

8

"DIRECT-BODY"

Table 1: The task-level execution strategies demonstrated for the spindle-assembly task

8



demonstrator to make this contact. First, he has used the “push-forward” approach, where

contact is first made in state 60. Using this strategy, the demonstrator pushes the spindle

body forward, pivoting about a contact between the spindle-head and left support until

state 60 is achieved. Second, he has used a “creep-over” approach. Here, contact between

the spindle body and right support is first made in state 33. Insertion of the spindle body

into the rebate is then achieved by “creeping-over” the front lip of the right support (i.e.

through states 76, 38, 77, and 43) and into the rebate. Third and finally, the demonstrator

has used the “direct-body” approach. Contact is made by moving the spindle body directly

toward the base of the rebate in the right support, i.e. without touching either side of the

rebate.

The preceding discussion shows how many different task-level strategies can be demon-

strated by the human. Then an important problem in PbD is to select for the robot a set

of strategies that will see it best perform the task. In this paper we propose one possible

solution to this problem. We formulate this solution within an approach to modelling a

robotic assembly process as a Hybrid Dynamic System (HDS). Hybrid Dynamic System

theory involves the study of dynamic systems that consist of two component subsystems;

one discrete in nature, and the other continuous in nature [23]. Quite a bit has been writ-

ten about applying Hybrid Dynamic System theory as a means to model robotic assembly

[16, 4, 6, 8], including in the context of PbD [10]. In essence, the assembly process is

interpreted in this work as, at the discrete level, a sequence of discrete events that occur

asyncronosly through time when objects in the task move from one contact configuration

to another. In contrast, the continuous system describes the dynamics of task objects in

the usual way, i.e. as a differential equation relating the time rate of change of the pose of

9



CONTINUOUS
TIME
SYSTEM

Controller
Discrete Event

Monitor

Process

DISCRETE
EVENT
SYSTEM

robot plant

x(t)u(t)

γσ

Figure 3: The Hybrid Dynamic System skill model for assembly tasks

an object with its existing pose and the control input.

A useful outcome of this dual description of assembly dynamics is that control of the

assembly process can be undertaken at two levels, i.e. in contrast to the usual approach of

modelling and control in the continuous time domain only. We show in Figure 3 the details

of the control regime first proposed by McCarragher [4] for the control of robotic assembly

in a Hybrid Dynamic system setting. The dashed line in the figure marks the interface

between the discrete-event and Continuous Time Systems. In the Discrete Event System

there exists the Process Monitor (PM) and Discrete Event Controller (DEC). The role of

the PM is to recognise from the Continuous Time System state vector x(t) when a discrete

event has occurred. Upon recognising the occurrence of an event, the PM outputs the new

state γ of the Discrete Event System to the DEC, which then determines the command u(t)

for output to the Continuous Controller (CC) in the Continuous Time System. Note that

command u(t) is chosen with the purpose of triggering the next event in a desired event

path, where in Figure 3 we show this desired event path as σ. The Continuous Controller

10



8

27
2

20

22

7
6

4
5

74
75

54

55

49

78 79

48

47
33

77

38

43

762421

29
60

28
9

65 56

1

6630 11 61

START

GOAL

Figure 4: The directed graph A of states and events present in the demonstration set D1

to D6

receives the command u(t) from the DEC, and applies it via the robotic mechanism to

modify the configuration x(t) of the task. The loop is completed with the PM monitoring

when the next discrete event occurs.

The power of the Hybrid Dynamic control regime just described comes from its two-

tiered nature. Control elements in the discrete event system form a meta controller which

take a high level point of view of the process, i.e. they control the sequence of discrete

events needing to occur for task completion to be reached. The elements in the Continuous

Time System focus at a lower level on controlling the task configuration so that the next

desired discrete event occurs. 1 Given our interest is to formulate a task level plan for the

robot from the task level plans demonstrated by the human, our focus in this paper will

be on the Discrete Event part of the HDS. It is this component of the HDS that allows us

1It is interesting to note that research by Hogan into human manipulation competency [20] suggests
that humans approach assembly in a similar fashion, i.e. with an abstract, task-level plan, which is then
implemented through manipulation at a more concrete, continuous level. This research suggests that a HDS
is indeed a valid means to model robotic assembly

11



to describe, and therefore capture, demonstrated strategies at the task level. Toward this

end, an important and useful representation of the Discrete Event System is as a directed

graph. Each node in the graph represents one of the discrete states in the task, while each

arc represents a discrete event that can occur to take the task between these states. For

example, we show in Figure 4 the directed graph formed from the demonstrated sequences

of events and states of Figure 2. Denote the graph in Figure 4 as A. Then, it can be seen

that the problem of determining an optimal task-level strategy for the robot really means

finding a path of discrete events traversing in A between the initial unassembled state (State

2) to the final fully-assembled state (State 1) which see the robot perform in some optimal

fashion. Recall from Figure 3 that such a path will form an input into the DEC component

of the discrete event control regime, and that we denoted it as σ. Our purpose in this paper

is to present a method for deriving σ.

3 Selecting a Desired Event Path

Selecting a desired event path σ means predicting the performance of the robot for every

event in A. Accurate prediction of how the robot will perform each event means that

selecting σ is the relatively straight-forward process of choosing a path in A that passes

between the start and goal states, and that contains the most optimally performed events.

However, in order to present measures that predict optimal robot performance of an event,

we must first define what we mean by optimal robot performance.

3.1 Defining Optimal Robot Performance

We define optimal robot performance as performance with the following characteristics:

1. low execution time

12



2. high reliability

3. low control effort

Our aim is to select events for σ that are performed by the robot with these three character-

istics. However, in addition, we note the capability of the human to analyse his performance

of the task. A human will routinely identify and repeat often any strategies for task execu-

tion that he finds works well. We make the assumption that strategies found to work well

by the human will also work well for the robot 2. So, in addition to selecting events that

see the robot perform with characteristics 1.,2., and 3., our aim is also to select events for

σ that were:

4. demonstrated often

3.2 The Path Selection Framework

Recall that each arc in directed graph A represents an event that was demonstrated. Our

idea for determining σ is to assign to each arc in A a cost, where the cost assigned reflects

how well the robot will perform the event represented by that arc. A high cost is assigned

to the arcs of events predicted to result in poor performance, while a low cost is given to

the arcs of events predicted to be performed well. We then determine σ by conducting

a search in A for the minimum cost path between the start and goal states in the task.

Since a minimum cost path is selected, only the events resulting in the best possible robot

performance will be included in σ.

2Note that this assumption requires the relative level of performance of each event by the human and
robot to be correlated, something we will not prove. However, we include this area in our set of performance
areas since, at least from the outcomes of our experiments, a correlation seems to exist that makes this
performance area a useful one to include.

13



The obvious question with the approach regards how the cost of each arc should be

determined. Let τA
k denote an event that is represented by one of the nodes in A (i.e. the

kth event demonstrated in the task) and let γA
τ̌k

and γA
τ̂k

be the states between which τA
k

takes the assembly process, i.e. the occurrence of τA
k triggers a change in discrete task

state from γA
τ̌k

to γA
τ̂k

. Then, a cost is assigned to the arc in A representing τA
k as follows.

First, individual costs are assigned to τA
k in each of the four performance areas: time,

reliability, control effort, and number of times demonstrated. Sections 3.2.1, 3.2.2, 3.2.3

and 3.2.4 describe for each performance area how this step is achieved. An overall cost is

then calculated from the costs assigned in the individual performance areas. Section 3.2.5

describes the details of how the overall cost is calculated.

3.2.1 Time

Strictly speaking, an event in the HDS is instantaneous and takes zero time. It is the

infinitesimal amount of time taken to pass between two distinct contact formations in the

task. For our work here, we are interested in how long an event takes to achieve. That is,

how long after the previous event in the assembly process does it take for us to have event

τA
k occur. Three components to this time exist:

1. time for discrete event control in γA
τ̌k

: how long for the DEC to determine a control

command u(t) for use in state γA
τ̌k

that will cause event τA
k to occur.

2. time for continuous control in γA
τ̌k

: time for the CC/manipulator to traverse u(t).

3. time to process monitor τA
k : time for the PM to recognise that τA

k has occurred.

14



We note that item 2 forms the dominant component in the time required to achieve τ A
k . That

is, the majority of time required by the robotic system to achieve event τA
k will result from

having to change the physical configuration of the task. Work by Hovland and McCarragher

[7] showed that the time required for process monitoring is small. They used a multilayer

perceptron neural net as a PM, and showed that process monitoring in real time is possible,

(i.e. for a reasonably complex asymmetrical insertion task, events were recognised in the

order of 1.5 milliseconds on standard computer hardware). The time required for discrete

event control may be greater. However, deciding on a continuous control command for each

event in A need not occur in real time. Indeed, a more sensible approach is to do the

processing offline. An appropriate u(t) for each event in A would then be available for use

by the robot at execution time.

The dominance of the CC in determining the time required to achieve τA
k means that

our metric for predicting performance in the time area is simplified. We identify that the

time required to achieve event τA
k will depend mainly on the amount the task configuration

is required to change for the event to occur. A good measure of the amount the task

configuration must change is the “distance” along the path traversed by the demonstrator

to achieve this event in the Configuration Space [31] representation of the task. Note that

where more than a single path for event τA
k was demonstrated, the average length of the

paths were taken. Denote this average length for event τA
k as Lk

av . Then our metric for

calculating a cost Ctk in the time performance area for τA
k is:

Ctk = Lk
av (1)

15



3.2.2 Reliability

The reliability of execution by the robotic system will depend on the reliability of each of

the components in the system. That is:

1. The reliability of the PM in identifying τA
k correctly when it occurs

2. The reliability of the DEC in selecting an obstacle-free u(t) that will cause τ A
k to occur

3. The reliability of the CC in precisely following u(t) so that an erroneous event (i.e. one

that is not τA
k ) does not accidently occur.

Our experience is that the main source of execution failure in robotic systems stems

from item 3. Regarding item 1, Hovland and McCarragher [7] showed that a 95 percent

success rate for Process Monitoring can be achieved, even with quite small training sets

for the Multi Layer Perceptron. Results from our experiments (which we will present later

in Section 4) using this type of PM are consistent with their findings. Regarding item 2,

results presented in [10] for a DEC showed that appropriate setting of parameters in that

method resulted in every command produced by the DEC being valid and obstacle-free

(we discuss more fully in Section 4 the details of this DEC method). Failure caused by

item 3 results mainly from flexibility and backlash in the robot and workpiece (i.e. the

spindle). The relative positioning of the workpiece and the environment can then not be

precisely known or controlled. Failure by this mode is well known in robotics, especially for

tasks involving contact between task objects [11]. We adopt the well known hybrid 3 force-

position control regime first introduced by Raibert and Craig in [17] as our CC. A strength

3where hybrid in this case refers to the combination of force and position control, in contrast to our
previous use of the term in hybrid dynamic system, which referred to the combination of discrete event and
continuous time systems

16



of the hybrid-force position control regime is that it uses constraints provided by contact in

the task to guide assembly motion. That is, if many constraints are present, then motion

can be guided, and more reliable execution of the task achieved. We therefore propose the

inclusion of dofγA
τ̌k

; the number of dofs of the spindle in state γA
τ̌k

, as one of the components

in our reliability measure Crk. If the spindle motion is not constrained in a particular

state, then the events that cause the assembly process to “leave” that state are deemed less

attractive from a reliability point of view. However, we must temper the desire for events

out of highly constrained states to be included in σ with the realisation that progress must

be made towards the fully assembled state. For example, states 60, 48, etc. in Figure 2

allow no progress towards the fully assembled state since the spindle is fully constrained in

these states. We therefore multiply dofγA
τ̌k

with 1/Lk
av (where we introduced Lk

av in Section

3.2(a)) in Crk to reflect that fact that we desire states that constrain motion, but that also

allow the spindle configuration to change so that progress towards full assembly can occur.

The final component of Crk we propose is SγA
τ̌k

, the number of neighbouring states to state

γA
τ̌k

in A. That is, we calculate the cost in the reliability area for event τA
k as:

Crk = dofγA
τ̌k

×
1

Lk
av

× SγA
τ̌k

+ 1 (2)

where we multiply dofγA
τ̌k

× 1/Lk
av with SγA

τ̌k

because incorrect traversal of γA
τ̌k

will cause an

event other than τA
k to occur. That is, we penalise, in Crk, the events out of states where

it is possible for many alternate events to occur. We add the value 1 so that a state with

zero spindle degrees of freedom is not assigned a zero cost. An arc with zero cost in A can

cause problems for our search algorithm when trying to find the minimum-cost path.

17



3.2.3 Control Effort

By control effort we mean the computational effort in controlling the assembly process.

Recall how the HDS modelled assembly skill as the repeated application of the same skill

“loop”, i.e. recognising a contact formation, determining a command to reach the next

desired contact formation, applying that command, recognising the new contact formation,

etc, etc. For each loop, computational effort is required. The PM must process force and

position data in order to recognise the event, a control command u(t) must be selected

by the DEC, and the CC must control the robot so that u(t) is physically achieved in the

workspace. Clearly, from a computational point of view, the less times we need to repeat

this loop, the better. Then a good measure of control effort for task completion using a

certain event path is the number of events in that path. That is, a cost in the control-effort

area Cek for transition τA
k is calculated simply as:

Cek = 1 (3)

Then, any event path selected by our method will have a cost in the control-effort perfor-

mance area equal to the length of the path itself.

3.2.4 Number of Demonstrations

Determining a cost Cnk for τA
k in the number of demonstrations performance area is straight

forward. The cost should be set inversely proportional to Nk, the number of times transition

τA
k was demonstrated. It should be set inversely proportional to Nk so that τA

k with good

performance in this area (i.e. those demonstrated often) are assigned a low cost in A, while

18



those demonstrated less often are assigned a high cost. Then the metric for calculating a

cost in the number-of-demonstrations performance area Crk for τA
k we propose as:

Cnk = (Nmax
− Nk)

dof + 1 (4)

where Nmax is the number of times the most demonstrated transition was demonstrated.

We raise (Nmax −Nk) to the power of dof (the dof of the task, i.e. four in our case) so that

the cost assignment is not linear with respect to (N max − Nk). That is, events repeated

more often are given a much lower cost than infrequently demonstrated events. This cost

assignment structure is necessary so that a short path with infrequently demonstrated events

is not selected over a longer path with more frequently demonstrated events. Analysis

suggests that the dof of the task is a good value to use in the indexation, i.e. because the

length of path through A will generally increase as the dof increases. Note also in Equation

4 that we have added a value of 1. This is to ensure that Cnk can never equal zero, i.e. for

the case when τA
k is the most demonstrated event in the task. An arc with zero cost in A

can be problematic for a search algorithm when searching in for a minimum-cost path.

3.2.5 Determining an Overall Cost

We identified four performance areas in which we categorise robot performance. Note then

that a transition may result in good robot performance in one area and poor performance

in another. A method is required to calculate the overall performance of an event. To

determine the overall performance of an event we introduce the following measure:

19



Ck = WtCtk + WrCrk + WeCek + WnCnk (5)

where Ck is the overall cost calculated for τA
k , and Wt, Wr, We, and Wn are a set of weights.

The weights allow the overall cost of a transition to be modified according to what aspect of

performance is deemed important by the demonstrator. For example, if the time weight Wt

is set to a value greater than the other weights, then the overall cost Ck will be determined

more by the event’s cost in the time performance area. If we adopt a greater Wt value

for all transitions in A, then a search through A for the least cost path will result in a

path with low execution time. In this way, our event-path selection framework allows robot

performance to be tuned according to what is required. Note that by increasing the value of

the other weights in the set, paths can be selected that cause the robot to perform reliably,

with low in control effort, or to copy the demonstrator.

4 Experimental Results

Our aim in this section is to present the paths selected by our framework, and to confirm

that they did cause the robot to perform the task in the fashion predicted. Figure 4

presents the four paths selected; labelled respectively as the “time”, “reliability/number-

of-demonstrations”, “control-effort”, and “even” paths. Note that the even path is the

result of an even emphasis being given to all weights in Equation 5, so that a mode of task

execution that is a compromise across all performance areas should be produced.

Prior to discussing the merits of these paths and how the robot performed them, we

introduce the experimental apparatus on which testing was carried out. Recall from Figure

3, the components in the robotic system: the manipulator, CC, DEC and PM. Each needed

20



1

47

54

8

7

6

75

2

5

28

29

54

55

60

65

9

21

2

47

1

47

2

21

27

8

54

1

2

21

27

8

47

1

77

38

43

Event
Count

3

1

7

6

5

4

0

2

Time

10

8

Control-Effort EvenReliability/
Num.Dems.

9

Figure 5: Event paths selected by our framework

21



to be implemented in order for experiments to be conducted. We show in Figure 4 the

manipulator used in experiments, and we have already noted that we adopt the well known

hybrid force-velocity control method first proposed in [17] as a CC. Adopting this control

regime for our CC means that the DEC must output a u(t) consisting of both velocity and

force components. A number of generic DEC regimes have been proposed in the literature.

For example McCarragher proposes a DEC based purely on velocity control [4], while Austin

and McCarragher [1] propose a DEC that provides a partitioned force and velocity control

command, as required by our CC. However this work is not directly applicable in our

experiments, since it bases its force and velocity command synthesis on a geometric model

of the task, rather than on trajectories provided by a human in a demonstration. We

implement a DEC that also outputs a partitioned force and velocity command suitable

for our CC, but that derives these commands based on demonstrated force and velocity

trajectories. The details of this work can be found in [9] and, in particular, the details of

the velocity command synthesis part of the work can be found in [10]).

The remaining component in the robotic system is the PM. A number of generic ap-

proaches for implementing a PM exist in the literature, for example: based on neural nets

[7], HMM’s [8], energy analysis [25], on the theory of polyhedral convex cones [26], and oth-

ers [5, 24, 14, 15]. For experiments in this paper we implemented the neural net approach of

[7]. Note that this method is not demonstration based, i.e. it does not formally synthesise a

PM from demonstration. Work that addresses this issue can be found in [28, 29, 3, 21]. Our

aim here is to achieve a functional PM so that we can test our task-level strategy selection

framework. The details of the method by Hovland can be found in [7], and the implemen-

tation details of the method for the spindle assembly task, in [9]. In brief, the method

22



Figure 6: The Scorbot Eshed robot on which experiments were conducted

Path Weight State Successful Execution Computation
Name Emphasised Sequence Executions Time (secs) Time (secs)

Time Wt 2-5-75-6-7-8-54-47-1 6/10 34.3 1.04

Reliab./N.Dems. Wr, Wn 2-21-29-28-9-65-60-55- 10/10 52.7 1.29
54-47-1

Control Effort We 2-21-27-8-54-47-1 7/10 39.1 0.81

Even equal 2-21-27-8-38-77-43-47-1 8/10 42.0 1.12

Table 2: Results of implementing the paths selected by our framework on the robot

uses a multilayer perceptron neural net. The net is trained by inputing position and force

signals from the different state transitions 4 in the task into the input nodes, and clamping

the output node representing the transition being trained high (with the remainder of out-

put nodes clamped low). Backpropogation is then used to determine appropriate weights.

During the execution of the task, the transition experienced is recognised according to the

output node that becomes active.

4produced, for example, by manually backdriving the robot

23



With the experimental apparatus introduced, we now present our results. Ten attempts

at each of the selected paths presented in Figure 4 were performed by the robotic system

just described. Table 2 shows the results of these experiments. The layout of the table

is straightforward, with its first three columns describing the path for which the results

were obtained, and its last three columns presenting the reliability, execution-time, and

computation-time results respectively. Two important questions exist concerning the path

selection and robot execution results presented in Figure 4 and Table 2: (a) do the paths

selected by our framework make sense given the task-level strategies that were available in

the demonstration ? (recall that the task level strategies available in the demonstration

were presented in Table 1), and (b) did the robot perform these paths in the manner (i.e.

fast, reliably, etc) that was predicted ?

Figure 4 shows that the time-path has used the direct-body and direct-head assembly

strategies. The reason is because both these methods use an essentially “straight-line”,

direct approach to inserting both the spindle head and body. Our use of path length as the

basis for the metric in this performance area has caused these strategies to be selected over

others (i.e. the guided, push-forward, creep-over, and delayed strategies) which all have

longer path lengths in comparison. Table 2 confirms the validity of choosing this basis for

our time metric. The time path required 34.3 seconds, compared to 39.1 seconds for the

next longest path (the control effort path) up to 1 minute and 9.6 seconds for path with

the longest execution time (the delayed path). This result suggests that our path length

metric is a valid mode for predicting execution time.

In contrast to the time path, the reliability path contains the guided strategy for spindle

head insertion, and the push-forward strategy for spindle-body insertion. These strategies

24



were selected because of the guided motion each path provides. Our assertion was that the

robot can traverse a state more reliably when its motion is more guided. For spindle-head

insertion, the guided strategy contains much more guided motion than either the direct-

head or delayed assembly approaches; principally due to State 21, where a dof of 3 exists.

This is in contrast to the direct-head and delayed approaches, where most of the “distance”

travelled occurs in State 2 (the no contact state), where no guiding occurs. With regard to

spindle body insertion, the push-forward approach on average results in a lesser degree of

spindle freedom compared to alternative paths. To see why the push-forward approach was

selected over the creep-over approach, recall that spindle-body insertion involves pivoting

the spindle about a point in contact with the left support so that it can be passed around the

front lip of the rebate in the right support. The push-forward approach was demonstrated

using State 9 (spindle dof of 2) to achieve this pivoting motion, while the creep-forward

approach was demonstrated with State 8 (spindle dof of 1) for the same motion. That is,

the push-forward approach was selected because State 9 encodes a greater constraint and

guides motion more than in State 8. Experimental results confirmed the path selections

made by our framework, and the underlying reasons for why these sections were made.

Reliability ranged from six successful executions in ten attempts for the time path, to ten

from ten attempts for the reliability path. Failures in experiments were caused mainly by

the CC. Flexibility in the spindle and robot arm, along with backlash in the robots joints,

and the quite fine tolerances required in some areas of the task, caused the CC to sometimes

not achieve an event in a path. Three of the four failures for the time path occurred when

the assembly process accidently moved from State 8 into State 9 during the pivoting motion

of the spindle. In comparison, the reliability path used State 9 instead of State 8 for this

25



pivoting motion, which constrains the spindle head in both the y- and z-directions, rather

than just in the z-direction. That is, experimental experience suggests that the basis for our

reliability metric is correct; constraining spindle motion leads to more reliable execution.

The other failure for the time path was caused by the spindle head clipping the front edge of

the rebate in the left support during spindle head insertion. In contrast, this did not occur

for the reliability path, which used State 21, instead of State 8, for spindle head insertion.

The reason it did not occur was because the contact in State 21 provided a constraint on the

spindle motion during the spindle head insertion phase. Again, the success with respect to

reliability of the more highly constrained State 21 over the less constrained State 2, suggests

that the basis for our reliability metric is correct.

The control-effort path uses the guided approach for spindle-head insertion and the

direct-body approach for spindle-body insertion. Understanding why these strategies were

selected is straightforward. Recall that our metric in this performance area was based on

the number of events in an event path. Studying A in Figure 4 reveals that the control-

effort path is the path between the start and goal states in the task with the least number

of events. Column six in the Table 2 shows the computation time required for control

purposes for each path. Processing in experiments was conducted on a Motorola 68040

based VME board. The times shown are the sums of the times required be each of the

PM, DEC and CC functionalities. A set of valid u(t) by the DEC is achieved offine, so the

computation time required to select the correct u(t) is negligible. Notice the relationship

between the number of events in each path and the computation time required, i.e. the

longer the path, the greater the computation required. We found that each event required

roughly the same computation time to process monitor, so the more events in a path,

26



the greater computation required by the PM. We also found that paths with more states

required greater computation by the CC. These findings suggest that the number of events

in a path is a valid metric for predicting control effort.

The path selected in the number-of-demonstrations performance area is the same path

as the reliability path. It was selected because of the frequency with which the guided

approach to spindle head insertion and the push-forward approach to spindle-body insertion

were demonstrated. The number-of-demonstrations performance area is different to the

others, in that we do not need experimental results to validate the path selected; we saw in

Section 4 how this path did copy the demonstrator. Our experiments here need to validate

our assertion that copying the demonstrator leads to more optimal robot performance of

the task. Experiments suggest that our assertion is a valid one. We have seen that the

number-of-demonstrations path included the guided approach to spindle-head insertion and

the push-forward approach to spindle-body insertion. One of the reasons identified by

the human for using these strategies was their reliability. We have noted the reasons for

the reliability of these strategies above, i.e. they allow assembly motion to be “guided”.

However, the human identified another, additional reason why these paths encode reliable

execution. Note how event (2-21) provides a reliable way to make initial contact between

the spindle and the right support. The large, flat, contact area provided by the spindle’s

side means the initial contact into State 21 can be achieved even if some uncertainty exists

about the spindle’s position relative to the support. Reliable robot execution of the number-

of-demonstrations path has resulted in part from the inclusion of event (2-21) in the path.

That is, in this case, copying the demonstrator has led to more optimal robot performance

of the task, even though the reason for the more optimal performance was not explicitly

27



identified and included in the path selection system. This fact gives strength to the inclusion

of the number-of-demonstrations performance area our framework. It can capture for the

robot, aspects of task performance identifiable by the intelligent human system that are not

modelled directly by metrics in other performance areas.

The even path uses the guided approach for spindle-head insertion, and the creep-over

approach for spindle-body insertion. This selection of strategies represents a balanced ap-

proach to the assembly. The guided approach is not as optimal in the time area as the

direct-head method, however it is not that much more time consuming, and is more reli-

able. The creep-over approach to spindle-body insertion is also a balanced selection. It is

not as fast as the direct-body approach but is more reliable. It is not as reliable as the push-

forward approach (because, as noted previously, State 8 is used for pivoting rather than

State 9), but it is shorter in distance (and therefore faster) than that method. The length

of the path is not as short as the control-effort path, but is shorter than the reliability path.

This even path also contains events that were used often by the demonstrator, eg. (2-21),

(27-8), and (47-1). Experimental results in Table 2 confirm that this path does result in

balanced robot performance, which is really to be expected given the metrics performed in

the individual performance areas as required.

So in summary, experiments have seemed to confirm the validity of our approach. At the

base of the success was the design of metrics which accurately predicted how the robot would

perform different demonstrated events. Also a success was the inclusion of weights in the

process to allow different aspects of performance to be emphasised in the selection process.

Success in both these areas meant that our system could choose the best demonstrated

strategies for the robot in a number of distinct performance areas, and could avoid selecting

28



strategies resulting in suboptimal robot performance of the task. These results confirm

the utility of including our method in any PbD system. They confirm that a significant

improvement in the quality of programming can be achieved by a PbD system that includes

such a method.

5 Conclusion

We have presented a system for selecting execution strategies at the task-level for robotic

assembly tasks from demonstration. We made the point at the outset of the paper that such

a process has largely not been addressed in the literature to date, and that most work in

the area looks to optimise low level control details; an important part of the PbD process,

but something of limited utility if the execution strategy at the task-level is suboptimal.

We identified that a Hybrid Dynamic System is a good model for describing, and therefore

capturing, human-demonstrated assembly strategies at the task level (although we note

that other task-level representations for, in particular, robotic assembly exist [13, 2], and

an interesting direction of future work would be to investigate whether valid methods of

demonstration optimisation exist under these regimes also). Our proposed task-level strat-

egy selection system was based on a set of simple but general metrics that predict robot

performance in four distinct performance areas: time, reliability, control effort and number

of demonstrations. Our system was applied to demonstration data from a real and non-

trivial assembly task. We saw how quite a number of different task level strategies existed

in this demonstration data, confirming our claims that robot command optimisation at the

task level is a necessary part of PbD. Our system identified a number of these demonstrated

strategies as being more optimal than others. It constructed event paths from the most opti-

29



mal strategies in each performance area according to what aspect of performance was being

emphasised at the time. We confirmed the validity of the constructed paths with experi-

ments. We saw that strategies selected to be optimal in a particular performance area did

in fact lead to this type of robot performance of the task, and for the reasons predicted by

our metrics. In addition, experiments confirmed that strategies not selected by our system

were indeed less optimal than those selected. Our system forms a new and complimentary

approach to existing approaches in the literature to the problem of removing noise from the

demonstration in PbD. It provides a means for lifting the focus of the optimisation process

from the control level details to the task level.

References

[1] D. J. Austin and B. J. McCarragher. Hybrid force/velocity discrete event controller synthesis for

assembly tasks with friction. In Proceedings of IEEE Conference on Robotics and Automation, San

Francisco, USA, April 2000.

[2] B.Hannaford and P.Lee. Hidden markov model analysis of force/torque information in telemanipulation.

The International Journal of Robotics Research, 10(5):528–539, October 1991.

[3] B.J.McCarragher. Force sensing from human demonstration using a hybrid dynamical model and

qualitative reasoning. In Proceedings of the IEEE International Conference on Robotics and Automation,

volume 1, pages 557–563, San Diego, CA, USA, May 1994.

[4] B.J.McCarragher and H.Asada. The discrete event control of robotic assembly tasks. ASME Journal

of Dynamic Systems, Measurement and Control, 117(3):384–393, September 1995.

[5] T.J. Debus, P.E. Dupont, and R.D. Howe. Contact state estimation using multiple model estimation

and hidden markov models. International Journal of Robotics Research, 23(4/5):399–414, 2004.

[6] D.J.Austin and B.J.McCarragher. Force control command synthesis for constrained hybrid dynamic

systems with friction. International Journal of Robotics Research, 20(9):753–764, 2001.

30



[7] Geir.E.Hovland and B.J.McCarragher. Combining force and position measurements for the monitoring

of robotic assembly. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS’97), Grenoble, France, pages 654–660, September 1997.

[8] Geir E. Hovland and Brenan J. McCarragher. Hidden markov models as a process monitor in robotic

assembly. International Journal of Robotics Research, 146(17):266–267, October 1997.

[9] J.Chen. Coping with demonstration suboptimality in robot programming by demonstration. Un-

published Ph.D. thesis, Department of Engineering, FEIT, Australian National University, Canberra,

Australia, 2001.

[10] J.Chen and A.Zelinsky. Programming by demonstraton: Coping with suboptimal teaching actions. The

International Journal of Robotics Research, 22(5):299–319, May 2003.

[11] J.J.Craig. Introduction to robotics: mechanics and control. Addison-Wesley, second edition edition,

1989.

[12] M. Kaiser and R. Dillman. Building elementary skills from human demonstration. In Proceedings of

the 1996 IEEE International Conference on Robotics and Automation, pages 2700–2705, April 1996.

[13] K.Ikeuchi, M.Kawade, and T.Suehiro. Toward assembly plan from observation, task recognition with

planar, curved and mechanical contacts. In Proceedings of the 1993 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 2294–2301, 1993.

[14] T. Lefebvre, H. Bruyninckx, and J. De Schutter. Polyhedral contact formation modeling and identifica-

tion for autonomous compliant motion. IEEE Transactions On Robotics And Automation, 19(1):26–41,

2003.

[15] T. Lefebvre, H. Bruyninckx, and J. De Schutter. Polyhedral contact formation identification for au-

tonomous compliant motion: Exact nonlinear bayesian filtering. IEEE Transactions On Robotics,

21(1):124–129, 2005.

[16] Brenan J. McCarragher and Haruhiko Asada. The discrete event modeling and trajectory planning

of robotic assembly tasks. Journal of Dynamic Systems, Measurements and Control, 117(3):394–400,

October 1995.

31



[17] M.H.Raibert and J.J.Craig. Hybrid position/force control of manipulators. Journal of Dynamic Sys-

tems, Measurement, and Control, 102/127:126–133, June 1981.

[18] H.Friedrich M.Kaiser and R.Dillmann. Obtaining good performance from a bad teacher. In Workshop:

Programming by Demonstration vs Learning from Examples; International Conference on Machine

Learning, California, USA, July 1995.

[19] N.Delson and H.West. Robot programming by human demonstration: Adaptation and inconsistency

in constrained motion. In Proceedings of the 1996 IEEE International Conference on Robotics and

Automation, 1996.

[20] N.Hogan. How humans adapt to kinematic constraints. In Proceedings of the 7th Yale Workshop on

Adaptive Learning Systems, May 1992.

[21] P.Sikka and B.J.McCarragher. Learning to recognize discrete state transitions in assembly. In Pro-

ceedings of the Australian Robot Association’s National Conference on Robots for Australian Industries,

Melbourne, July 1995.

[22] Wim Witvrouw Qi Wang, Joris De Schutter and Sean Graves. Derivation of compliant motion programs

based on human demonstration. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2616–2621, April 1996.

[23] R.W.Brockett. Hybrid models for motion control systems. In H.L.Trentelman and J.C.Willems, editors,

Essays on Control: Perspectives in the Theory and Its Applications, chapter 2, pages 29–5. Birkhauser,

Boston, MA, 1993.

[24] J.De Schutter, H.Bruyninckx, S.Dutr, J.De Geeter, J.Katupitiya, S.Demey, and T.Lefebvre. Estimating

first order geometric parameters and monitoring contact transitions during force controlled compliant

motion. International Journal of Robotics Research, 18(12), 1999.

[25] S.Dutre, H.Bruyninckx, and J.De Schutter. Indentification and monitoring based on energy. In Pro-

ceedings of the 1996 IEEE International Conference on Robotics and Automation, pages 1333–1338,

Minneapolis, Minnesota, USA, April 1996.

[26] S.Hirai. Identification of contact states based on a geometric model for manipulative operations. Ad-

vanced Robotics: The International Journal of the Robotics Society of Japan, 8(2):139–155, 1994.

32



[27] S.K.Tso and K.P.Liu. Demonstrated trajectory selection by hidden markov model. In Proceedings of the

International Conference on Robotics and Automation, pages 2713–2718, Albuquerque, New Mexico,

April 1997.

[28] Marjorie Skubic and Richard A. Volz. Identifying contact formations from sensory patterns and its ap-

plicability to robot programming by demonstration. In Proceedings of the 1996 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 458–464, 1996.

[29] Marjorie Skubic and Richard A. Volz. Learning force based assembly skills from human demonstration

for execution in unstructured enviroments. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1281–1288, May 1998.

[30] T.Lefebvre, H.Bruyninckx, and J.De Schutter. Task planning with active sensing for autonomous

compliant motion. Journal of Robotics Research, 24(1):61–81, 2005.

[31] T.Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transactions on Computing,

C32:108–120, February 1983.

[32] Jing Xiao and Xuerong Ji. A divide-and-merge approach to contact motion planning. In Proceedings of

the IEEE International Conference on Robotics and Automation, San Francisco, California, USA, May

2000.

[33] M.C.Nechyba Yangsheng Xu. On the fidelity of skill models. In Proceedings of the IEEE International

Conference on Robotics and Automation, Minneapolis, Minnesota, USA, April 1996.

33


